Children's experiences and experiments at home. Fun experiments you can do at home

Site arrangement 20.10.2019
Site arrangement

Doing chemistry experiments at home is very exciting. You can feel like a little experimenter, a little pioneer, a little magician.

Here pink and transparent solutions are mixed, the result is green. A cloud flew into the bottle on the windowsill. When heated, a mysterious message appears on a clean sheet, and snakes crawled out of the burning sand. You say that this is impossible and without magic it could not have done? But all these phenomena are based on chemical laws. And for their implementation, you will need "reagents" that everyone has at home, or they can be purchased at a regular pharmacy.

Buy chemical experiments for children

Now in the department for schoolchildren you can see kits for a young chemist. This kit contains materials for 3-5 experiments. It's interesting, it's exciting and spectacular. In addition, a child who sets up an experiment with his own hands and examines the result will find it easier to understand what the teacher is talking about in a chemistry lesson. The only negative is that these kits are not cheap. But many experiments can be done by looking for reagents at home.

Chemical experiments for children at home: "A cloud in a bottle"

Pour 1 tbsp into a clear plastic bottle. l. alcohol (can be replaced with water, but the reaction will be less active). Twist the bottle so that the alcohol spreads along the walls. Start pumping air into the bottle with the pump (20 pumps is enough). Remove the pump, the bottle has become cold and a cloud will appear in it.

Explanation.

Water molecules, evaporating (alcohol evaporates faster), hover in the air. In the experiment, "water" evaporated from the walls. As the pressure in the bottle increases, the molecules collide and contract. With a sharp drop in pressure, the air temperature drops sharply. This causes the "water" molecules to stick together or condense in the air into small droplets - clouds.

Chemical experiments for children video

Chemistry experiments for children games: "Spy"

Who in childhood did not dream of having a pen with invisible ink, when what is written comes through only with a special impact, and an outsider sees only Blank sheet? Such ink can be made in at least 2 ways.

Method 1. Dip the brush in milk (or soda solution) and start writing a message on white paper. After the milk dries, the leaf will become clean again. But if you iron it with an iron, the image will be visible on it.

Explanation.

The ink begins to show when exposed to heat. The combustion temperature of milk is much lower than that of paper. And when the milk "burns", the paper remains white.

Method 2. Lemon juice or thick rice water is used instead of milk. And the role of the developer is water with a few drops of iodine.

Chemical experiments for children at home "Egg Ball"

Place a raw egg (preferably with a brown shell) in a glass jar and pour over the vinegar. After a few hours, the shell will begin to "bubble". After 7-8 hours, the shell will dissolve and the egg will turn white. Leave the egg in the solution for a week.

Remove the egg from the solution after 7 days. The vinegar stays clear and the egg looks like a rubber ball. If you go with an egg in dark room and shine a flashlight on it, it will begin to reflect light. And if you bring the light source closer, then the egg will be enlightened through.

Explanation.

The main component of the eggshell is calcium carbonate. Vinegar dissolves calcium. This process is called decalcification. The shell first becomes soft, and after a while it disappears.

Chemical experiments for children at home video

Chemical experiments at home for children "Volcano Eruption"

Take the Mentos out of the package. Place a bottle half-full of cola on the floor. Quickly pour Mentos into a bottle and run away, otherwise it will foam.

Explanation.

The rough surface of candy is where carbon dioxide is released. The reaction is enhanced by Asparam (a sweetener in cola), which reduces the surface tension of water, and therefore facilitates the release of CO2, sodium benzoate, caffeine; gelatin, gum arabic in dragee.

Think next time, maybe you should not drink delicious cola, so as not to provoke a similar reaction in your stomach?

Chemical experiments for children animation: "Crawling snakes"

The biblical legend says that Moses, arguing with the pharaoh, could not convince him and threw his staff on the ground, turning him into a snake. Now scientists have come to the conclusion that it was not a snake, but a chemical reaction.

Sulfanilamide snake.

Attach a streptocide tablet to a wire and heat over an open fire. Snakes will start to crawl out of the medicine. If you pick up one of them with tweezers, the snake will be long.

Explanation.

Any sulfanilamide tablet (sulgin, etazol, sulfadimethoxine, sulfadimezin, biseptol, fthalazol) is suitable for the experiment. During the heating of the preparation, rapid oxidation occurs in it with the release of gaseous substances (hydrogen sulfide and water vapor). The gas swells the mass and forms a "snake".

"Sweet" viper.

Pour 100 gr. sifted sand and soak it with 95% alcohol. Form a hill with a "crater" in the middle. Mix 1 teaspoon of icing sugar and ¼ teaspoon of baking soda and pour into a depression in the sand.

Ignite the alcohol (it takes several minutes to ignite). Black balls will begin to appear on the surface, black liquid will accumulate below. When the alcohol burns out, the mixture will turn black and a black snake will begin to crawl out of it, wriggling.

Explanation.

When soda decomposes and alcohol burns, carbon dioxide (CO2) and water vapor are released. Gases swell the mass, provoking it to crawl. The body of a snake is made up of small particles of coal mixed with sodium carbonate (Na2CO3), which is formed when sugar is burned).

My personal experience of teaching chemistry has shown that such a science as chemistry is very difficult to study without any initial knowledge and practice. Schoolchildren very often run this subject. I personally observed how a student of the 8th grade at the word "chemistry" began to frown, as if he had eaten a lemon.

Later it turned out that because of dislike and misunderstanding of the subject, he skipped school in secret from his parents. Certainly, school program is designed in such a way that the teacher should give a lot of theory at the first chemistry lessons. Practice, as it were, fades into the background precisely at the moment when the student cannot yet independently realize whether he needs this subject in the future. This is primarily due to the laboratory equipment of schools. AT big cities at present, things are better with reagents and instruments. As for the province, as well as 10 years ago, and at present, many schools do not have the opportunity to conduct laboratory classes. But the process of studying and fascination with chemistry, as well as with other natural sciences, usually begins with experiments. And it is no coincidence. Many famous chemists, such as Lomonosov, Mendeleev, Paracelsus, Robert Boyle, Pierre Curie and Maria Sklodowska-Curie (schoolchildren also study all these researchers in physics classes) have already started experimenting since childhood. The great discoveries of these great people were made in home chemical laboratories, since chemistry classes at institutes were available only to wealthy people.

And, of course, the most important thing is to interest the child and convey to him that chemistry surrounds us everywhere, so the process of studying it can be very exciting. This is where home chemistry experiments come in handy. Observing such experiments, one can further look for an explanation of why things happen this way and not otherwise. And when a young researcher encounters similar concepts at school lessons, the teacher’s explanations will be more understandable to him, since he will already have his own own experience conducting home chemical experiments and the knowledge gained.

It is very important to start learning natural sciences from ordinary observations and examples from life, which, in your opinion, will be most successful for your child. Here are some of them. Water is a chemical substance consisting of two elements, as well as gases dissolved in it. Man also contains water. We know that where there is no water, there is no life. A person can live without food for about a month, and without water - only a few days.

River sand is nothing but silicon oxide, and also the main raw material for glass production.

A person himself does not suspect it and carries out chemical reactions every second. The air we breathe is a mixture of gases - chemicals. In the process of exhalation, another complex substance is released - carbon dioxide. We can say that we ourselves are a chemical laboratory. You can explain to the child that washing hands with soap is also a chemical process of water and soap.

An older child who, for example, has already begun to study chemistry at school, can be explained that almost all elements can be found in the human body. periodic system D. I. Mendeleev. In a living organism, not only all chemical elements are present, but each of them performs some biological function.

Chemistry is also medicines, without which at present many people cannot live even a day.

Plants also contain the chemical chlorophyll, which gives the leaf its green color.

Cooking is a complex chemical process. Here you can give an example of how the dough rises when yeast is added.

One of the options for getting a child interested in chemistry is to take an individual outstanding researcher and read the story of his life or watch an educational film about him (films about D.I. Mendeleev, Paracelsus, M.V. Lomonosov, Butlerov are now available).

Many believe that real chemistry is harmful substances, it is dangerous to experiment with them, especially at home. There are many very exciting experiences that you can do with your child without harming your health. And these home chemical experiments will be no less exciting and instructive than those that come with explosions, pungent odors and puffs of smoke.

Some parents are also afraid to conduct chemical experiments at home due to their complexity or lack of necessary equipment and reagents. It turns out that you can get by with improvised means and those substances that every housewife has in the kitchen. You can buy them in the nearest household store or pharmacy. Test tubes for holding household chemical experiments can be replaced with pill bottles. Reagents can be stored glass jars, for example, from baby food or mayonnaise.

It is worth remembering that the dishes with reagents must have a label with the inscription and be tightly closed. Sometimes the tubes need to be heated. In order not to hold it in your hands when heated and not get burned, you can build such a device using a clothespin or a piece of wire.

It is also necessary to allocate several steel and wooden spoons for mixing.

You can make a stand for holding test tubes yourself by drilling through holes in the bar.

To filter the resulting substances, you will need a paper filter. It is very easy to make it according to the diagram given here.

For children who do not yet go to school or are studying in elementary grades, setting up home chemical experiments with their parents will be a kind of game. Most likely, such a young researcher will not yet be able to explain some individual laws and reactions. However, it is possible that just such an empirical way of discovering the surrounding world, nature, man, plants through experiments will lay the foundation for the study of natural sciences in the future. You can even arrange original competitions in the family - who will have the most successful experience and then demonstrate them at family holidays.

Regardless of the age of the child and his ability to read and write, I advise you to have a laboratory journal in which you can record experiments or sketch. A real chemist must write down a work plan, a list of reagents, sketches of instruments and describes the progress of work.

When you and your child just begin to study this science of substances and conduct home chemical experiments, the first thing to remember is safety.

To do this, follow the following safety rules:

2. It is better to allocate a separate table for conducting chemical experiments at home. If you do not have a separate table at home, then it is better to conduct experiments on a steel or iron tray or pallet.

3. It is necessary to get thin and thick gloves (they are sold in a pharmacy or hardware store).

4. For chemical experiments, it is best to buy a lab coat, but you can also use a thick apron instead of a dressing gown.

5. Laboratory glassware should not be used for food.

6. In home chemical experiments, there should be no cruelty to animals and violation of the ecological system. Acidic chemical waste should be neutralized with soda, and alkaline with acetic acid.

7. If you want to check the smell of a gas, liquid or reagent, never bring the vessel directly to your face, but, holding it at a certain distance, direct, waving your hand, the air above the vessel towards you and at the same time smell the air.

8. Always use small amounts of reagents in home experiments. Avoid leaving reagents in a container without an appropriate inscription (label) on the bottle, from which it should be clear what is in the bottle.

The study of chemistry should begin with simple chemical experiments at home, allowing the child to master the basic concepts. A series of experiments 1-3 allow you to get acquainted with the basic aggregate states of substances and the properties of water. To begin with, you can show a preschooler how sugar and salt dissolve in water, accompanying this with an explanation that water is a universal solvent and is a liquid. Sugar or salt solids, soluble in liquid.

Experience number 1 "Because - without water and neither here nor there"

Water is a liquid chemical substance composed of two elements as well as gases dissolved in it. Man also contains water. We know that where there is no water, there is no life. A person can live without food for about a month, and without water - only a few days.

Reagents and equipment: 2 test tubes, soda, citric acid, water

Experiment: Take two test tubes. Pour in equal amounts of baking soda and citric acid. Then pour water into one of the test tubes, and not into the other. In a test tube in which water was poured, carbon dioxide began to be released. In a test tube without water - nothing has changed

Discussion: This experiment explains the fact that many reactions and processes in living organisms are impossible without water, and water also accelerates many chemical reactions. Schoolchildren can be explained that an exchange reaction has taken place, as a result of which carbon dioxide has been released.

Experience number 2 "What is dissolved in tap water"

Reagents and equipment: transparent glass, tap water

Experiment: Pour tap water into a transparent glass and put it in a warm place for an hour. After an hour, you will see settled bubbles on the walls of the glass.

Discussion: Bubbles are nothing but gases dissolved in water. Gases dissolve better in cold water. As soon as the water becomes warm, the gases cease to dissolve and settle on the walls. A similar home chemical experiment also makes it possible to acquaint the child with the gaseous state of matter.

Experience No. 3 “What is dissolved in mineral water or water is a universal solvent”

Reagents and equipment: test tube, mineral water, candle, magnifying glass

Experiment: Pour mineral water into a test tube and slowly evaporate it over a candle flame (the experiment can be done on the stove in a saucepan, but the crystals will be less visible). As the water evaporates, small crystals will remain on the walls of the test tube, all of them of different shapes.

Discussion: Crystals are salts dissolved in mineral water. They have different shape and size, since each crystal wears its own chemical formula. With a child who has already begun to study chemistry at school, you can read the label on mineral water, which indicates its composition and write the formulas of the compounds contained in mineral water.

Experiment No. 4 "Filtration of water mixed with sand"

Reagents and equipment: 2 test tubes, funnel, paper filter, water, river sand

Experiment: Pour water into a test tube and dip a little river sand into it, mix. Then, according to the scheme described above, make a filter out of paper. Insert a dry, clean test tube into a rack. Slowly pour the sand/water mixture through a filter paper funnel. River sand will remain on the filter, and you will get clean water in a tripod tube.

Discussion: Chemical experience allows us to show that there are substances that do not dissolve in water, for example, river sand. The experience also introduces one of the methods of cleaning mixtures of substances from impurities. Here you can introduce the concepts of pure substances and mixtures, which are given in the 8th grade chemistry textbook. AT this case a mixture is sand with water, a pure substance is a filtrate, river sand is a sediment.

The filtration process (described in Grade 8) is used here to separate a mixture of water and sand. To diversify the study of this process, you can delve a little into the history of cleaning drinking water.

Filtration processes were used as early as the 8th and 7th centuries BC. in the state of Urartu (now it is the territory of Armenia) for the purification of drinking water. Its inhabitants carried out the construction of a water supply system with the use of filters. Thick cloth and charcoal were used as filters. Similar intertwined systems downpipes, clay channels equipped with filters were also on the territory of the ancient Nile among the ancient Egyptians, Greeks and Romans. Water was passed through such a filter repeatedly through such a filter several times, eventually many times, ultimately achieving the best water quality.

One of the most interesting experiences is the growth of crystals. The experience is very clear and gives an idea of ​​many chemical and physical concepts.

Experience number 5 "Grow sugar crystals"

Reagents and equipment: two glasses of water; sugar - five glasses; wooden skewers; thin paper; pot; transparent cups; food coloring (the proportions of sugar and water can be reduced).

Experiment: The experiment should begin with the preparation of sugar syrup. We take a pan, pour 2 cups of water and 2.5 cups of sugar into it. We put on medium heat and, stirring, dissolve all the sugar. Pour the remaining 2.5 cups of sugar into the resulting syrup and cook until completely dissolved.

Now let's prepare the embryos of crystals - sticks. Scatter a small amount of sugar on a piece of paper, then dip the stick in the resulting syrup, and roll it in sugar.

We take the pieces of paper and pierce a hole in the middle with a skewer so that the piece of paper fits snugly against the skewer.

Then we pour the hot syrup into transparent glasses (it is important that the glasses are transparent - this way the process of crystal ripening will be more exciting and visual). The syrup must be hot or the crystals will not grow.

You can make colored sugar crystals. To do this, add a little food coloring to the resulting hot syrup and stir it.

The crystals will grow in different ways, some quickly and some may take longer. At the end of the experiment, the child can eat the resulting lollipops if he is not allergic to sweets.

If you do not have wooden skewers, then you can experiment with ordinary threads.

Discussion: Crystal is solid state substances. It has a certain shape and a certain number of faces due to the arrangement of its atoms. Crystalline substances are substances whose atoms are arranged regularly, so that they form a regular three-dimensional lattice, called a crystal. Row crystals chemical elements and their compounds have remarkable mechanical, electrical, magnetic and optical properties. For example, diamond is a natural crystal and the hardest and rare mineral. Due to its exceptional hardness, diamond plays a huge role in technology. Diamond saws cut stones. There are three ways to form crystals: crystallization from a melt, from a solution, and from a gas phase. An example of crystallization from a melt is the formation of ice from water (after all, water is molten ice). An example of crystallization from solution in nature is the precipitation of hundreds of millions of tons of salt from sea ​​water. In this case, when growing crystals at home, we are dealing with the most common methods of artificial growing - crystallization from a solution. Sugar crystals grow from a saturated solution by slowly evaporating the solvent - water, or by slowly lowering the temperature.

The following experience allows you to get at home one of the most useful crystalline products for humans - crystalline iodine. Before conducting the experiment, I advise you to watch with your child a short film “The life of wonderful ideas. Smart iodine. The film gives an insight into the benefits of iodine and unusual story his discovery, which will be remembered for a long time by the young researcher. And it is interesting because the discoverer of iodine was an ordinary cat.

The French scientist Bernard Courtois during the years of the Napoleonic wars noticed that in the products obtained from the ashes of seaweed, which were thrown onto the coast of France, there is some substance that corrodes iron and copper vessels. But neither Courtois himself nor his assistants knew how to isolate this substance from the ashes of algae. Chance helped speed up the discovery.

At his small saltpeter plant in Dijon, Courtois was going to conduct several experiments. There were vessels on the table, one of which contained an alcoholic tincture of seaweed, and the other a mixture of sulfuric acid and iron. On the shoulders of the scientist sat his beloved cat.

There was a knock on the door, and the frightened cat jumped down and ran away, brushing the flasks on the table with its tail. The vessels broke, the contents mixed, and suddenly a violent chemical reaction began. When a small cloud of vapors and gases settled, the surprised scientist saw some kind of crystalline coating on the objects and debris. Courtois began to explore it. Crystals to anyone before this unknown substance were called "iodine".

So a new element was discovered, and Bernard Courtois's domestic cat went down in history.

Experience No. 6 "Obtaining iodine crystals"

Reagents and equipment: tincture of pharmaceutical iodine, water, a glass or a cylinder, a napkin.

Experiment: We mix water with tincture of iodine in the proportion: 10 ml of iodine and 10 ml of water. And put everything in the refrigerator for 3 hours. During cooling, the iodine will precipitate at the bottom of the glass. We drain the liquid, take out the iodine precipitate and put it on a napkin. Squeeze with napkins until the iodine begins to crumble.

Discussion: This chemical experiment is called extraction or extraction of one component from another. In this case, the water extracts the iodine from the spirit lamp solution. Thus, the young researcher will repeat the experience of the cat Courtois without smoke and beating dishes.

Your child will already learn about the benefits of iodine for disinfecting wounds from the movie. Thus, you show that there is an inextricable link between chemistry and medicine. However, it turns out that iodine can be used as an indicator or analyzer of the content of another beneficial substance- starch. The following experience will introduce the young experimenter to a separate very useful chemistry - analytical.

Experience No. 7 "Iodine-indicator of starch content"

Reagents and equipment: fresh potatoes, pieces of banana, apple, bread, a glass of diluted starch, a glass of diluted iodine, a pipette.

Experiment: We cut the potatoes into two parts and drip diluted iodine on it - the potatoes turn blue. Then we drip a few drops of iodine into a glass of diluted starch. The liquid also turns blue.

We drip with a pipette iodine dissolved in water on an apple, banana, bread, in turn.

Watching:

The apple didn't turn blue at all. Banana - slightly blue. Bread - turned blue very much. This part of the experience shows the presence of starch in various foods.

Discussion: Starch reacts with iodine to give blue color. This property gives us the ability to detect the presence of starch in various foods. Thus, iodine is, as it were, an indicator or analyzer of starch content.

As you know, starch can be converted into sugar, if you take an unripe apple and drop iodine, it will turn blue, since the apple is not yet ripe. As soon as the apple ripens, all the starch contained will turn into sugar and the apple does not turn blue at all when treated with iodine.

The following experience will be useful for children who have already started studying chemistry at school. It introduces concepts such as chemical reaction, compound reaction, and qualitative reaction.

Experiment No. 8 "Flame coloring or compound reaction"

Reagents and equipment: tweezers, table salt, spirit lamp

Experiment: Take with tweezers a few large crystals table salt table salt. Let's hold them over the flame of the burner. The flame will be dyed yellow.

Discussion: This experiment makes it possible to carry out a chemical combustion reaction, which is an example of a compound reaction. Due to the presence of sodium in the composition of table salt, during combustion, it reacts with oxygen. As a result, a new substance is formed - sodium oxide. The appearance of a yellow flame indicates that the reaction has passed. Such reactions are qualitative reactions to compounds containing sodium, that is, it can be used to determine whether sodium is present in a substance or not.

Home experiments for children 4 years old require imagination and knowledge of the simple laws of chemistry and physics. “If these sciences were not very good at school, you will have to make up for lost time,” many parents will think. This is not so, experiments can be very simple, not requiring special knowledge, skills and reagents, but at the same time explaining the fundamental laws of nature.

Experiments for children at home will help, using a practical example, to explain the properties of substances and the laws of their interaction, arouse interest in an independent study of the world around them. Interesting physical experiments will teach children to be observant, help to think logically, establishing patterns between ongoing events and their consequences. Perhaps the kids will not become great chemists, physicists or mathematicians, but they will forever keep warm memories of parental attention in their souls.

From this article you will learn

unfamiliar paper

Kids like to make applications out of paper, draw pictures. Some children of 4 years old master the art of origami with their parents. Everyone knows that paper is soft or thick, white or colored. What can an ordinary White list paper, if you experiment with it?

Animated paper flower

An asterisk is cut out of a sheet of paper. Bend its rays inward in the form of a flower. Water is collected in a cup and an asterisk is lowered to the surface of the water. Over time paper flower, as if alive, will begin to unfold. The water will wet the cellulose fibers that make up the paper and straighten them out.

Strong bridge

This paper experience will be interesting for children 3 years old. Ask the kids how to put an apple in the middle of a thin sheet of paper between two glasses so that it does not fall. How do you make a paper bridge strong enough to support the weight of an apple? We fold a sheet of paper with an accordion and put it on supports. Now it can support the weight of an apple. This is due to the fact that the shape of the structure has changed, which made the paper strong enough. Depending on the shape, the properties of materials become stronger, projects of many architectural creations are based, for example, the Eiffel Tower.

Animated snake

Scientific proof of movement warm air upwards can be brought by a simple experiment. A snake is cut out of paper, cutting a circle in a spiral. You can revive a paper snake very simply. A small hole is made in her head and hung by a thread over a heat source (battery, heater, burning candle). The snake will start spinning fast. The reason for this phenomenon is the upward warm air flow, which spins the paper snake. In the same way, you can make paper birds or butterflies, beautiful and colorful, by hanging them under the ceiling in the apartment. They will rotate from the movement of air, as if flying.

Who is stronger

This entertaining experiment will help to establish which paper figure is more durable. For the experiment, you will need three sheets of office paper, glue and a few thin books. A column is glued from one sheet of paper cylindrical shape, from the other - a triangular shape, and from the third - a rectangular one. They put the "columns" vertically and test them for strength, carefully placing books on top. As a result of the experiment, it turns out that the triangular column is the weakest, and the cylindrical column is the strongest - it will withstand heaviest weight. No wonder the columns in temples and buildings are made precisely of a cylindrical shape, the load on them is distributed evenly over the entire area.

Amazing Salt

Ordinary salt is today in every home, not a single meal can do without it. You can try to make beautiful children's crafts from this available product. All you need is salt, water, wire and a little patience.

Salt has interesting properties. It can attract water to itself, dissolving in it, while increasing the density of the solution. But in a supersaturated solution, the salt again turns into crystals.

To conduct an experiment with salt, a beautiful symmetrical snowflake or other figure is bent from a wire. Salt is dissolved in a jar of warm water until it no longer dissolves. They lower the bent wire into the jar, and put it in the shade for several days. As a result, the wire will become overgrown with salt crystals, and will look like a beautiful ice snowflake that will not melt.

Water and ice

Water exists in three states of aggregation: vapor, liquid and ice. The purpose of this experiment is to introduce children to the properties of water and ice and compare them.

Pour water into 4 ice molds and place them in the freezer. To make it more interesting, you can tint the water before freezing with different dyes. Cold water is poured into a cup, and two ice cubes are thrown into it. Simple ice boats or icebergs will float on the surface of the water. This experiment will prove that ice is lighter than water.

While the boats are floating, the remaining ice cubes are sprinkled with salt. See what will happen. Through a short time, before the room fleet in the cup has time to go to the bottom (if the water is quite cold), the cubes sprinkled with salt will begin to crumble. This is because the freezing point of salt water is lower than that of normal water.

Fire that doesn't burn

In ancient times, when Egypt was a powerful country, Moses fled from the wrath of Pharaoh and tended herds in the wilderness. One day he saw a strange bush that burned and did not burn. It was a special fire. But can objects that are engulfed in ordinary flames remain unharmed? Yes, this is possible, it can be proved with the help of experience.

For the experiment, you will need a piece of paper or a banknote. A tablespoon of alcohol and two tablespoons of water. The paper is moistened with water so that the water is absorbed into it, poured over with alcohol and set on fire. Fire appears. It's burning alcohol. When the fire goes out, the paper will remain intact. The experimental result is explained very simply - the combustion temperature of alcohol, as a rule, is not enough to evaporate the moisture that the paper is impregnated with.

natural indicators

If the baby wants to feel like a real chemist, you can make special paper for him, which will change color depending on the acidity of the environment.

A natural indicator is prepared from red cabbage juice containing anthocyanin. This substance changes color depending on which liquid it comes into contact with. Anthocyanin-impregnated paper will turn yellow in an acidic solution, green in a neutral solution, and blue in an alkaline solution.

To prepare a natural indicator, take filter paper, a head of red cabbage, gauze and scissors. Finely chop the cabbage and squeeze the juice through cheesecloth, wrinkling your hands. Saturate a sheet of paper with juice and dry. Then cut the made indicator into strips. A child can dip a piece of paper into four different liquids: milk, juice, tea or soapy water, and watch the color of the indicator change.

Electrification by friction

In ancient times, people noticed the special ability of amber to attract light objects if rubbed. woolen cloth. They did not yet have knowledge of electricity, therefore they explained this property by the spirit living in the stone. It is from the Greek name for amber - electron - that the word electricity comes from.

Not only amber has such amazing properties. A simple experiment can be done to see how a glass rod or a plastic comb attracts small pieces of paper towards itself. To do this, you need to rub the glass with silk, and the plastic with wool. They will begin to attract small pieces of paper that will stick to them. After a while, this ability of items will disappear.

You can discuss with the children that this phenomenon occurs due to friction electrification. Rapid rubbing of the cloth against the object may cause sparks. Lightning in the sky and thunder are also a consequence of the friction of air currents and the occurrence of electricity discharges in the atmosphere.

Solutions of different densities - interesting details

Get a multi-colored rainbow in a glass of liquids different colors You can, by preparing jelly, and pouring it layer by layer. But there is an easier way, although not as tasty.

To conduct the experiment, you will need sugar, vegetable oil, plain water and dyes. From sugar, a concentrated sweet syrup is prepared, and pure water is dyed with a dye. Sugar syrup is poured into a glass, then gently along the wall of the glass so that the liquids do not mix, clean water is poured, and vegetable oil is added at the end. The sugar syrup should be cold and the colored water warm. All liquids will remain in the glass like a small rainbow, without mixing with each other. At the bottom there will be the densest sugar syrup, at the top there will be some water, and oil, as the lightest, will be on top of the water.

color explosion

Another interesting experiment can be done using different density vegetable oil and water, setting off a colored explosion in the jar. For the experiment, you will need a jar of water, a few tablespoons of vegetable oil, food coloring. In a small container, several dry food colors are mixed with two tablespoons of vegetable oil. Dry grains of dyes do not dissolve in oil. Now the oil is poured into a jar of water. Heavy grains of dyes will settle to the bottom, gradually being released from the oil, which will remain on the surface of the water, forming colored swirls, as from an explosion.

home volcano

Useful geographic knowledge might not be so boring for a four year old if you set up a visual demonstration of a volcanic eruption on an island. To conduct the experiment, you will need baking soda, vinegar, 50 ml of water and the same amount of detergent.

A small plastic cup or bottle is placed in the crater of the volcano, molded from colored plasticine. But first they pour into a glass baking soda, pour water tinted red and detergent. When the makeshift volcano is ready, a little vinegar is poured into its mouth. A violent process of foaming begins, due to the fact that soda and vinegar react. From the mouth of the volcano, “lava” formed by red foam begins to pour out.

Experiments and experiments for children 4 years old, as you have seen, do not need complex reagents. But they are no less fascinating, especially with an interesting story about the reason for what is happening.

A small child is not only a perpetual motion machine and a jumper, but also a brilliant inventor and endless why. Although children's curiosity gives parents a lot of worries, it is very useful in itself - after all, this is the key to the development of the baby. Learning something new is useful not only in the form of lessons, but also in the form of games or experiments. It is about them that we will talk today. Simple physical and chemical experiments do not require special knowledge, special training or expensive materials. They can be held in the kitchen to surprise, entertain a child, open up a whole world in front of him, or simply cheer up. Virtually any experience a child can prepare and put on their own in your presence. However, in some of the experiments, it is better to make mom or dad the main character.

Explosion of color in milk

What could be more amazing than the transformation of a familiar thing into an unusual one, when white, familiar to everyone, milk becomes multi-colored?

You will need: whole milk (required!), food coloring in different colors, any liquid detergent, cotton swabs, a plate.
Work plan:

  1. Pour milk into a bowl.
  2. Add a few drops of each dye to it. Try to do this carefully so as not to move the plate itself.
  3. Take a cotton swab, dip it in the product and touch it to the very center of the plate of milk.
  4. The milk will move and the colors will mix. A real explosion of color in a bowl!

Explanation of experience: Milk is made up of different types of molecules: fats, proteins, carbohydrates, vitamins and minerals. When a detergent is added to milk, several processes occur simultaneously. First, the detergent reduces surface tension, and due to this, food colors begin to move freely over the entire surface of the milk. But most importantly, the detergent reacts with the fat molecules in the milk and sets them in motion. That is why skimmed milk is not suitable for this experiment.

Growing crystals

Everyone knows this experience since childhood - obtaining crystals from salt water. You can, of course, do this with a solution of copper sulfate, but the children's version is simple table salt.


The essence of the experiment is simple - in a saline solution (18 tablespoons of salt per half liter of water) we lower a colored thread and wait for crystals to grow on it. It will be very interesting. Especially if you take a woolen thread or replace it with an intricate bristle wire.

The potato becomes a submarine

Has your child already learned how to peel and cut potatoes? Can't you surprise him with this gray-brown tuber anymore? Of course you will be surprised! You need to turn a potato into a submarine!
For this we need one potato tuber, liter jar and edible salt. Pour half a can of water and lower the potato. She will drown. Add a saturated salt solution to the jar. The potatoes will float. If you want it to plunge into the water again, then just add water to the jar. Why not a submarine?
Solution: Potatoes sink because it is heavier than water. Compared to a salt solution, it is lighter, and therefore floats to the surface.

Lemon battery

It’s good to spend this experience with dad so that he explains in more detail where the electricity comes from in a lemon?

We will need:

  • Lemon, thoroughly washed and wiped dry.
  • Two pieces of insulated copper wire approximately 0.2-0.5 mm thick and 10 cm long.
  • Steel paper clip.
  • Bulb from a flashlight.

Conducting experience: first of all, we clean the opposite ends of both wires at a distance of 2-3 cm. Insert a paper clip into the lemon, fasten the end of one of the wires to it. We stick the end of the second wire into the lemon 1-1.5 cm from the paper clip. To do this, first pierce the lemon in this place with a needle. Take the two free ends of the wires and attach the bulbs to the contacts.
What happened? The light bulb is on!

A glass of laughter

Do you urgently need to cook soup, and the child hangs on his feet and pulls into the nursery? This experience will keep him distracted for a few minutes!
We only need a glass with thin, even walls, filled to the top with water.
Conducting experience: take a glass in your hand and bring it to your eyes. Look through it at the fingers of the other hand. What happened?
In the glass you will see very long and thin fingers without a hand. Turn your hand with your fingers up, and they will turn into funny shorties. Move the glass away from the eyes, and the whole hand will appear in the glass, but small and on the side, as if you moved your hand.
Look with your child at each other through a glass - and you don’t have to go to the laughter room.

Water flows up the napkin

This is a very beautiful experience ideal for girls. We need to take a napkin, cut out a strip, draw lines of different colors with dots. Then we dip the napkin into a glass with a small amount of water and watch with admiration how the water rises and the dotted lines turn into solid ones.

Miracle rocket from a tea bag

This elementary focus experience is a "bomb" for any child. If you are already tired of looking for ingenious entertainment for children, this is what you need!


Carefully open an ordinary tea bag, stand it upright and set it on fire. The bag will burn to the end, fly high into the air and circle above you. This simple experiment usually causes a storm of enthusiasm among both adults and children. And the reason for this phenomenon is the same, which makes sparks fly from the fire. During combustion, a stream of warm air is created, which pushes the ash up. If you set fire to and extinguish the bag gradually, no flight will work. By the way, the bag will not always take off if the air temperature in the room is high enough.

live fish

Another simple experience that can pleasantly surprise not only children, but also girlfriends.
Cut out a fish from thick paper. In the middle of the fish there is a round hole A, which is connected to the tail by a narrow channel AB.

Pour water into a basin and place the fish on the water so that the bottom side of it is completely moistened, and the top remains completely dry. It is convenient to do this with a fork: putting the fish on the fork, carefully lower it into the water, and sink the fork deeper and pull it out.
Now you need to drop a large drop of oil into hole A. It is best to use a bicycle oiler for this or sewing machine. If there is no oiler, you can draw machine or vegetable oil into a pipette or a cocktail tube: lower the tube with one end into the oil by 2-3 mm. Then cover the upper end with your finger and transfer the straw to the fish. Holding the lower end exactly over the hole, release your finger. The oil will flow straight into the hole.
In an effort to spill over the surface of the water, the oil will flow through channel AB. The fish will not let him spread in other directions. What do you think the fish will do under the action of the oil flowing back? It is clear: she will swim forward!

Focus "conspiracy of water"

Every child thinks that his mother is a magician! And in order to prolong this fairy tale longer, you sometimes need to reinforce your magical nature with real "magic".
Get a jar with a tight-fitting lid. Paint the inside of the lid red. watercolor paint. Pour water into a jar and screw on the lid. At the time of the demonstration, do not turn the jar towards small viewers so that it is visible inner side covers. Say the plot out loud: "Just like in a fairy tale, turn the water red." With these words, shake the jar of water. The water will wash away the watercolor layer of paint and turn red.

density tower

Such an experiment is suitable for older children, or attentive, assiduous kids.
In this experiment, objects will hang in the thickness of the liquid.
We will need:

  • a tall, narrow glass container, such as an empty, clean 0.5-liter jar of canned olives or mushrooms
  • 1/4 cup (65 ml) corn syrup or honey
  • food coloring of any color
  • 1/4 cup tap water
  • 1/4 cup vegetable oil
  • 1/4 cup medical alcohol
  • various small objects, e.g. a cork, a grape, a nut, a piece of dry pasta, a rubber ball, a cherry tomato, a small plastic toy, a metal screw

Training:

  • Carefully pour honey into the vessel, so that it occupies 1/4 of the volume.
  • Dissolve a few drops of food coloring in water. Pour water into the vessel halfway. Please note: when adding each liquid, pour very carefully so that it does not mix with the bottom layer.
  • Slowly pour the same amount of vegetable oil into the vessel.
  • Fill the vessel to the top with alcohol.

Let's start the science magic:

  • Announce to the audience that you will now make various objects float. You may be told that it is easy. Then explain to them that you will make different objects float in liquids on different levels.
  • One at a time, carefully lower the small items into the vessel.
  • Let the audience see for themselves what happened.


Result: different objects will float in the thickness of the liquid at different levels. Some will "hang" right in the middle of the vessel.
Explanation: This trick is based on the ability of various substances to sink or float depending on their density. Substances with a lower density float on the surface of denser substances.
The alcohol remains on the surface of the vegetable oil because the density of the alcohol is less than the density of the oil. Vegetable oil remains on the surface of the water because the density of the oil is less than the density of water. Water, on the other hand, is less dense than honey or corn syrup, so it stays on the surface of these liquids. When you drop objects into a vessel, they float or sink depending on their density and the density of the liquid layers. The screw has a higher density than any of the liquids in the vessel, so it will fall to the very bottom. The density of pasta is higher than the density of alcohol, vegetable oil and water, but lower than the density of honey, so it will float on the surface of the honey layer. The rubber ball has the smallest density, lower than any of the liquids, so it will float on top of the top layer, the alcohol layer.

Submarine from grapes

Another trick for sea adventure lovers!


Grab a glass of fresh sparkling water or lemonade and toss a grape into it. It is slightly heavier than water and will sink to the bottom. But gas bubbles, similar to small balloons, will immediately begin to sit on it. Soon there will be so many of them that the grape will pop up. But on the surface, the bubbles will burst and the gas will escape. The heavy grape will again sink to the bottom. Here it will again be covered with gas bubbles and rise again. This will continue several times until the water "exhales". According to this principle, a real boat floats up and rises. And the fish have swim bladder. When she needs to dive, the muscles contract, squeezing the bubble. Its volume decreases, the fish goes down. And you need to get up - the muscles relax, dissolve the bubble. It increases and the fish floats up.

lotus flowers

Another experiment from the series "for girls".
Cut flowers with long petals from colored paper. Using a pencil, twist the petals towards the center. And now lower the multi-colored lotuses into the water poured into the basin. Literally before your eyes, the flower petals will begin to bloom. This is because the paper gets wet, becomes gradually heavier and the petals open.

Where did the ink go?

You can put the following trick in the piggy bank of the magical mother.
Drop ink or ink into a bottle of water to make the solution a pale blue. There also put a tablet of crushed activated carbon. Close the mouth with your finger and shake the mixture. She brightens up before her eyes. The fact is that coal absorbs dye molecules with its surface and it is no longer visible.

"Stop, hands up!"

And this experience is again for the boys - explosive and playful fidgets!
Take a small plastic jar for medicines, vitamins, etc. Pour some water into it, put any effervescent tablet and close it with a lid (non-screw).
Put it on the table, turning it upside down, and wait. The gas released during the chemical reaction of the tablet and water will push the bottle out, there will be a "roar" and the bottle will be thrown up.

Secret letter

Each of us dreamed at least once in our lives to become a detective or a secret agent. It's so exciting - to solve riddles, look for traces and see the invisible.


Let the child make a drawing or inscription on a blank sheet of white paper with milk, lemon juice or table vinegar. Then heat a sheet of paper (preferably over the appliance without open fire) and you will see how the invisible turns into the visible. The impromptu ink will boil, the letters will darken, and the secret letter will be readable.

Scattering toothpicks

If there is nothing to do in the kitchen, and only toothpicks are available from the available toys, then we will easily put them into action!

To conduct the experiment, you will need: a bowl of water, 8 wooden toothpicks, a pipette, a piece of refined sugar (not instant), dishwashing liquid.
1. We have toothpicks with rays in a bowl of water.
2. Gently lower a piece of sugar into the center of the bowl - the toothpicks will begin to gather towards the center.
3. Remove the sugar with a teaspoon and drop a few drops of dishwashing liquid into the center of the bowl with a pipette - the toothpicks will “scatter”!
What is going on? The sugar sucks up the water, creating a movement that moves the toothpicks toward the center. Soap, spreading over the water, drags particles of water with it, and they cause the toothpicks to scatter. Explain to the children that you showed them a trick, and all tricks are based on certain natural physical phenomena which they will study in school.

vanishing coin


And this trick can be taught to any child over 5 years old, let him show it to his friends!
Props:

  • 1 liter glass jar with lid
  • tap water
  • coin
  • assistant

Training:

  • Pour water into the jar and close the lid.
  • Give your assistant a coin so that he can make sure that this is really the most common coin and there is no catch in it.
  • Have him put the coin on the table. Ask him: "Do you see the coin?" (Of course, he will answer yes.)
  • Put a jar of water on the coin.
  • Say magic words, for example: "Here is a magic coin, here it was, but now it's not there."
  • Have your helper look through the water on the side of the jar and say if he sees the coin now? What will he answer?

Tips for a learned wizard:
You can make this trick even more effective. After your assistant can't see the coin, you can make it reappear. Say other magic words, for example: "As the coin fell, so it appeared." Now remove the jar and the coin will be back in place.
Result: When you place a jar of water on a coin, the coin appears to have disappeared. Your assistant will not see it.


In contact with

If you're wondering how to celebrate a child's birthday, you might like the idea of ​​putting on a children's science show. In recent years, scientific holidays have become increasingly popular. Almost all children like entertaining experiments and experiments. For them, this is something magical and incomprehensible, which means interesting. The cost of hosting a science show is quite high. But this is no reason to deny yourself the pleasure of watching the astonished children's faces. After all, you can do on your own, I do not resort to the help of animators and holiday agencies.

In this article, I made a selection of simple chemical and physical experiments and experiments that can be done at home without any problems. Everything you need to carry them out is probably in your kitchen or first aid kit. You don't need any special skills either. All you need is a desire and a good mood.

I tried to collect simple but spectacular experiences that will be of interest to children of different ages. For each experiment, I prepared a scientific explanation (not for nothing that I studied to be a chemist!). To explain to the children the essence of what is happening or not is up to you. It all depends on their age and level of training. If the children are small, you can skip the explanation and go directly to spectacular experience, saying only that they will be able to learn the secrets of such "miracles" when they grow up, go to school and begin to study chemistry and physics. Perhaps this will arouse their interest in studying in the future.

Although I chose the safest experiments, they still need to be taken very seriously. All manipulations are best performed with gloves and a bathrobe, at a safe distance from children. After all, the same vinegar and potassium permanganate can cause trouble.

And, of course, when conducting a children's science show, you need to take care of the image of a mad scientist. Your artistry and charisma will largely determine the success of the event. Turning from an ordinary person into a funny scientific genius is not at all difficult - all you need to do is ruffle your hair, put on big glasses and a white coat, smear yourself with soot and make an expression corresponding to your new status. This is what a typical mad scientist looks like.

Before putting on a science show on children's holiday(by the way, it can be not only a birthday, but also any other holiday), all experiments should be done in the absence of children. Rehearse that there were no unpleasant surprises later. Few things can go wrong.

Children's experiments can be carried out without a festive occasion - just so that it is interesting and useful to spend time with a child.

Choose the experiences you like the most and write a script for the holiday. In order not to heavily burden children with science, albeit entertaining, dilute the event with fun games.

Part 1. Chemical show

Attention! When conducting chemical experiments, you should be extremely careful.

foam fountain

Almost all children love foam - the more the better. Even kids know how to make it: for this you need to pour shampoo into water and shake it well. But can the foam form by itself without shaking and be also colored?

Ask the children what they think foam is. What is it made of and how can it be obtained. Let them express their guesses.

Then explain that foam is bubbles filled with gas. This means that for its formation, some substance is needed, of which the walls of the bubbles will consist, and a gas that will fill them. For example, soap and air. When soap is added to water and stirred, air enters these bubbles from the environment. But gas can be obtained in another way - in the process of a chemical reaction.

Option 1

  • hydroperite tablets;
  • potassium permanganate;
  • liquid soap;
  • water;
  • a glass vessel with a narrow neck (preferably beautiful);
  • cup;
  • a hammer;
  • tray.

Statement of experience

  1. Using a hammer, crush the hydroperite tablets into powder and pour it into a flask.
  2. Place the flask on the tray.
  3. Add liquid soap and water.
  4. Prepare an aqueous solution of potassium permanganate in a glass and pour it into a flask with hydroperide.

After the solutions of potassium permanganate (potassium permanganate) and hydroperide (hydrogen peroxide) merge, a reaction will begin to occur between them, accompanied by the release of oxygen.

4KMnO 4 + 4H 2 O 2 = 4MnO 2 ¯ + 5O 2 + 2H 2 O + 4KOH

Under the action of oxygen, the soap present in the flask will begin to foam and lick out of the flask, forming a kind of fountain. Due to potassium permanganate, part of the foam will turn pink.

You can see how this happens in the video.

Important: the glass vessel must have a narrow neck. Do not take the resulting foam in your hands and do not give it to children.

Option 2

Another gas, such as carbon dioxide, is also suitable for the formation of foam. You can paint the foam in any color you wish.

For the experiment you will need:

  • plastic bottle;
  • soda;
  • vinegar;
  • food coloring;
  • liquid soap.

Statement of experience

  1. Pour into a bottle of vinegar.
  2. Add liquid soap and food coloring.
  3. Pour in soda.

Result and scientific explanation

When soda and vinegar interact, a violent chemical reaction occurs, accompanied by the release of carbon dioxide CO 2.

Under its action, the soap will begin to foam and lick out of the bottle. The dye will color the foam in the color you choose.

Merry ball

What's a birthday without balloons? Show the children the balloon and ask how to inflate it. The guys, of course, will answer that by mouth. Explain that the balloon is inflated by the carbon dioxide we exhale. But you can inflate the balloon with them in another way.

For the experiment you will need:

  • soda;
  • vinegar;
  • bottle;
  • balloon.

Statement of experience

  1. Pour a teaspoon of baking soda into the balloon.
  2. Pour into a bottle of vinegar.
  3. Put the ball on the neck of the bottle and pour the soda into the bottle.

Result and scientific explanation

As soon as baking soda and vinegar come into contact, a violent chemical reaction will begin, accompanied by the release of carbon dioxide CO 2 . Balloon will start puffing up before your eyes.

CH 3 -COOH + Na + - → CH 3 -COO - Na + + H 2 O + CO 2

If you take a smiley balloon, it will impress the guys even more. At the end of the experiment, tie a balloon and give it to the birthday person.

See the video for a demonstration of the experience.

Chameleon

Can liquids change their color? If yes, why and how? Before setting up an experiment, be sure to ask the children these questions. Let them think. They will remember how water is colored when you rinse a brush with paint in it. Is it possible to decolorize the solution?

For the experiment you will need:

  • starch;
  • alcohol burner;
  • test tube;
  • cup;
  • water.

Statement of experience

  1. Pour a pinch of starch into a test tube and add water.
  2. Drop some iodine. The solution will turn into blue color.
  3. Light the burner.
  4. Heat the test tube until the solution becomes colorless.
  5. Pour into a glass cold water and immerse the test tube there so that the solution cools down and turns blue again.

Result and scientific explanation

When interacting with iodine, the starch solution turns blue, since a dark blue compound I 2 * (C 6 H 10 O 5) n is formed. However, this substance is unstable and, when heated, again decomposes into iodine and starch. When cooled, the reaction goes in the opposite direction and we again see how the solution turns blue. This reaction shows reversibility chemical processes and their temperature dependence.

I 2 + (C 6 H 10 O 5) n => I 2 * (C 6 H 10 O 5) n

(iodine - yellow) (starch - clear) (dark blue)

rubber egg

All children know that eggshell very fragile and can break with the slightest blow. It would be nice if the eggs didn't beat! Then you wouldn't have to worry about bringing the eggs home when your mom sends you to the store.

For the experiment you will need:

  • vinegar;
  • raw egg;
  • cup.

Statement of experience

  1. To surprise the kids, you need to prepare for this experience in advance. 3 days before the holiday, pour vinegar into a glass and place a raw chicken egg in it. Leave for three days so that the shell has time to completely dissolve.
  2. Show the children a glass with an egg and invite everyone to say a magic spell together: “Tryn-dyryn, boom-brown! Egg, become rubber!
  3. Take out the egg with a spoon, wipe it with a napkin and demonstrate how it can now be deformed.

Result and scientific explanation

Eggshells are made up of calcium carbonate, which dissolves when reacted with vinegar.

CaCO 3 + 2 CH 3 COOH \u003d Ca (CH 3 COO) 2 + H 2 O + CO 2

Due to the presence of a film between the shell and the contents of the egg, it retains its shape. What an egg looks like after vinegar, look at the video.

Secret letter

Children love everything mysterious, and therefore this experiment will surely seem like real magic to them.

Take an ordinary ballpoint pen and write on a piece of paper a secret message from aliens or draw some kind of secret sign that no one but the guys present can know about.

When the children read what is written there, say that it is a big secret and the inscription must be destroyed. Moreover, magical water will help you erase the inscription. If you treat the inscription with a solution of potassium permanganate and vinegar, then with hydrogen peroxide, the ink will be washed off.

For the experiment you will need:

  • potassium permanganate;
  • vinegar;
  • hydrogen peroxide;
  • flask;
  • cotton buds;
  • ball pen;
  • paper;
  • water;
  • paper towels or napkins;
  • iron.

Statement of experience

  1. Draw a picture or an inscription on a sheet of paper with a ballpoint pen.
  2. Pour a little potassium permanganate into a test tube and add vinegar.
  3. Soak a cotton swab in this solution and swipe over the inscription.
  4. Take another cotton swab, moisten it with water and wash off the resulting stains.
  5. Blot with a tissue.
  6. Apply hydrogen peroxide to the inscription and blot again with a napkin.
  7. Iron with an iron or put under a press.

Result and scientific explanation

After all the manipulations, you will get a blank sheet of paper, which will surprise the children very much.

Potassium permanganate - very strong oxidizing agent, especially if the reaction takes place in an acidic environment:

MnO 4 ˉ+ 8 H + + 5 eˉ = Mn 2+ + 4 H 2 O

A strong acidified solution of potassium permanganate literally burns many organic compounds, turning them into carbon dioxide and water. Acetic acid is used to create an acidic environment in our experiment.

The product of the reduction of potassium permanganate is manganese dioxide Mn0 2, which has a brown color and precipitates. To remove it, we use hydrogen peroxide H 2 O 2 , which reduces the insoluble compound Mn0 2 to a highly soluble manganese (II) salt.

MnO 2 + H 2 O 2 + 2 H + = O 2 + Mn 2+ + 2 H 2 O.

I propose to see how the ink disappears on the video.

The power of thought

Before setting up the experiment, ask the children how to put out the candle flame. They, of course, will answer you that you need to blow out the candle. Ask if they believe you can put out a fire with an empty glass by casting a magic spell?

For the experiment you will need:

  • vinegar;
  • soda;
  • glasses;
  • candles;
  • matches.

Statement of experience

  1. Pour soda into a glass and pour vinegar over it.
  2. Light some candles.
  3. Bring a glass of soda and vinegar to another glass, tilting it slightly so that the carbon dioxide produced during the chemical reaction flows into the empty glass.
  4. Carry a glass of gas over the candles, as if pouring them over the flame. At the same time, make a mysterious expression on your face and say some incomprehensible spell, for example: “Chicken-burs, mur-plee! Flame, don't burn anymore!" Children must think it's magic. You will reveal the secret after the enthusiasm.

Result and scientific explanation

When baking soda and vinegar interact, carbon dioxide is released, which, unlike oxygen, does not support combustion:

CH 3 -COOH + Na + - → CH 3 -COO - Na + + H 2 O + CO 2

CO 2 is heavier than air, and therefore does not fly up, but settles down. Thanks to this property, we are able to collect it in an empty glass, and then “pour it” onto candles, thereby extinguishing their flame.

How it happens, look at the video.

Part 2. Entertaining physical experiments

strong jean

This experiment will allow children to look at the usual action for them from the other side. Place an empty wine bottle in front of the children (it is better to remove the label first) and push the cork into it. And then turn the bottle upside down and try to pop the cork out. Of course, you won't succeed. Ask the children if there is any way to get the cork out without breaking the bottle? Let them say what they think about it.

Since the cork cannot be picked up through the neck, it means that one thing remains - to try to push it out from the inside out. How to do it? You can call the genie for help!

The genie in this experiment will be a large plastic bag. To heighten the effect, the package can be painted with colored markers - draw eyes, nose, mouth, pens, some patterns.

So, for the experiment you will need:

  • empty wine bottle;
  • cork;
  • plastic bag.

Statement of experience

  1. Twist the bag with a tube and put it into the bottle so that the handles are outside.
  2. Turning the bottle over, ensure that the cork is on the side of the package closer to the neck.
  3. Inflate the package.
  4. Gently begin to pull the bag out of the bottle. A cork will come out with it.

Result and scientific explanation

As the bag inflates, it expands inside the bottle, expelling air from the bottle. When we begin to pull out the bag, a vacuum is created inside the bottle, due to which the walls of the bag wrap around the cork and drag it out with them. This is such a strong gin!

To see how this happens, watch the video.

Wrong glass

On the eve of the experiment, ask the children what happens if you turn a glass of water upside down. They will answer that the water will pour out. Say that this happens only with the "correct" glasses. And you have a “wrong” glass from which water does not pour out.

For the experiment you will need:

  • glasses with water;
  • paints (you can do without them, but this way the experience looks more spectacular; it is better to use acrylic paints - they give more saturated colors);
  • paper.

Statement of experience

  1. Pour into glasses of water.
  2. Add color to it.
  3. Moisten the rims of the glasses with water and place a sheet of paper over them.
  4. Press the paper firmly against the glass, holding it with your hand, turn the glasses upside down.
  5. Wait for a while until the paper sticks to the glass.
  6. Remove your hand quickly.

Result and scientific explanation

Surely all children know that we are surrounded by air. Although we do not see him, he, like everything around him, has weight. We feel the touch of air, for example, when the wind blows on us. There is a lot of air, and therefore it presses on the earth and everything that is around. This is called atmospheric pressure.

When we apply paper to a wet glass, it sticks to its walls due to surface tension.

In an inverted glass, between its bottom (now at the top) and the surface of the water, a space is formed filled with air and water vapor. The force of gravity acts on the water, which pulls it down. This increases the space between the bottom of the glass and the surface of the water. At constant temperature, the pressure in it decreases and becomes less than atmospheric. The total pressure of air and water on the paper from the inside is slightly less than the air pressure from the outside. Therefore, water does not pour out of the glass. However, after a while, the glass will lose its magical properties, and the water will still pour out. This is due to the evaporation of water, which increases the pressure inside the glass. When it becomes more than atmospheric, the paper will fall off and the water will pour out. But you can't bring it up to this point. So it will be more interesting.

You can watch the progress of the experiment on the video.

Gluttonous bottle

Ask the children if they like to eat. Do they like to eat glass bottles? Not? Bottles are not eaten? And here they are wrong. They don’t eat ordinary bottles, but magic bottles are not even averse to having a bite.

For the experiment you will need:

  • boiled chicken egg;
  • a bottle (to heighten the effect, the bottle can be painted or somehow embellished, but so that the children can see what is happening inside it);
  • matches;
  • paper.

Statement of experience

  1. Peel off the shell boiled egg. Who eats eggs in shell?
  2. Set fire to a piece of paper.
  3. Throw the burning paper into the bottle.
  4. Put the egg on the neck of the bottle.

Result and scientific explanation

When we throw burning paper into the bottle, the air in it heats up and expands. By closing the neck with an egg, we prevent the flow of air, as a result of which the fire goes out. The air in the bottle cools and contracts. A pressure difference is created inside the bottle and outside, due to which the egg is sucked into the bottle.

For now, that's all. However, over time, I plan to add a few more experiments to the article. At home, you can, for example, experiment with balloons. Therefore, if you are interested in this topic, add the site to your bookmarks or subscribe to the newsletter. When I add something new, I will inform you about it by e-mail. It took me a lot of time to prepare this article, so please respect my work and when copying materials, be sure to put an active hyperlink to this page.

If you have ever done home experiments for children and put on a science show, write about your impressions in the comments, attach a photo. It will be interesting!

We recommend reading

Top