Coordinates on the map latitude longitude google. Solving problems on a topographic map

reservoirs 21.10.2019
reservoirs

800+ abstracts
for only 300 rubles!

* Old price - 500 rubles.
The promotion is valid until 31.08.2018

Lesson questions:

1. Coordinate systems used in topography: geographical, flat rectangular, polar and bipolar coordinates, their essence and use.

Coordinates called angular and linear quantities (numbers) that determine the position of a point on a surface or in space.
In topography, such coordinate systems are used that allow the most simple and unambiguous determination of the position of points on the earth's surface, both from the results of direct measurements on the ground and using maps. These systems include geographic, flat rectangular, polar and bipolar coordinates.
Geographical coordinates(Fig.1) - angular values: latitude (j) and longitude (L), which determine the position of the object on the earth's surface relative to the origin of coordinates - the point of intersection of the initial (Greenwich) meridian with the equator. On the map, the geographic grid is indicated by a scale on all sides of the map frame. The western and eastern sides of the frame are meridians, while the northern and southern sides are parallels. In the corners of the map sheet, the geographical coordinates of the points of intersection of the sides of the frame are signed.

Rice. 1. System geographical coordinates on the earth's surface

In the geographic coordinate system, the position of any point on the earth's surface relative to the origin of coordinates is determined in angular measure. For the beginning, in our country and in most other states, the point of intersection of the initial (Greenwich) meridian with the equator is accepted. Being, therefore, the same for our entire planet, the system of geographical coordinates is convenient for solving problems of determining the relative position of objects located at considerable distances from each other. Therefore, in military affairs, this system is used mainly for conducting calculations related to the use of long-range combat weapons, such as ballistic missiles, aviation, etc.
Planar rectangular coordinates(Fig. 2) - linear quantities that determine the position of the object on the plane relative to the accepted origin - the intersection of two mutually perpendicular lines (coordinate axes X and Y).
In topography, each 6-degree zone has its own system of rectangular coordinates. The X-axis is the axial meridian of the zone, the Y-axis is the equator, and the point of intersection of the axial meridian with the equator is the origin of coordinates.

The system of flat rectangular coordinates is zonal; it is set for each six-degree zone into which the Earth's surface is divided when it is depicted on maps in the Gaussian projection, and is intended to indicate the position of images of points on the earth's surface on a plane (map) in this projection.
The origin of coordinates in the zone is the point of intersection of the axial meridian with the equator, relative to which the position of all other points of the zone is determined in a linear measure. The origin of the zone coordinates and its coordinate axes occupy a strictly defined position on the earth's surface. Therefore, the system of flat rectangular coordinates of each zone is connected both with the coordinate systems of all other zones, and with the system of geographical coordinates.
The use of linear quantities to determine the position of points makes the system of flat rectangular coordinates very convenient for making calculations both when working on the ground and on the map. Therefore, in the troops, this system finds the most wide application. Rectangular coordinates indicate the position of terrain points, their battle formations and targets, with their help they determine the relative position of objects within one coordinate zone or in adjacent sections of two zones.
Polar and bipolar coordinate systems are local systems. In military practice, they are used to determine the position of some points relative to others on a comparatively small areas terrain, for example, when targeting, marking landmarks and targets, drawing up terrain diagrams, etc. These systems can be associated with systems of rectangular and geographical coordinates.

2. Determination of geographical coordinates and mapping of objects by known coordinates.

The geographical coordinates of a point located on the map are determined from the parallels and meridians closest to it, the latitude and longitude of which are known.
The frame of the topographic map is divided into minutes, which are separated by dots into divisions of 10 seconds each. Latitudes are indicated on the sides of the frame, and longitudes are indicated on the northern and southern sides.

Using the minute frame of the map, you can:
1 . Determine the geographic coordinates of any point on the map.
For example, the coordinates of point A (Fig. 3). To do this, use a measuring compass to measure the shortest distance from point A to the southern frame of the map, then attach the meter to the western frame and determine the number of minutes and seconds in the measured segment, add the resulting (measured) value of minutes and seconds (0 "27") with the latitude of the southwestern corner of the frame - 54 ° 30 ".
Latitude points on the map will be equal to: 54°30"+0"27" = 54°30"27".
Longitude defined in a similar way.
Using a measuring compass, measure the shortest distance from point A to the western frame of the map, apply the measuring compass to the southern frame, determine the number of minutes and seconds in the measured segment (2 "35"), add the obtained (measured) value to the longitude of the southwestern corner frames - 45°00".
Longitude points on the map will be equal to: 45°00"+2"35" = 45°02"35"
2. Put any point on the map according to the given geographical coordinates.
For example, point B latitude: 54°31 "08", longitude 45°01 "41".
To map a point in longitude, it is necessary to draw a true meridian through a given point, for which connect the same number of minutes along the northern and southern frames; to plot a point in latitude on a map, it is necessary to draw a parallel through this point, for which connect the same number of minutes along the western and eastern frames. The intersection of two lines will determine the location of point B.

3. Rectangular coordinate grid on topographic maps and its digitization. Additional grid at the junction of coordinate zones.

The coordinate grid on the map is a grid of squares formed by lines parallel to the coordinate axes of the zone. The grid lines are drawn through an integer number of kilometers. Therefore, the coordinate grid is also called the kilometer grid, and its lines are kilometer.
On the 1:25000 map, the lines forming the coordinate grid are drawn through 4 cm, that is, through 1 km on the ground, and on maps 1:50000-1:200000 through 2 cm (1.2 and 4 km on the ground, respectively). On the 1:500000 map, only the exits of the coordinate grid lines are plotted on the inner frame of each sheet after 2 cm (10 km on the ground). If necessary, coordinate lines can be drawn on the map along these exits.
On topographic maps, the values ​​of the abscissas and ordinates of the coordinate lines (Fig. 2) are signed at the exits of the lines behind the inner frame of the sheet and nine places on each sheet of the map. Full values abscissas and ordinates in kilometers are signed near the coordinate lines closest to the corners of the map frame and near the intersection of the coordinate lines closest to the northwestern corner. The rest of the coordinate lines are signed in abbreviated form with two digits (tens and units of kilometers). Signatures near the horizontal lines of the coordinate grid correspond to distances from the y-axis in kilometers.
Signatures near the vertical lines indicate the zone number (one or two first digits) and the distance in kilometers (always three digits) from the origin of coordinates, conditionally moved to the west of the zone's central meridian by 500 km. For example, the signature 6740 means: 6 - zone number, 740 - distance from the conditional origin in kilometers.
The outputs of the coordinate lines are given on the outer frame ( additional mesh) coordinate systems of the adjacent zone.

4. Determination of rectangular coordinates of points. Drawing points on the map by their coordinates.

By coordinate grid With the help of a compass (ruler) you can:
1. Determine the rectangular coordinates of a point on the map.
For example, points B (Fig. 2).
For this you need:

  • write X - digitization of the lower kilometer line of the square in which point B is located, i.e. 6657 km;
  • measure along the perpendicular the distance from the lower kilometer line of the square to point B and, using the linear scale of the map, determine the value of this segment in meters;
  • add the measured value of 575 m with the digitization value of the lower kilometer line of the square: X=6657000+575=6657575 m.

The Y ordinate is determined in the same way:

  • write down the Y value - the digitization of the left vertical line of the square, i.e. 7363;
  • measure the perpendicular distance from this line to point B, i.e. 335 m;
  • add the measured distance to the Y digitization value of the left vertical line of the square: Y=7363000+335=7363335 m.

2. Place a target on the map at the given coordinates.
For example, point G by coordinates: X=6658725 Y=7362360.
For this you need:

  • find the square in which the point G is located by the value of whole kilometers, i.e. 5862;
  • set aside from the lower left corner of the square a segment on the scale of the map, equal to the difference between the abscissa of the target and the lower side of the square - 725 m;
  • - from the received point along the perpendicular to the right, set aside a segment equal to the difference between the ordinates of the target and the left side of the square, i.e. 360 m

The accuracy of determining geographical coordinates on maps 1:25000-1:200000 is about 2 and 10 "" respectively.
The accuracy of determining the rectangular coordinates of points on a map is limited not only by its scale, but also by the magnitude of the errors allowed when shooting or compiling a map and drawing various points and terrain objects on it
Geodetic points and are plotted most accurately (with an error not exceeding 0.2 mm) on the map. objects that stand out most sharply on the ground and are visible from afar, having the value of landmarks (individual bell towers, factory chimneys, tower-type buildings). Therefore, the coordinates of such points can be determined approximately with the same accuracy with which they are plotted on the map, i.e. for a map at a scale of 1:25000 - with an accuracy of 5-7 m, for a map at a scale of 1:50000 - with an accuracy of 10-15 m, for a map at a scale of 1:100000 - with an accuracy of 20-30 m.
The remaining landmarks and contour points are plotted on the map, and, therefore, are determined from it with an error of up to 0.5 mm, and points related to contours that are not clearly expressed on the ground (for example, the contour of a swamp), with an error of up to 1 mm.

6. Determining the position of objects (points) in systems of polar and bipolar coordinates, mapping objects in direction and distance, in two angles or in two distances.

System flat polar coordinates(Fig. 3, a) consists of a point O - the origin, or poles, and the initial direction of the OR, called polar axis.

System flat bipolar (two-pole) coordinates(Fig. 3, b) consists of two poles A and B and a common axis AB, called the basis or base of the serif. The position of any point M relative to the two data on the map (terrain) points A and B is determined by the coordinates that are measured on the map or on the terrain.
These coordinates can be either two position angles that determine directions from points A and B to the desired point M, or distances D1=AM and D2=BM to it. The position angles, as shown in Fig. 1, b, are measured at points A and B or from the direction of the basis (i.e., angle A=BAM and angle B=ABM) or from any other directions passing through points A and B and taken as initial ones. For example, in the second case, the location of the point M is determined by the position angles θ1 and θ2, measured from the direction of the magnetic meridians.

Drawing the detected object on the map
This is one of highlights in object detection. The accuracy of determining its coordinates depends on how accurately the object (target) will be mapped.
Having found an object (target), you must first accurately determine by various signs, which is found. Then, without stopping the observation of the object and without revealing yourself, put the object on the map. There are several ways to plot an object on a map.
visually: Places a feature on the map when it is close to a known landmark.
By direction and distance: to do this, you need to orient the map, find the point of your standing on it, sight on the map the direction to the detected object and draw a line to the object from the point of your standing, then determine the distance to the object by measuring this distance on the map and commensurate it with the scale of the map.


Rice. 4. Drawing a target on the map with a straight notch
from two points.

If in this way it is graphically impossible to solve the problem (the enemy interferes, poor visibility, etc.), then you need to accurately measure the azimuth to the object, then translate it into a directional angle and draw a direction on the map from the standing point, on which to plot the distance to the object.
To get the directional angle, you need to add the magnetic declination of this map (direction correction) to the magnetic azimuth.
straight serif. In this way, an object is put on a map of 2-3 points from which it is possible to observe it. To do this, from each selected point, the direction to the object is drawn on the oriented map, then the intersection of straight lines determines the location of the object.

7. Ways of targeting on the map: in graphic coordinates, flat rectangular coordinates (full and abbreviated), by squares of a kilometer grid (up to a whole square, up to 1/4, up to 1/9 of a square), from a landmark, from a conditional line, by azimuth and range of the target, in the bipolar coordinate system.

The ability to quickly and correctly indicate targets, landmarks and other objects on the ground is important for controlling subunits and fire in combat or for organizing combat.
Target designation in geographic coordinates It is used very rarely and only in those cases when the targets are removed from a given point on the map at a considerable distance, expressed in tens or hundreds of kilometers. In this case, geographical coordinates are determined from the map, as described in question No. 2 of this lesson.
The location of the target (object) is indicated by latitude and longitude, for example, height 245.2 (40 ° 8 "40" N, 65 ° 31 "00" E). On the eastern (western), northern (southern) sides of the topographic frame, mark the position of the target in latitude and longitude with a prick of a compass. From these marks, perpendiculars are lowered into the depth of the sheet of the topographic map until they intersect (commander lines are applied, standard sheets paper). The point of intersection of the perpendiculars is the position of the target on the map.
For approximate target designation rectangular coordinates it is enough to indicate on the map the square of the grid in which the object is located. The square is always indicated by the numbers of kilometer lines, the intersection of which forms the southwestern (lower left) corner. When indicating the square, the cards follow the rule: first they name two numbers signed at the horizontal line (at the western side), that is, the “X” coordinate, and then two numbers at the vertical line (south side of the sheet), that is, the “Y” coordinate. In this case, "X" and "Y" are not spoken. For example, enemy tanks are spotted. When transmitting a report by radiotelephone, the square number is pronounced: eighty-eight zero two.
If the position of a point (object) needs to be determined more accurately, then full or abbreviated coordinates are used.
Work with full coordinates. For example, it is required to determine the coordinates of a road sign in square 8803 on a map at a scale of 1:50000. First, determine what is the distance from the lower horizontal side of the square to the road sign (for example, 600 m on the ground). In the same way, measure the distance from the left vertical side of the square (for example, 500 m). Now, by digitizing kilometer lines, we determine the full coordinates of the object. The horizontal line has the signature 5988 (X), adding the distance from this line to the road sign, we get: X=5988600. In the same way, we determine the vertical line and get 2403500. The full coordinates of the road sign are as follows: X=5988600 m, Y=2403500 m.
Abbreviated coordinates respectively will be equal: X=88600 m, Y=03500 m.
If it is required to clarify the position of the target in a square, then target designation is used by letter or number inside the square of the kilometer grid.
When targeting in a literal way inside the square of the kilometer grid, the square is conditionally divided into 4 parts, each part is assigned a capital letter of the Russian alphabet.
The second way - digital way target designation inside the kilometer grid square (target designation by snail ). This method got its name from the arrangement of conditional digital squares inside the square of the kilometer grid. They are arranged as if in a spiral, while the square is divided into 9 parts.
When targeting in these cases, they name the square in which the target is located, and add a letter or number that specifies the position of the target inside the square. For example, a height of 51.8 (5863-A) or a high-voltage support (5762-2) (see Fig. 2).
Target designation from a landmark is the simplest and most common method of target designation. With this method of target designation, the nearest landmark to the target is first called, then the angle between the direction to the landmark and the direction to the target in goniometer divisions (measured with binoculars) and the distance to the target in meters. For example: "Landmark two, forty to the right, further two hundred, at a separate bush - a machine gun."
target designation from the conditional line usually used in combat vehicles. With this method, two points are selected on the map in the direction of action and connected by a straight line, relative to which target designation will be carried out. This line is indicated by letters, divided into centimeter divisions and numbered starting from zero. Such a construction is done on the maps of both the transmitting and receiving target designation.
Target designation from a conditional line is usually used in combat vehicles. With this method, two points are selected on the map in the direction of action and connected by a straight line (Fig. 5), relative to which target designation will be carried out. This line is indicated by letters, divided into centimeter divisions and numbered starting from zero.


Rice. 5. Target designation from a conditional line

Such a construction is done on the maps of both the transmitting and receiving target designation.
The position of the target relative to the conditional line is determined by two coordinates: a segment from the starting point to the base of the perpendicular, lowered from the target location point to the conditional line, and a segment of the perpendicular from the conditional line to the target.
When targeting, the conditional name of the line is called, then the number of centimeters and millimeters contained in the first segment, and, finally, the direction (left or right) and the length of the second segment. For example: “Direct AC, five, seven; zero to the right, six - NP.

Target designation from a conditional line can be issued by indicating the direction to the target at an angle from the conditional line and the distance to the target, for example: "Direct AC, right 3-40, one thousand two hundred - machine gun."
target designation in azimuth and range to the target. The azimuth of the direction to the target is determined using a compass in degrees, and the distance to it is determined using an observation device or by eye in meters. For example: "Azimuth thirty-five, range six hundred - a tank in a trench." This method is most often used in areas where there are few landmarks.

8. Problem solving.

Determining the coordinates of terrain points (objects) and target designation on the map is practiced practically on training maps using pre-prepared points (marked objects).
Each student determines geographic and rectangular coordinates (maps objects at known coordinates).
Methods of target designation on the map are worked out: in flat rectangular coordinates (full and abbreviated), in squares of a kilometer grid (up to a whole square, up to 1/4, up to 1/9 of a square), from a landmark, in azimuth and range of the target.

Abstracts

Military topography

military ecology

Military Medical Training

Engineering training

fire training


There are many various systems coordinates, All of them are used to determine the position of points on the earth's surface. This includes mainly geographic coordinates, flat rectangular and polar coordinates. In general, it is customary to call coordinates angular and linear quantities that define points on a surface or in space.

Geographic coordinates are angular values ​​- latitude and longitude, which determine the position of a point on the globe. Geographic latitude is the angle formed by the plane of the equator and a plumb line at a given point on the earth's surface. This angle value shows how far a particular point on the globe is north or south of the equator.

If the point is located in the Northern Hemisphere, then its geographical latitude will be called northern, and if in the Southern Hemisphere - southern latitude. The latitude of points located on the equator is zero degrees, and at the poles (North and South) - 90 degrees.

Geographic longitude is also an angle, but formed by the plane of the meridian, taken as the initial (zero), and the plane of the meridian passing through the given point. For the uniformity of the definition, it was agreed to consider the meridian passing through the astronomical observatory in Greenwich (near London) as the initial meridian and call it Greenwich.

All points located to the east from it will have eastern longitude (up to the meridian of 180 degrees), and to the west of the initial one - western longitude. The figure below shows how to determine the position of point A on the earth's surface if its geographical coordinates (latitude and longitude) are known.

Note that the difference in longitudes of two points on Earth shows not only their mutual arrangement in relation to the zero meridian, but also the difference in these points at the same moment. The fact is that every 15 degrees (24th part of the circle) in longitude is equal to one hour of time. Based on this, it is possible to determine the difference in time at these two points by geographical longitude.

For example.

Moscow has a longitude of 37°37′ (East), and Khabarovsk -135°05′, that is, lies to the east of 97°28′. What time do these cities have at the same moment? simple calculations show that if it is 13:00 in Moscow, then it is 19:30 in Khabarovsk.

The figure below shows the design of the sheet frame of any map. As can be seen from the figure, in the corners of this map, the longitude of the meridians and the latitude of the parallels that form the frame of the sheet of this map are signed.

On all sides, the frame has scales divided into minutes. For both latitude and longitude. Moreover, each minute is divided by dots into 6 equal sections, which correspond to 10 seconds of longitude or latitude.

Thus, in order to determine the latitude of any point M on the map, it is necessary to draw a line through this point parallel to the lower or upper frame of the map, and read the corresponding degrees, minutes, seconds on the latitude scale to the right or left. In our example, point M has a latitude of 45°31’30”.

Similarly, drawing a vertical line through the point M parallel to the lateral (closest to this point) meridian of the border of this sheet of the map, we read the longitude (east) equal to 43 ° 31'18 ".

Drawing a point on a topographic map according to given geographical coordinates.

Drawing a point on the map according to the given geographical coordinates is carried out in the reverse order. First, the indicated geographical coordinates are found on the scales, and then parallel and perpendicular lines are drawn through them. Intersecting them on will show the point with the given geographic coordinates.

Based on the book "The map and the compass are my friends."
Klimenko A.I.

Coordinates called angular and linear quantities (numbers) that determine the position of a point on a surface or in space.

In topography, such coordinate systems are used that allow the most simple and unambiguous determination of the position of points on the earth's surface, both from the results of direct measurements on the ground and using maps. These systems include geographic, flat rectangular, polar and bipolar coordinates.

Geographical coordinates(Fig.1) - angular values: latitude (j) and longitude (L), which determine the position of the object on the earth's surface relative to the origin of coordinates - the point of intersection of the initial (Greenwich) meridian with the equator. On the map, the geographic grid is indicated by a scale on all sides of the map frame. The western and eastern sides of the frame are meridians, while the northern and southern sides are parallels. In the corners of the map sheet, the geographical coordinates of the points of intersection of the sides of the frame are signed.

Rice. 1. The system of geographical coordinates on the earth's surface

In the geographic coordinate system, the position of any point on the earth's surface relative to the origin of coordinates is determined in angular measure. For the beginning, in our country and in most other states, the point of intersection of the initial (Greenwich) meridian with the equator is accepted. Being, therefore, the same for our entire planet, the system of geographical coordinates is convenient for solving problems of determining the relative position of objects located at considerable distances from each other. Therefore, in military affairs, this system is used mainly for conducting calculations related to the use of long-range combat weapons, such as ballistic missiles, aviation, etc.

Planar rectangular coordinates(Fig. 2) - linear quantities that determine the position of the object on the plane relative to the accepted origin - the intersection of two mutually perpendicular lines (coordinate axes X and Y).

In topography, each 6-degree zone has its own system of rectangular coordinates. The X-axis is the axial meridian of the zone, the Y-axis is the equator, and the point of intersection of the axial meridian with the equator is the origin of coordinates.

Rice. 2. System of flat rectangular coordinates on maps

The system of flat rectangular coordinates is zonal; it is set for each six-degree zone into which the Earth's surface is divided when it is depicted on maps in the Gaussian projection, and is intended to indicate the position of images of points on the earth's surface on a plane (map) in this projection.

The origin of coordinates in the zone is the point of intersection of the axial meridian with the equator, relative to which the position of all other points of the zone is determined in a linear measure. The origin of the zone coordinates and its coordinate axes occupy a strictly defined position on the earth's surface. Therefore, the system of flat rectangular coordinates of each zone is connected both with the coordinate systems of all other zones, and with the system of geographical coordinates.

The use of linear quantities to determine the position of points makes the system of flat rectangular coordinates very convenient for making calculations both when working on the ground and on the map. Therefore, this system finds the widest application in the troops. Rectangular coordinates indicate the position of terrain points, their battle formations and targets, with their help they determine the relative position of objects within one coordinate zone or in adjacent sections of two zones.

Polar and bipolar coordinate systems are local systems. In military practice, they are used to determine the position of some points relative to others in relatively small areas of the terrain, for example, in target designation, marking landmarks and targets, drawing up terrain maps, etc. These systems can be associated with systems of rectangular and geographical coordinates.

2. Determination of geographical coordinates and mapping of objects by known coordinates

The geographical coordinates of a point located on the map are determined from the parallels and meridians closest to it, the latitude and longitude of which are known.

The frame of the topographic map is divided into minutes, which are separated by dots into divisions of 10 seconds each. Latitudes are indicated on the sides of the frame, and longitudes are indicated on the northern and southern sides.

Rice. 3. Determination of the geographical coordinates of a point on the map (point A) and drawing a point on the map by geographical coordinates (point B)

Using the minute frame of the map, you can:

1 . Determine the geographic coordinates of any point on the map.

For example, the coordinates of point A (Fig. 3). To do this, use a measuring compass to measure the shortest distance from point A to the southern frame of the map, then attach the meter to the western frame and determine the number of minutes and seconds in the measured segment, add the resulting (measured) value of minutes and seconds (0 "27") with the latitude of the southwestern corner of the frame - 54 ° 30 ".

Latitude points on the map will be equal to: 54°30"+0"27" = 54°30"27".

Longitude defined in a similar way.

Using a measuring compass, measure the shortest distance from point A to the western frame of the map, apply the measuring compass to the southern frame, determine the number of minutes and seconds in the measured segment (2 "35"), add the obtained (measured) value to the longitude of the southwestern corner frames - 45°00".

Longitude points on the map will be equal to: 45°00"+2"35" = 45°02"35"

2. Put any point on the map according to the given geographical coordinates.

For example, point B latitude: 54°31 "08", longitude 45°01 "41".

To map a point in longitude, it is necessary to draw a true meridian through a given point, for which connect the same number of minutes along the northern and southern frames; to plot a point in latitude on a map, it is necessary to draw a parallel through this point, for which connect the same number of minutes along the western and eastern frames. The intersection of two lines will determine the location of point B.

3. Rectangular coordinate grid on topographic maps and its digitization. Additional grid at the junction of coordinate zones

The coordinate grid on the map is a grid of squares formed by lines parallel to the coordinate axes of the zone. The grid lines are drawn through an integer number of kilometers. Therefore, the coordinate grid is also called the kilometer grid, and its lines are kilometer.

On the 1:25000 map, the lines forming the coordinate grid are drawn through 4 cm, that is, through 1 km on the ground, and on maps 1:50000-1:200000 through 2 cm (1.2 and 4 km on the ground, respectively). On the 1:500000 map, only the exits of the coordinate grid lines are plotted on the inner frame of each sheet after 2 cm (10 km on the ground). If necessary, coordinate lines can be drawn on the map along these exits.

On topographic maps, the values ​​of the abscissas and ordinates of the coordinate lines (Fig. 2) are signed at the exits of the lines behind the inner frame of the sheet and nine places on each sheet of the map. The full values ​​of abscissas and ordinates in kilometers are signed near the coordinate lines closest to the corners of the map frame and near the intersection of the coordinate lines closest to the northwestern corner. The rest of the coordinate lines are signed in abbreviated form with two digits (tens and units of kilometers). Signatures near the horizontal lines of the coordinate grid correspond to distances from the y-axis in kilometers.

Signatures near the vertical lines indicate the zone number (one or two first digits) and the distance in kilometers (always three digits) from the origin of coordinates, conditionally moved to the west of the zone's central meridian by 500 km. For example, the signature 6740 means: 6 - zone number, 740 - distance from the conditional origin in kilometers.

The outputs of the coordinate lines are given on the outer frame ( additional mesh) coordinate systems of the adjacent zone.

4. Determination of rectangular coordinates of points. Drawing points on the map by their coordinates

On the coordinate grid using a compass (ruler) you can:

1. Determine the rectangular coordinates of a point on the map.

For example, points B (Fig. 2).

For this you need:

  • write X - digitization of the lower kilometer line of the square in which point B is located, i.e. 6657 km;
  • measure along the perpendicular the distance from the lower kilometer line of the square to point B and, using the linear scale of the map, determine the value of this segment in meters;
  • add the measured value of 575 m with the digitization value of the lower kilometer line of the square: X=6657000+575=6657575 m.

The Y ordinate is determined in the same way:

  • write the Y value - the digitization of the left vertical line of the square, i.e. 7363;
  • measure the perpendicular distance from this line to point B, i.e. 335 m;
  • add the measured distance to the Y digitization value of the left vertical line of the square: Y=7363000+335=7363335 m.

2. Put the target on the map according to the given coordinates.

For example, point G by coordinates: X=6658725 Y=7362360.

For this you need:

  • find the square in which the point G is located by the value of whole kilometers, i.e. 5862;
  • set aside from the lower left corner of the square a segment on the scale of the map, equal to the difference between the abscissa of the target and the lower side of the square - 725 m;
  • from the obtained point along the perpendicular to the right, set aside a segment equal to the difference in the ordinates of the target and the left side of the square, i.e. 360 m.

Rice. 2. Determining the rectangular coordinates of a point on the map (point B) and plotting a point on the map using rectangular coordinates (point D)

5. Accuracy of determining coordinates on maps of various scales

The accuracy of determining geographical coordinates on maps 1:25000-1:200000 is about 2 and 10 "" respectively.

The accuracy of determining the rectangular coordinates of points on a map is limited not only by its scale, but also by the magnitude of the errors allowed when shooting or compiling a map and drawing various points and terrain objects on it

Geodetic points and are plotted most accurately (with an error not exceeding 0.2 mm) on the map. objects that stand out most sharply on the ground and are visible from afar, having the value of landmarks (individual bell towers, factory chimneys, tower-type buildings). Therefore, the coordinates of such points can be determined with approximately the same accuracy with which they are plotted on the map, i.e. for a map of a scale of 1:25000 - with an accuracy of 5-7 m, for a map of a scale of 1:50000 - with an accuracy of -10- 15 m, for a map at a scale of 1:100000 - with an accuracy of 20-30 m.

The remaining landmarks and contour points are plotted on the map, and, therefore, are determined from it with an error of up to 0.5 mm, and points related to contours that are not clearly expressed on the ground (for example, the contour of a swamp), with an error of up to 1 mm.

6. Determining the position of objects (points) in systems of polar and bipolar coordinates, mapping objects in direction and distance, in two angles or in two distances

System flat polar coordinates(Fig. 3, a) consists of a point O - the origin, or poles, and the initial direction of the OR, called polar axis.

Rice. 3. a – polar coordinates; b – bipolar coordinates

The position of the point M on the ground or on the map in this system is determined by two coordinates: the position angle θ, which is measured clockwise from the polar axis to the direction to the determined point M (from 0 to 360 °), and the distance OM = D.

Depending on the task being solved, an observation point, a firing position, a starting point for movement, etc. are taken as a pole, and a geographic (true) meridian, a magnetic meridian (the direction of a magnetic compass needle) or a direction to some landmark is taken as a polar axis .

These coordinates can be either two position angles that determine directions from points A and B to the desired point M, or distances D1=AM and D2=BM to it. The position angles, as shown in Fig. 1, b, are measured at points A and B or from the direction of the basis (i.e., angle A=BAM and angle B=ABM) or from any other directions passing through points A and B and taken as initial ones. For example, in the second case, the location of the point M is determined by the position angles θ1 and θ2, measured from the direction of the magnetic meridians. System flat bipolar (two-pole) coordinates(Fig. 3, b) consists of two poles A and B and a common axis AB, called the basis or base of the serif. The position of any point M relative to the two data on the map (terrain) points A and B is determined by the coordinates that are measured on the map or on the terrain.

Drawing the detected object on the map

This is one of the most important moments in object detection. The accuracy of determining its coordinates depends on how accurately the object (target) will be mapped.

Having found an object (target), you must first determine exactly what is detected by various signs. Then, without stopping the observation of the object and without revealing yourself, put the object on the map. There are several ways to plot an object on a map.

visually: Places a feature on the map when it is close to a known landmark.

By direction and distance: to do this, you need to orient the map, find the point of your standing on it, sight on the map the direction to the detected object and draw a line to the object from the point of your standing, then determine the distance to the object by measuring this distance on the map and commensurate it with the scale of the map.

Rice. 4. Drawing a target on the map with a straight cut from two points.

If in this way it is graphically impossible to solve the problem (the enemy interferes, poor visibility, etc.), then you need to accurately measure the azimuth to the object, then translate it into a directional angle and draw a direction on the map from the standing point, on which to plot the distance to the object.

To get the directional angle, you need to add the magnetic declination of this map (direction correction) to the magnetic azimuth.

straight serif. In this way, an object is put on a map of 2-3 points from which it is possible to observe it. To do this, from each selected point, the direction to the object is drawn on the oriented map, then the intersection of straight lines determines the location of the object.

7. Ways of targeting on the map: in graphic coordinates, flat rectangular coordinates (full and abbreviated), by squares of a kilometer grid (up to a whole square, up to 1/4, up to 1/9 of a square), from a landmark, from a conditional line, by azimuth and target range, in the bipolar coordinate system

The ability to quickly and correctly indicate targets, landmarks and other objects on the ground is important for controlling subunits and fire in combat or for organizing combat.

Target designation in geographic coordinates It is used very rarely and only in those cases when the targets are removed from a given point on the map at a considerable distance, expressed in tens or hundreds of kilometers. In this case, geographical coordinates are determined from the map, as described in question No. 2 of this lesson.

The location of the target (object) is indicated by latitude and longitude, for example, height 245.2 (40 ° 8 "40" N, 65 ° 31 "00" E). On the eastern (western), northern (southern) sides of the topographic frame, mark the position of the target in latitude and longitude with a prick of a compass. From these marks, perpendiculars are lowered into the depth of the sheet of the topographic map until they intersect (commander's rulers, standard sheets of paper are applied). The point of intersection of the perpendiculars is the position of the target on the map.

For approximate target designation rectangular coordinates it is enough to indicate on the map the square of the grid in which the object is located. The square is always indicated by the numbers of kilometer lines, the intersection of which forms the southwestern (lower left) corner. When indicating the square, the cards follow the rule: first they name two numbers signed at the horizontal line (at the western side), that is, the “X” coordinate, and then two numbers at the vertical line (south side of the sheet), that is, the “Y” coordinate. In this case, "X" and "Y" are not spoken. For example, enemy tanks are spotted. When transmitting a report by radiotelephone, the square number is pronounced: eighty-eight zero two.

If the position of a point (object) needs to be determined more accurately, then full or abbreviated coordinates are used.

Work with full coordinates. For example, it is required to determine the coordinates of a road sign in square 8803 on a map at a scale of 1:50000. First, determine what is the distance from the lower horizontal side of the square to the road sign (for example, 600 m on the ground). In the same way, measure the distance from the left vertical side of the square (for example, 500 m). Now, by digitizing kilometer lines, we determine the full coordinates of the object. The horizontal line has the signature 5988 (X), adding the distance from this line to the road sign, we get: X=5988600. In the same way, we determine the vertical line and get 2403500. The full coordinates of the road sign are as follows: X=5988600 m, Y=2403500 m.

Abbreviated coordinates respectively will be equal: X=88600 m, Y=03500 m.

If it is required to clarify the position of the target in a square, then target designation is used by letter or number inside the square of the kilometer grid.

When targeting in a literal way inside the square of the kilometer grid, the square is conditionally divided into 4 parts, each part is assigned a capital letter of the Russian alphabet.

The second way - digital way target designation inside the kilometer grid square (target designation by snail ). This method got its name from the arrangement of conditional digital squares inside the square of the kilometer grid. They are arranged as if in a spiral, while the square is divided into 9 parts.

When targeting in these cases, they name the square in which the target is located, and add a letter or number that specifies the position of the target inside the square. For example, a height of 51.8 (5863-A) or a high-voltage support (5762-2) (see Fig. 2).

Target designation from a landmark is the simplest and most common method of target designation. With this method of target designation, the nearest landmark to the target is first called, then the angle between the direction to the landmark and the direction to the target in goniometer divisions (measured with binoculars) and the distance to the target in meters. For example: "Landmark two, forty to the right, further two hundred, at a separate bush - a machine gun."

target designation from the conditional line usually used in combat vehicles. With this method, two points are selected on the map in the direction of action and connected by a straight line, relative to which target designation will be carried out. This line is indicated by letters, divided into centimeter divisions and numbered starting from zero. Such a construction is done on the maps of both the transmitting and receiving target designation.

Target designation from a conditional line is usually used in combat vehicles. With this method, two points are selected on the map in the direction of action and connected by a straight line (Fig. 5), relative to which target designation will be carried out. This line is indicated by letters, divided into centimeter divisions and numbered starting from zero.

Rice. 5. Target designation from a conditional line

Such a construction is done on the maps of both the transmitting and receiving target designation.

The position of the target relative to the conditional line is determined by two coordinates: a segment from the starting point to the base of the perpendicular, lowered from the target location point to the conditional line, and a segment of the perpendicular from the conditional line to the target.

When targeting, the conditional name of the line is called, then the number of centimeters and millimeters contained in the first segment, and, finally, the direction (left or right) and the length of the second segment. For example: “Direct AC, five, seven; zero to the right, six - NP.

Target designation from a conditional line can be issued by indicating the direction to the target at an angle from the conditional line and the distance to the target, for example: "Direct AC, right 3-40, one thousand two hundred - machine gun."

target designation in azimuth and range to the target. The azimuth of the direction to the target is determined using a compass in degrees, and the distance to it is determined using an observation device or by eye in meters. For example: "Azimuth thirty-five, range six hundred - a tank in a trench." This method is most often used in areas where there are few landmarks.

8. Problem solving

Determining the coordinates of terrain points (objects) and target designation on the map is practiced practically on training maps using pre-prepared points (marked objects).

Each student determines geographic and rectangular coordinates (maps objects at known coordinates).

Methods of target designation on the map are worked out: in flat rectangular coordinates (full and abbreviated), in squares of a kilometer grid (up to a whole square, up to 1/4, up to 1/9 of a square), from a landmark, in azimuth and range of the target.

Measured from 0° to 90° either side of the equator. The geographical latitude of points lying in the northern hemisphere (northern latitude) is considered to be positive, the latitude of points in the southern hemisphere is negative. It is customary to speak of latitudes close to the poles as high, and about those close to the equator - as about low.

Due to the difference in the shape of the Earth from the ball, the geographical latitude of the points differs somewhat from their geocentric latitude, that is, from the angle between the direction to a given point from the center of the Earth and the plane of the equator.

Longitude

Longitude- the angle λ between the plane of the meridian passing through the given point, and the plane of the initial zero meridian, from which the longitude is counted. Longitudes from 0° to 180° east of the prime meridian are called east, to the west - west. Eastern longitudes are considered to be positive, western - negative.

Height

To fully determine the position of a point in three-dimensional space, a third coordinate is needed - height. The distance to the center of the planet is not used in geography: it is convenient only when describing very deep regions of the planet or, on the contrary, when calculating orbits in space.

Within the geographic envelope, the "height above sea level" is usually used, measured from the level of the "smoothed" surface - the geoid. Such system of three coordinates turns out to be orthogonal, which simplifies a number of calculations. Altitude above sea level is also convenient in that it is related to atmospheric pressure.

The distance from the earth's surface (up or down) is often used to describe a location, however not serves coordinate

Geographic coordinate system

The main disadvantage in practical application The GCS in navigation is the large values ​​of the angular velocity of this system at high latitudes, increasing up to infinity at the pole. Therefore, instead of HCS, a semi-free CS in azimuth is used.

Semi-free in azimuth coordinate system

The semi-free in azimuth SC differs from the HSC in only one equation, which has the form:

Accordingly, the system has the same initial position that the HCS and their orientation also coincide with the only difference that its axes and are deviated from the corresponding axes of the HCS by an angle for which the equation is valid

The conversion between the HCS and semi-free in the azimuth of the CS is carried out according to the formula

In reality, all calculations are carried out in this system, and then, to issue output information, the coordinates are transformed into the GCS.

Recording formats for geographic coordinates

The WGS84 system is used to record geographic coordinates.

Coordinates (latitude -90° to +90°, longitude -180° to +180°) can be written:

  • in ° degrees as a decimal fraction (modern version)
  • in ° degrees and "minutes s decimal
  • in ° degrees, " minutes and " seconds with a decimal fraction (historical notation)

The decimal separator is always a dot. Positive signs of coordinates are represented by the (in most cases, omitted) sign "+", or by the letters: "N" - north latitude and "E" - east longitude. Negative signs coordinates are represented either by a "-" sign or by the letters: "S" - southern latitude and "W" - western longitude. Letters can stand both in front and behind.

There are no uniform rules for recording coordinates.

On the maps search engines by default, coordinates are shown in degrees with a decimal fraction with "-" signs for negative longitude. On Google maps and Yandex maps, latitude first, then longitude (until October 2012, the reverse order was adopted on Yandex maps: first longitude, then latitude). These coordinates are visible, for example, when laying routes from arbitrary points. The search also recognizes other formats.

In default navigators, degrees and minutes are more often shown with a decimal fraction with letter designation, for example, in Navitel, in iGO. You can enter coordinates in accordance with other formats. The degrees and minutes format is also recommended for maritime communications.

At the same time, the original way of writing with degrees, minutes and seconds is often used. Currently, coordinates can be written in one of many ways or duplicated in two main ways (with degrees and with degrees, minutes and seconds). As an example, the options for recording the coordinates of the sign "Zero kilometer of the roads of the Russian Federation" - 55.755831 , 37.617673 55°45′20.99″ N sh. 37°37′03.62″ E d. /  55.755831 , 37.617673 (G) (O) (I):

  • 55.755831°, 37.617673° -- degrees
  • N55.755831°, E37.617673° -- degrees (+ additional letters)
  • 55°45.35"N, 37°37.06"E -- degrees and minutes (+ additional letters)
  • 55°45"20.9916"N, 37°37"3.6228"E -- degrees, minutes and seconds (+ additional letters)

Links

  • Geographic coordinates of all cities on Earth (English)
  • Geographical coordinates of the settlements of the Earth (1) (eng.)
  • Geographical coordinates of the settlements of the Earth (2) (eng.)
  • Converting coordinates from degrees to degrees/minutes, to degrees/minutes/seconds and vice versa
  • Converting coordinates from degrees to degrees/minutes/seconds and vice versa

see also

Notes


Wikimedia Foundation. 2010 .

See what "Geographic coordinates" are in other dictionaries:

    See Coordinates. Mountain Encyclopedia. Moscow: Soviet Encyclopedia. Edited by E. A. Kozlovsky. 1984 1991 ... Geological Encyclopedia

    - (latitude and longitude), determine the position of a point on the earth's surface. Geographical latitude j is the angle between the plumb line at a given point and the plane of the equator, counted from 0 to 90 degrees on both sides of the equator. Geographic longitude l angle ... ... Modern Encyclopedia

    Latitude and longitude determine the position of a point on the earth's surface. Geographic latitude? the angle between the plumb line at a given point and the plane of the equator, counted from 0 to 90. in both directions from the equator. Geographic longitude? angle between ... ... Big Encyclopedic Dictionary

    Angular values ​​that determine the position of a point on the surface of the Earth: latitude - the angle between the plumb line at a given point and the plane of the earth's equator, measured from 0 to 90 ° (northern latitude north of the equator and southern latitude south); longitude ... ... Marine dictionary

The geographic coordinate system is necessary in order to determine the location of an object on the surface of the Earth with great accuracy. As you know, this system consists of geographic latitude and longitude. The first element of this system is the angle between the local zenith (noon) and the plane of the equator, ranging from 0 to 90 degrees west or east of the equatorial boundary. Longitude is the angle formed by two planes: the meridian passing through a given point in the area and the Greenwich meridian, i.e. zero point. From the latter, the longitude begins, which is from 0 to 180 degrees east and west (east and west longitude). Knowing how to navigate the terrain using latitude and longitude will help you communicate your exact coordinates in case of an emergency, when you find yourself in an unfamiliar place that is not marked on the map, or get lost in the forest. Learn more about how you can determine the latitude and longitude of your location.

Clock to determine location by latitude and longitude

How to determine a place by latitude and longitude


The determination of local geographic longitude is carried out using conventional clocks. To do this, you need to install on them exact time location in this moment. Then you should determine the time of the local noon, this will help the time-tested method: you need to find a meter or one and a half meter stick, stick it vertically into the ground. The length of the drop shadow line will show the time intervals that need to be detected. The moment when the shadow will be the shortest is the local zenith, i.e. the gnomon shows exactly 12 noon, while the direction of the shadow is from south to north.

At this time, you need to note the time on the clock - this will be the indication of Greenwich Mean Time. From this value, you need to subtract the indicator, which is taken from the time equation table. This correction arises due to the variability of the angular velocity of motion and the dependence on the season. Given this correction, the average value of Greenwich time is reduced to true solar. The resulting difference between this sunny time(i.e. 12 hours) and Greenwich, taking into account the amendment, must be converted to a degree value. To do this, you need to know that in one hour the Earth rotates 15 degrees (if you divide 360 ​​degrees by 24 hours) of longitude, or 1 degree in four minutes. If noon in a given area comes earlier than Greenwich Mean Time, indicate east longitude in your calculations, if later, then west. The closer the coordinates of the desired area to the polar regions, the more accurate the longitude measurements will be.



The field of how the value of longitude is found, you can begin to determine the value of the latitude of a particular area. First you need to determine the duration of the daytime, which begins at sunrise and ends at sunset. Next, you need to draw up a nomogram, i.e. determination of latitude: on the left side the value of the daylight hours is indicated, on the right - the date. If you combine these values, you can determine the intersection of the geographic latitude with the middle part. The location found will indicate the local latitude. When determining latitude relative to the southern hemisphere, you must add 6 months to the required date. The second way is to find the latitude using a conventional protractor: for this, a plumb line (thread with a weight) is fixed in the center of this tool, and its base is pointed at the North Star. The angle formed by the plumb line and the base of the protractor must be reduced by 90 degrees, i.e. subtract this value from its value. The value of this angle shows the height of the North Star, i.e. the height of the pole above the horizon. Since the geographic latitude is equal to the value of the pole above the horizon of a particular place, this value will indicate its degree.

We recommend reading

Top