Солнечные батареи в космическом пространстве. Космические аппараты и техника

Водоёмы 20.09.2019
Водоёмы

Солнечный парус шириной 20 метров, разработанный в НАСА

Солнечный парус (также называемый световым парусом или фотонным парусом ) - приспособление, использующее давление солнечного света или лазера на зеркальную поверхность для приведения в движение .

Следует различать понятия «солнечный свет» (поток фотонов, именно он используется солнечным парусом) и (поток элементарных частиц и ионов, который используется для полётов на электрическом парусе - другой разновидности космического паруса).

Идея полетов в космосе с использованием солнечного паруса возникла в 1920-е годы в России и принадлежит одному из пионеров ракетостроения Фридриху Цандеру, исходившему из того, что частицы солнечного света - фотоны - имеют импульс и передают его любой освещаемой поверхности, создавая давление. Величину давления солнечного света впервые измерил русский физик Пётр Лебедев в 1900 году.

Давление солнечного света чрезвычайно мало (на Земной орбите - около 9·10 −6 Н/м 2) и уменьшается пропорционально квадрату расстояния от . Однако солнечный парус может действовать в течение почти неограниченного периода времени, и совсем не требует топлива, и поэтому в некоторых случаях его использование может быть привлекательно. Однако на сегодня ни один из космических аппаратов не использовал солнечный парус в качестве основного двигателя.

Солнечный парус в проектах звездолётов

«Гелиопаузная электростатическая быстрая транзитная система» HERTS E-Sail НАСА

Солнечный парус - самый перспективный и реалистичный на сегодняшний день вариант звездолёта.

Преимуществом солнечного парусника является отсутствие топлива на борту, что позволяет увеличить полезную нагрузку по сравнению с космическим кораблём на реактивном движении. Однако концепция солнечного паруса требует легкого по массе и одновременно большого по площади паруса.

Недостатком солнечного парусника является зависимость ускорения от расстояния до Солнца: чем дальше от Солнца, тем меньше давление солнечного света и тем самым меньше ускорение паруса, а за пределами давление солнечного света и соответственно эффективность солнечного паруса приблизится к нулю. Световое давление от Солнца довольно мало, поэтому для увеличения ускорения существуют проекты разгона солнечного парусника лазерными установками с генерирующих станций вне . Однако данные проекты сталкиваются с проблемой точного наведения лазеров на сверхдальних расстояниях и создания лазерных генераторов соответствующей мощности.

Джеффри Ландис предложил использовать для передачи энергии через лазер от базовой станции на межзвёздный зонд с ионным двигателем, что дает некоторое преимущество по сравнению с чисто космическим парусом (в настоящее время данный проект неосуществим из-за технических ограничений).

Космическая регата

В 1989 году юбилейной комиссией Конгресса США в честь 500-летия открытия Америки был объявлен конкурс. Его идея заключалась в выведении на орбиту нескольких солнечных парусных кораблей, разработанных в разных странах, и проведении гонки под парусами к . Весь путь планировалось пройти за 500 дней. Свои заявки на участие в конкурсе подали США, Канада, Великобритания, Италия, Китай, Япония и Советский Союз. Старт должен был состояться в 1992 году.

Претенденты на участие стали выбывать почти сразу, столкнувшись с рядом проблем технического и экономического плана. Распад Советского Союза, однако, не привёл к прекращению работы над отечественным проектом, который по мнению разработчиков, имел все шансы на победу. Но регата была отменена ввиду финансовых трудностей у юбилейной комиссии (а возможно, ввиду всей совокупности причин). Грандиозное шоу не состоялось. Однако, солнечный парус российского производства был создан (единственный из всех) совместно НПО «Энергия» и ДКБА, и получил первую премию конкурса.

Космические аппараты, использующие солнечный парус

Советскими учёными была изобретена схема радиационно-гравитационной стабилизации космического аппарата, основанная на применении солнечного паруса.

Первое развёртывание солнечного паруса в космосе было произведено на российском 24 февраля 1993 года в рамках проекта «Знамя-2».

21 мая 2010 года Японское космическое агентство (JAXA) запустило , на борту которой находились космический аппарат “IKAROS” с солнечным парусом и метеорологический аппарат для изучения . “IKAROS” оснащён тончайшей мембраной размером 14 на 14 метров. С его помощью предполагается исследовать особенности движения аппаратов при помощи солнечного света. На создание аппарата было потрачено 16 миллионов долларов, отмечает агентство. Раскрытие солнечного паруса началось 3 июня 2010 года, а 10 июня успешно завершилось. По кадрам, переданным с борта “IKAROS”, можно сделать вывод, что все 200 квадратных метров ультратонкого полотна расправились успешно, а тонкоплёночные солнечные батареи начали вырабатывать энергию.




НАЗНАЧЕНИЕ КА

Космические аппараты серии «Прогноз» (маш. №501/510, №2512, №2513) - специализированные спутники Земли, позволяющие установку на каждом из них комплекса научных приборов, отличающегося от предыдущих, обладающие возможностью проводить длительную непрерывную передачу данных в реальном времени и предназначенные для проведения астрофизических исследований, изучения солнечной активности и природного механизма солнечно-земных связей.

Серия состоит из 12 автоматических космических аппаратов (КА «Прогноз-1» - «Прогноз-12»), запущенных в разные календарные сроки, начиная с 1972 по 1996 г.г. Аппараты дважды модернизировались.

Базовый аппарат именуется СО («солнечный объект»). Он предназначен для контроля радиационной активности Солнца и прогнозирования радиационной безопасности полетов космонавтов. Изготовлены три спутника этого типа (КА «Прогноз-1/3») . Разработка проектов, утверждение технических заданий и руководство летными испытаниями осуществлено ОКБ НПО им. С.А. Лавочкина. Изготовление – на машиностроительном заводе «Вымпел».

После внесения ряда доработок в бортовые системы аппарат получил, начиная с 1975 года, наименование СО-М. В процессе полетов КА «Прогноз-4, -5, -6, -7 , -8» проведены уникальные исследования структуры ударных волн солнечного ветра возле Земли. В ходе эксперимента, осуществляемого в рамках международного проекта «Реликт» (1983 г., СССР, Чехословакия и Франция), на борту КА «Прогноз-9» измерялась анизотропия реликтового радиоизлучения по небесной сфере. В рамках советско-чехословацкого проекта «Интершок» (1985 г) произведен запуск КА «Прогноз-10» . Его цель – исследование структуры и характеристик ударной волны и магнитопаузы, возникающих при взаимодействии солнечного ветра с магнитосферой Земли. Кроме того, в ходе полета получена важная информация о радиационной обстановке в околоземном пространстве.

В рамках международного проекта «Интербол» (1995 г.) созданы аппараты нового поколения, получившие обозначение СО-М2 («Прогноз-М2»)

Для каждого из аппаратов серии «Прогноз» предусмотрена своя научная программа , в основе которой заложено решение следующих фундаментальных научных проблем:

  • Изучение физических характеристик солнечной плазмы, частиц солнечных космических лучей, межпланетного магнитного поля, не возмущённых земной магнитосферой, а также длительная регистрация электромагнитного излучения Солнца.
  • Изучения процессов, происходящих внутри магнитосферы и на её границе.

СРЕДСТВА ВЫВЕДЕНИЯ

Для выведения КА серии «Прогноз» использована ракета-носитель «Молния» в комплектации с разгонным блоком «Л» .

Запуск КА «Прогноз-1-10» осуществлен с космодрома Байконур, КА «Прогноз-11,-12» – с космодрома Плесецк.

Для обеспечения подготовки, запуска и управления спутниками проведены следующие доработки в ракетно–космическом комплексе:

  • в разгонном блоке «Л» доработаны баки для окислителя и система управления и стабилизации;
  • вновь разработано и изготовлено контрольно–проверочное испытательное электрооборудование, оборудование пневмоиспытаний и проверки системы терморегулирования для технической позиции, модернизированы монтажно-стыковочные приспособления.

ОРБИТЫ СПУТНИКОВ И СХЕМА ПОЛЁТА

При выборе параметров орбит спутников «Прогноз» принимались во внимание следующие основные требования:

  • Обеспечение возможности выполнения научной программы.
  • Обеспечение возможности продолжительной связи наземных измерительных пунктов со спутником для управления бортовыми системами, получения траекторной, научной и оперативной информации, а также для продолжительных сеансов радиосвязи при регистрации данных научных приборов в реальном времени.
  • Обеспечение длительного времени существования орбиты без проведения коррекции её параметров.
  • Использование для выведения спутников на орбиты находящихся в эксплуатации ракетоносителей и отработанных трасс их полёта.

Выведение искусственных спутников Земли на высокоапогейные орбиты является сложной задачей и требует анализа различных типов орбит, обеспечивающих выполнения научных задач. Спутники такого класса движутся в сложном силовом поле, так как испытывают возмущающее влияние Луны. Выбор даты и времени старта при пуске спутников «Прогноз» проводился по разработанной в НПО им.С.А. Лавочкина методике ускоренного расчёта эволюций орбит с повитковым интегрированием.

Следует отметить, что обеспечение устойчивости существования орбиты путём соответствующего выбора даты и времени запуска позволило отказаться от разработки и установки на спутнике сложной и имеющей большой вес системы автономной коррекции.

КА «Прогноз» выводится ракетой-носителем «Молния» вначале на промежуточную орбиту, а затем разгонным ракетным блоком Л на начальную расчетную орбиту с параметрами:

апогей–500 км

перигей – 235 км

наклонение орбиты – 65 град.

С течением времени параметры орбиты претерпевают некоторые изменения под влиянием поля тяготения Луны и Солнца.

КОСМИЧЕСКИЙ АППАРАТ

Конструктивно спутник «Прогноз» выполнен в виде герметичного контейнера цилиндрической формы диаметром 1500 мм и высотой 1200 мм, закрытого с обеих сторон сферическими днищами.

Снаружи на крышке размещена рама, на которой крепятся датчики научной аппаратуры, оптический прибор солнечной ориентации, антенны радиокомплекса. На цилиндрической части корпуса расположены четыре панели солнечных батарей и рамы с установленными на них научными приборами, тепловой демпфер, микродвигатели системы ориентации, баллоны с рабочим газом для этих двигателей. На концах панелей солнечных батарей установлены: штанга магнитометра, антенны и другие выносные приборы. Внутри контейнера размещены рамы с установленными на них приборами радиотехнического комплекса, электронными приборами системы солнечной ориентации, научная аппаратура, приборы системы терморегулирования и буферная батарея энергопитания. Тепловой режим станции обеспечивается активной системой терморегулирования (СТР) приборного отсека в сочетании с пассивными средствами терморегулирования.

Тепловой режим блоков научной аппаратуры и служебной аппаратуры, установленных снаружи приборного отсека, обеспечивается пассивными средствами терморегулирования. Стабилизация спутника в пространстве осуществляется путем вращения его относительно продольной оси, направленной на Солнце. В связи с этим одной из технических проблем было обеспечение заданных моментов инерции аппарата. Поэтому каждый спутник проходил балансировку на специальном стенде.

Основные данные спутника и его систем:

  • масса 850/1370 кг;
  • радиокомплекс дециметрового диапазона волн – два бортовых передатчика мощностью 10 вт, число команд управления 120-256;
  • информативность радиолинии КА- Земля до 250 Кбод;
  • информативность телеметрической системы 800 и 3200 бод, память запоминающих устройств 108 часов и 80 Мбайт
  • в составе КНА;
  • антенно-фидерная система состоит из двух широко направленных антенн, антенного переключателя и блока электроники;
  • система ориентации на Солнце – одноосная, точность ориентации 1/1,5град, скорость вращения спутника вокруг продольной оси 3 град/сек;
  • система исполнительных органов системы ориентации состоит из газовых сопел, пневмоклапанов, редукторов и баллонов высокого давления с азотом;
  • система терморегулирования – газовая, замкнутого типа с частичной экранно-вакуумной теплоизоляцией, диапазон поддержания температуры внутри приборного контейнера от 0 С до +40 С;
  • система электропитания: солнечные батареи с площадью фотопреобразователей 7 кв.м и буферная аккумуляторная батарея ёмкостью 100 ампер-часов.

При разработке и создании конструкции спутника и его систем была решена поставленная перед НПО им. С.А. Лавочкина задача, в результате которой был создан универсальный спутник, позволяющий устанавливать на нём научную аппаратуру в различной комплектации без проведения повторных наземных испытаний (статических, вибрационных, тепловых и других). Это значительно сократило финансовые и материальные затраты.

Благодаря своей универсальности КА «Прогноз» широко использовались для проведения научных исследований по программе «Интеркосмос» . Особенно плодотворными были совместные эксперименты с научными учреждениями ЧССР, Венгрии, Франции и Швеции, что позволило освоить и использовать новую научную методику, улучшить технологию изготовления научных приборов, использовать научную аппаратуру, изготовленную другими странами.

УПРАВЛЕНИЕ ПОЛЕТОМ

Для обеспечения работы со спутниками «Прогноз» в полёте были разработаны программы полёта с типовыми сеансами связи с наземными измерительными пунктами, которыми проводились:

  • проверка функционирования служебных систем и управления их работой;
  • проверка работоспособности научной аппаратуры и управление её работой (включение, выключение, калибровка и т.п.);
  • запись научных измерений и состояние бортовых систем на запоминающие устройства;
  • списывание научной и служебной информации с запоминающих устройств;
  • непосредственная передача информации с научных приборов;
  • более точная ориентация на Солнце по радиокомандам;
  • точная привязка бортового времени к московскому;
  • траекторные измерения элементов орбиты.

Продолжительность сеансов связи составляла от 30 мин до 2,0 часов. На каждом витке орбиты проводилось от 2-х до 5-ти сеансов связи со спутником.
В период с апреля 1972 года по октябрь 2000 года было проведено двенадцать безотказных запусков; все спутники полностью выполнили предусмотренные программы и превысили гарантированный срок работы.

РЕАЛИЗАЦИЯ ПРОЕКТА

КА «Прогноз-1» Запущен 14.04.72 года с космодрома Байконур. Параметры рабочей орбиты: высота в перигее – 956 км, высота в апогее – 201000 км, наклонение – 65 град, период обращения – 97 час.
Задачи научных исследований:

  • получение данных о радиационной активности Солнца с целью обеспечения необходимой информацией службы радиационной безопасности;
  • изучение физики солнечных вспышек и солнечных космических лучей;
  • изучение свойств межпланетной среды и взаимодействия солнечного ветра с магнитосферой Земли.

КА «Прогноз-2» Запущен 29.06.1972 года с космодрома Байконур. Параметры рабочей орбиты: высота в перигее – 551,4 км, высота в апогее – 201000 км, наклонение – 65 град, период обращения – 97 час.
Масса космического аппарата – 845 кг.
Задачи научных исследований: те же, что для КА «Прогноз-1». Дополнительно установлены приборы французского производства для проведения экспериментов по изучению характеристик солнечного ветра внешних областей магнитосферы - прибор «Калипсо», а также исследованию гамма-излучения Солнца и поиску нейтронов солнечного происхождения - прибор «СНЕГ-1».

КА «Прогноз-3» Запущен 15.02.73 года с космодрома Байконур. Параметры рабочей орбиты: высота в перигее – 590 км, высота в апогее – 200270 км, наклонение – 64,98 град, период обращения – 96 час.
Масса космического аппарата – 836 кг.
Задачи научных исследований : те же, что для КА «Прогноз-1».

КА «Прогноз-4» Запущен 22.12.74 года с космодрома Байконур. Параметры рабочей орбиты: высота в перигее – 634 км, высота в апогее – 199000км, наклонение – 65 град, период обращения – 95,66 час.
Масса космического аппарата – 893 кг.
Задачи научных исследований : те же, что для КА «Прогноз-1». Существенно увеличено количество научных приборов и расширены научные исследования.

КА «Прогноз-5» Запущен 25.11.76 года с космодрома Байконур. Параметры рабочей орбиты: высота в перигее – 498 км, высота в апогее – 195120 км, наклонение – 65 град, период обращения – 95,2 час.
Масса космического аппарата – 896 кг.
Задачи научных исследований : те же, что для КА «Прогноз-1». Установлена модернизированная более точная научная аппаратура, позволившая проводить более тонкие измерения, в том числе: изучение свойств межпланетной среды и взаимодействие солнечного ветра с магнитосферой Земли; концентрации, температуры, направления и скорости протонов; положение ударной волны, а также исследование холодной плазмы в магнитосфере Земли, электростатического ВЧ-поля в межпланетной плазме; нейтрального и ионизированного гелия в межпланетной среде. Продолжены измерения параметров и состава солнечного ветра с помощью французского прибора «Калипсо-2».

КА «Прогноз-6» Запущен 22.09.77 года с космодрома Байконур. Параметры рабочей орбиты: высота в перигее – 495,5 км, высота в апогее – 197885 км, наклонение – 65,4 град, период обращения – 94,8 час.
Масса космического аппарата – 894 кг.
Задачи научных исследований те же, что для КА «Прогноз-1».Широко проводилась спектрометрия: рентгеновских лучей, протонов и ядер в релятивистской области, УФ-излучения, электронов в области высоких энергий с помощью французских приборов «Жемо-С2» и «СНЕГ-2МП»- гамма-спектрометров.

КА «Прогноз-7» Запущен 30.10.78 года с космодрома Байконур. Параметры рабочей орбиты: высота в перигее – 467 км, высота в апогее – 199300 км, наклонение – 65 град, период обращения – 95,74 час.
Масса космического аппарата – 940 кг.
Задачи научных исследований те же, что для КА «Прогноз-1»: продолжение исследований радиационной активности Солнца, солнечной плазмы и межпланетной среды, проведение совместных экспериментов СССР по программе «Интеркосмос» с ЧССР - приборы «Плазмаг», РФ-2П; ВНР - прибор «Плазмаг»; Францией - приборы «СНЕГ-2МП», «Жемо-С2», «Галактика»; Швецией - прибор «Промикс». Увеличение состава научных приборов.

КА «Прогноз-8» Запущен 25.12.80 года с космодрома Байконур. Параметры рабочей орбиты: высота в перигее – 556,5 км, высота в апогее – 198770 км, наклонение – 65 град, период обращения – 95,39 час.
Масса космического аппарата – 934 кг.
Основной научной задачей комплекса экспериментов являлось исследование тонкой структуры ударной волны и магнитопаузы, а также некоторые вопросы физики магнитосферы и солнечной активности. Для решения этих задач сочетались тонкие измерения характеристик околоземной плазмы с низкочастотными измерениями в диапазоне частот менее 10 герц. Использовался режим «непосредственной передачи» в момент пересечения магнитопаузы. Для решения задач на «Прогнозе-8» установлена научная аппаратура, изготовленная в СССР, ЧССР, ПНР, Швеции.

КА «Прогноз-9» Запущен 1.07.83 года с космодрома Байконур. Параметры рабочей орбиты: высота в перигее – 361 км, высота в апогее – 727620 км, наклонение – 65,3 град, период обращения – 25,46 сут.
Научная программа в рамках международного проекта «Реликт» проводилась в следующем объеме:
картографирование небесной сферы в диапазоне волн 8 мм;
регистрация всплесков космического гамма-излучения в диапазоне энергий 20 кэВ - 1 МэВ;
измерение рентгеновского излучения Солнца в диапазоне энергий 2 - 160 кэВ;
измерение магнитных полей с напряженностью 0,2 - 60 гамм;
исследование ультрафиолетового излучения;
регистрация временных и спектральных характеристик солнечных рентгеновских всплесков и другие исследования.

КА «Прогноз-10» Запущен 26.04.1985 года с космодрома Байконур. Параметры рабочей орбиты: высота в перигее – 400 км, высота в апогее – 200000 км, наклонение – 65 град, период обращения – 4 сут.
Масса космического аппарата – 933 кг.
Научная программа выполнялась в рамках международного проекта «Интершок» . Основная цель – исследование структуры и характеристик ударной волны и магнитопаузы, возникающих при взаимодействии солнечного ветра с магнитосферой Земли. В ходе полета была получена важная информация о радиационной обстановке в околоземном пространстве.

Еще два аппарата серии «Прогноз» - КА «Прогноз-11»(Интербол-1) и КА «Прогноз-12» (Интербол-2), созданные на базе СО-М2 стали основой для реализации уникального международного проекта «Интербол», описание которого приводится ниже. КА «Прогноз-11» («Интербол-1») запущен с космодрома Плесецк 3 августа 1995 года. КА «Прогноз-12» («Интербол-2») запущен с космодрома Плесецк 29 августа 1996 года.

МИССИЯ «ИНТЕРБОЛ»

Реализация миссии «Интербол» (КА «Интербол –1» и «Интербол-2») явилась по признанию мировой научной общественности выдающимся вкладом в исследование физики околоземного пространства и солнечно-земных связей. Главной ее целью явилось изучение физических механизмов, которые ответственны за передачу энергии солнечного ветра в магнитосферу, ее накопление там и последующую диссипацию в хвосте и авроральных областях магнитосферы, в ионосфере и верхней атмосфере во время магнитосферных суббурь.
Уникальность проекта связана с тем, что, наряду с изучением глобальных, крупномасштабных явлений в околоземном космическом пространстве, исследуется тонкая, мелкомасштабная структура явлений, что возможно на основе сопоставления данных, полученных от основных аппаратов и их субспутников. Для реализации проекта «Интербол» предусмотрена организация одновременной работы четырех ИСЗ. Одна пара в составе основного КА «Интербол» и субспутника «Магион» , запускаемого вместе с основным, затем отделяемого от него, работает на высокоэллиптической орбите, апогей которой проходит через хвостовую область магнитосферы на расстоянии более 100 000 км от Земли, другая пара - на орбите с высотой апогея 20 000 км, пересекающей авроральную область магнитосферы Земли над овалом полярных сияний.
Основные спутники проекта «Интербол» – ИСЗ «Прогноз-М2» , на них установлены комплекты научной аппаратуры, выполняющей главные замеры параметров в соответствии с исследовательской программой.
Для разделения пространственных и временных вариаций физических параметров и исследований тонких процессов в околоземном космическом пространстве те же параметры, но с меньшей детальностью, измеряются на субспутниках, которые находятся от основных на расстояниях, сравнимых с масштабами пространственных вариаций исследуемых явлений. В качестве субспутников использованы КА серии «Магион» , произведенные в Чехии.

КОСМИЧЕСКИЕ АППАРАТЫ

Космические аппараты «Интербол-1» и «Интербол-2» по конструкции идентичны, отличаются только установленными на их борту комплексами научной и вспомогательной аппаратуры.
Основным конструктивно силовым агрегатом КА является герметичный приборный контейнер цилиндрической формы. Внутри него устанавливаются на двух рамах служебная аппаратура и электронные блоки ряда научных приборов. Снаружи крепятся 4 солнечные батареи, датчики Солнца, шар-баллоны с рабочим телом системы ориентации, кронштейны с газовыми двигателями, антенны для связи с Землей, а также верхняя рама, боковые рамы и проставка для установки научных приборов снаружи КА.
В состав бортовых систем и служебной аппаратуры входят: магистральный радиокомплекс (2 комплекта), система телеизмерений, программно-временная система, антенно-фидерная система (2 комплекта), система автономного управления, система управления ориентацией (2 комплекта), система электропитания, система терморегулирования, система исполнительных органов ориентации.
С целью существенного снижения электростатических и электромагнитных помех на КА применяются электромагнитно-чистые солнечные батареи (их фотопреобразователи покрыты с обеих сторон токопроводящим покрытием, электрически соединенным с корпусом КА) и металлизированная ЭВТИ, также электрически соединенная с корпусом.

УПРАВЛЕНИЕ ПОЛЕТОМ

В состав наземного комплекса управления (НКУ) входят Центр управления полетом ЦДКС (Евпатория, Украина), Центр обработки информации Научно-испытательного центра имени Г.Н.Бабакина (Химки), ЦУП КА научного и народнохозяйственного назначения «Рокот» (Москва), Главный баллистический центр ЦНИИМаш (Королев), Баллистический центр Института прикладной математики РАН. На участке выведения в составе комплекса управления работают Отдельные командно-измерительные комплексы ОКИК-10, -12. -04, -09, -13.
Во время орбитального полета с КА «Интербол-1» работают:
Комплекс «Квант-Д» ЦУП ЦДКС (Евпатория) с антеннами АДУ-1000 (K1, передающая), АДУ-1000 (К2 и К3 - приемные), П-2.500 (резервная передающая), П-400П (резервная передающая).
Комплекс «Квант-Д» совместно с комплексом «Сатурн-МСД» ОКИК-15 (Уссурийск/Галёнки) с антеннами П-200П (передающая), П-400 (приемная), П-2500 (приемно-передающая, резервная).
Комплекс «Квант-П» (2-й ствол) ОКИК-14 (Щелково) с антеннами П-200П (передающая) и КТНА-200 (приемная).
Наземный научный комплекс включает в себя центр обработки научной информации АКОНИ-Ц в ИКИ РАН, терминальную станцию ИКИ-РАН на ОКИК-16 (Евпатория), пункты приема информации в районе Тарусы и Медвежьих озер.
Управление аппаратами Магион осуществляется с чешского пункта управления в Панска-Вес, прием научной информации - там же и на российских пунктах в Медвежьих Озерах, Тарусе и Апатитах.
Общее руководство запуском и управлением КА «Интербол» осуществляет Государственная комиссия. Решением Государственной Комиссии создана Главная Оперативная Группа Управления (ГОГУ).

РЕАЛИЗАЦИЯ ПРОЕКТА

Первый КА проекта – «Интербол–1» (CO-M2 №512, Хвостовой зонд) с его субспутником Магион-4 запущен с пусковой установки 17П32-3 (317/3) космодрома Плесецк 3 августа 1995 года на орбиту с апогеем 193000 км и наклонением 62,8 градусов.
Второй КА – «Интербол-2» (CO-M2 №513, Авроральный зонд) с субспутником Магион-5 запущен с пусковой установки 17П32-3 (317/3) космодрома Плесецк 29 августа 1996 года на орбиту с апогеем 20000 км и наклонением 62,8 градусов.
Выведение КА «Интербол–1,-2» на рабочие орбиты осуществлено с помощью ракет-носителей «Молния». Стартовая масса РН с КА ~ 305500 кг. Сухой вес блока 2БЛ - 1200 кг, заправленного –7,0 тонн
Отделение субспутников производилось через 4 суток после старта.
Научные исследования проводились как в сеансах связи в режиме непосредственной передачи информации (НП), так и в автономном режиме. Научная аппаратура работала на всём витке орбиты, за исключением зоны радиационных поясов, в которых выключались приборы плазменного комплекса.

РЕЗУЛЬТАТЫ ЛКИ КОСМИЧЕСКИХ АППАРАТОВ СЕРИИ «ПРОГНОЗ»

Космические аппараты серии «Прогноз» вместе с установленными на них комплексами научной аппаратуры, совершенствующимися от спутника к спутнику, явились уникальной системой для исследования солнечной активности и ее влияния на околоземную среду, астрофизических исследований по изучению реликтового излучения в миллиметровом диапазоне, использованию в службах гелиогеофизической и радиационной безопасности экипажей пилотируемых космических комплексов и выполнения международных научных программ.
Особо следует отметить, что высокоапогейные спутники «Прогноз» дали обширный материал для службы радиационной безопасности пилотируемых космических комплексов: от­работана аппаратура для измерения радиационных характеристик галактических и солнечных космических лучей, разработан и изготовлен аппаратурный комплекс «Сосна», обеспе­чивающий информацией указанную службу. Спутник «Прогноз» осуществлял функцию патрульного аппарата, обеспечивающего информацией, необходимой для оперативной оценки радиационной обстановки для экипажей станций «Салют».
В период с апреля 1972 года по август 1996 года было проведено двенадцать безотказных запусков; все спутники полностью выполнили предусмотренные программы и превысили гарантированный срок работы:

ТЕХНИЧЕСКАЯ И ТЕХНОЛОГИЧЕСКАЯ НОВИЗНА

Первые эксперименты в области изучения процессов солнечной активности, осуществлённые в 60-е годы, показали необходимость создания специализированных спутников Земли с высокоапогейными орбитами, ориентацией на Солнце, длительным временем существования, обладающих возможностями проводить длительную непрерывную передачу данных в реальном времени. Создание универсальных спутников подобного типа представляло сложную научно- техническую задачу. Специальные требования, диктуемые необ­ходимостью постановки экспериментальных исследований солнечной активности и межпланетной среды, а также сменностью вновь создаваемой научной аппаратуры предопределили технические решения конструкции и систем спутника. Потребовалось создание принципиально новой конструкции спутников, их бортовой служебной аппаратуры, нового комплекса научных приборов, образующих в совокупности новую исследовательскую космическую систему. Эта система, разработанная, изготовленная и реализованная в течение 1969-2000 гг. получила название «Прогноз». Основной вклад в разработку и изготовление спутников «Прогноз» внесли коллектив специалистов НПО им. С.А.Лавочкина и завода «Вымпел».
В процессе работ по созданию космических аппаратов серии «Прогноз», особенно в 90-годах прошлого столетия, активно внедрялись новые технологии при наземной отработке и подготовке изделия к штатной работе. НПО им.С.А.Лавочкина первым в России начало доставлять на полигон аппараты в состоянии практически полной готовности к пуску. Так, спутники «Интербол-1,-2» и субспутники Магион-4,-5 прошли т.н. квазиполигонные испытания на предприятии, за счет чего удалось свести к минимуму проверки КА на космодроме.
Программа полета КА миссии «Интербол» была успешно выполнена с существенным превышением объема поставленных задач. Срок эксплуатации КА «Интербол-1,-2» превысил заданный по ТЗ соответственно в 5 и 2,5 раза. Это стало возможным благодаря надежной работе бортовых систем, четкой организации работы ГОГУ, а также заложенным в бортовое программное обеспечение возможностям адаптации к изменяющимся, и в том числе непредвиденным, условиям функционирования КА.
По мнению виднейших ученых за всю историю исследований солнечно-земных связей в Советском Союзе и России многоспутниковый проект «ИНТЕРБОЛ» стал одной из самых успешных миссий по изучению физических процессов в околоземном космическом пространстве.
В результате выполнения этого проекта собран уникальный по своему значению, объему и качеству экспериментальный материал, что стало возможным, в первую очередь, благодаря значительному, во много раз по сравнению с предыдущими исследованиями на спутниках серии «Прогноз», увеличению объема передаваемой с борта космических аппаратов научной информации и осуществлению одновременных многоспутниковых наблюдений как на близких расстояниях, так и в разнесенных областях магнитосферы Земли. Это предопределило и высокий уровень научных итогов проекта. По результатам выполненных исследований уже опубликовано более 500 работ, разнообразных по тематике и подходам к анализу данных измерений. Архив сосредоточенных в ИКИ РАН данных измерений проекта ИНТЕРБОЛ составляет в общей сложности около 300 Гбайт. Он открыт для мирового научного сообщества, и сегодня достаточно многие российские и зарубежные исследователи физики околоземного космического пространства используют в своих работах данные из этого архива.

Этот проект не только расширил наши знания о магнитосфере и об обтекающем ее солнечном ветре, но и выявил «слабые места» миссии и тем самым стимулировал дальнейшую разработку многоспутниковых методов. Так, например, с помощью «Интербола» было невозможно следить за развитием космических процессов в трехмерном пространстве. Из-за того, что измерения производились только в двух точках пространства, представление о структуре объекта и его движении можно было получить лишь для одного направления. Этот недостаток устранялся в миссии «Cluster» (European SpaceAgency, ESA) имеющей задачу производить измерения уже в четырех точках пространства четырьмя идентичными спутниками, образующими в пространстве правильный тетраэдр.

Изобретение относится к космической технике и может быть использовано в системах энергоснабжения космических аппаратов (КА). Батарея солнечная (БС) содержит панели и раму, многократно раскрываемые и складываемые синхронно. КА, рама и панели соединены между собой посредством шарнирных соединений (ШС). Все ШС соединены последовательно тросовой передачей со шкивами. Для многоразового перевода БС в раскрытое и сложенное положение предусмотрен двигатель, установленный в одном из ШС. Каждый ШС содержит приводные пружины, обеспечивающие полное раскрытие или складывание батареи солнечной, и запорное устройство, фиксирующее раскрытое положение БС, выполненное в виде подпружиненного крючка. Для управления запорными устройствами каждый крючок кинематически связан со шкивом системы синхронизации, установленным в соответствующем ШС. Техническим результатом изобретения является обеспечение многоразового раскрытия и складывания БС и ее фиксации в крайних положениях с заданной жесткостью. 5 ил.

Предлагаемое изобретение относится к космической технике, а именно к конструкциям солнечных батарей, и может быть использовано в системах энергосбережения космических аппаратов (КА).

Известно устройство отделения и раскрытия створок батареи солнечной космического аппарата (патент RU №24418170, B64G 1/44), содержащее раму, жестко закрепленную на валу электропривода и два пакета створок. Пакеты нижними створками закреплены на раме неподвижно, а средние створки связаны с нижней створкой и с верхней створкой шарнирно. В осях шарниров установлены взведенные пружины (торсионы), раскрывающие створки в рабочее положение.

Известна батарея солнечная космического аппарата (патент RU №2460676 С2, B64G 1/44). В состав батареи солнечной входят две панели, каждая из которых состоит из двух полупанелей, включающих шарнирно связанные между собой и последовательно собранные в пакет корневую, среднюю и крайнюю створки. Полупанели соединены между собой с одной стороны при помощи четырех подпружиненных прижимов, а с другой - четырьмя стяжками в опорных узлах. На створках попарно установлено по два кронштейна. Кронштейны, установленные на крайней створке, снабжены осями, которые взаимодействуют в процессе раскрытия панелей с профилированными выступами, выполненными на кронштейнах, установленных на корневой створке. Этим обеспечивается раскрытие панелей «рулонным» способом, при котором происходит отвод створок, исключающий возможность их соударения при раскрытии с аппаратурой КА.

Известна солнечная батарея (патент RU №2485026 С2, B64G 1/44), содержащая раму, верхние и нижние створки, попарно связанные между собой шарнирами, на оси которых закреплены торсионы, на других концах которых установлены кронштейны, в которых размещены механизмы взведения торсионов, кронштейны закреплены на торсионах с возможностью вращения и установлены в исходном положении симметрично оси торсионов, расположение которых обеспечивает механизмами взведения закручивание торсионов только в одну сторону, обеспечивая раскрытие солнечной батареи.

Наиболее близкой к заявленной конструкции (прототипом) является солнечная батарея (патент RU №2258640 C1, B64G 1/44), содержащая панели, складываемые по схеме «гармошка», и раму с приводным механизмом. Панели связаны между собой через раму с КА посредством приводных пружин и тросовой передачи со шкивами. Приводной механизм имеет двигатель и шкив, соединенный тросовой передачей с промежуточным шкивом. Двигатель и шкив закреплены на космическом аппарате при помощи кронштейна. Подвижный элемент двигателя скреплен с рамой.

Недостатками вышеперечисленных конструкций являются:

Неспособность конструкции многократно принимать раскрытое и сложенное положение;

Многократно фиксировать панели и раму в сложенном и раскрытом положении и снимать фиксацию для перевода в раскрытое и сложенное положение.

Задачей заявляемого изобретения является устранение недостатков известных аналогов.

Поставленная задача решается тем, что солнечная батарея космического аппарата, содержащая панели и раму, соединенные между собой через раму с космическим аппаратом, с расположенными по краям соосными шарнирными соединениями со шкивами, попарно соединенными тросовой передачей, согласно заявляемому изобретению имеет двигатель, установленный в одном из шарнирных соединений, способный многократно переводить батарею солнечную из сложенного положения в раскрытое положение и обратно с постоянной скоростью движения, и приводные пружины, входящие в состав каждого шарнирного соединения, способные вращать панели и раму как в сторону раскрытия, так и в сторону складывания солнечной батареи, при этом первую половину пути в процессе раскрытия или складывания солнечной батареи приводные пружины создают вращение в противоположном направлении вращения подвижного элемента двигателя, а вторую половину пути - создают вращение в направлении вращения подвижного элемента двигателя, обеспечивая полное раскрытие или складывание батареи солнечной в крайних ее положениях, причем в каждом шарнирном соединении, соединяющем панели между собой, а также панель с рамой, установлены запорные устройства, выполненные в виде подпружиненного крючка, зацепляющегося за раскрываемый элемент в раскрытом положении, который вводится в зацепление или выводится из зацепления, взаимодействуя со шкивом системы синхронизации, установленным в том же шарнирном соединении, в процессе раскрытия или складывания батареи солнечной для обеспечения заданной жесткости в раскрытом положении, в свою очередь в шарнирном соединении, соединяющем раму и космический аппарат, установлено запорное устройство, выполненное в виде подпружиненного крючка, зацепляющегося за раскрываемый (складываемый) элемент, как в сложенном положении, так и в раскрытом положении батареи солнечной, который выводится из зацепления или вводится в зацепление, взаимодействуя с подвижным элементом двигателя в процессе раскрытия или складывания батареи солнечной для обеспечения заданной жесткости в раскрытом или сложенном положении.

Конструкция батареи солнечной поясняется чертежами, где на фиг. 1 изображена батарея солнечная в сложенном положении, установленная на космическом аппарате. На фиг. 2 изображена батарея солнечная в раскрытом положении, установленная на космическом аппарате. На фиг. 3 и фиг. 4 показаны увеличенные виды раскрытой батареи солнечной по стрелке В и Г. На фиг. 5 показаны увеличенные выносные элементы Д и Е.

Техническим результатом предлагаемого изобретения является обеспечение многоразового раскрытия и складывания батареи солнечной и ее фиксации в крайних положениях с заданной жесткостью.

Указанный технический результат предлагаемого изобретения достигается тем, что:

Солнечная батарея, содержащая панели 1 и раму 2, раскрываемые (складываемые) синхронно и соединенные между собой через раму с космическим аппаратом 3, имеет расположенные по краям соосные шарнирные соединения 4 со шкивами 5, соединенными тросовой передачей 6, снабжена двигателем 7, который имеет кинематическую связь со шкивами 5 и способен многократно переводить батарею солнечную из сложенного положения в раскрытое положение и обратно с заданной скоростью движения, а также закрепленный с помощью кронштейна 10 неподвижно относительно космического аппарата, причем подвижный элемент двигателя 8 скреплен с рамой 2 с зазором, дающим возможность холостого поворота подвижного элемента двигателя относительно рамы на угол α;

Приводные пружины 9, входящие в состав каждого шарнирного соединения 4, способны вращать панели 1 и раму 2 как в сторону раскрытия, так и в сторону складывания батареи солнечной, при этом первую половину пути в процессе раскрытия или складывания приводная пружина 9 создает вращение в противоположном направлении вращения подвижного элемента двигателя 8, а вторую половину пути - создает вращение в направлении вращения подвижного элемента двигателя 8, обеспечивая полное раскрытие или складывание батареи солнечной;

Запорные устройства, установленные в каждом шарнирном соединении, соединяющем между собой панели 1 и/или панель 1 с рамой 2, выполнены в виде подпружиненного крючка 11, поворачивающегося вокруг оси 12, установленной неподвижно относительно панели 1 (рамы 2), который взаимодействует со шкивом 5, установленным в том же шарнирном соединении 4, соосно с ним, с возможностью холостого вращения относительно присоединяемой панели 1 (рамы 2) на угол β, и зацепляется за ось 13, установленную неподвижно относительно присоединяемой панели 1 (рамы 2);

Запорное устройство, установленное в шарнирном соединении 4, соединяющем раму 2 и космический аппарат 3, выполнено в виде подпружиненного крючка 14, который поворачивается вокруг оси 15, установленной неподвижно относительно космического аппарата 3, и взаимодействует с подвижным элементом двигателя 8, зацепляясь за ось 16, установленную неподвижно относительно панели 1, соединяемой с рамой 2, в сложенном положении батареи солнечной и за ось 17, установленную неподвижно относительно рамы 2 в раскрытом положении батареи солнечной.

Процесс многоразового раскрытия и складывания батареи солнечной представляет собой следующее:

1. Раскрытие - синхронное, участвует как двигатель 7, так и приводные пружины 9, установленные в каждом шарнирном соединении 4.

Батарея солнечная находится в сложенном положении. Панели 1 и рама 2 сложены и закреплены на космическом аппарате 3 с помощью замков 18. После срабатывания спускового устройства 19 замки 18 освобождают панели 1 и раму 2, которые остаются в исходном положении и продолжают удерживаться приводными пружинами 9, установленными в каждом шарнирном соединении 4, работающими на складывание батареи солнечной, и запорным устройством, установленным в шарнирном соединении 4 между космическим аппаратом 3 и рамой 2. После начала работы двигателя 7 его подвижный элемент 8 поворачивается в зазорах, обеспечивающих холостой ход относительно рамы 2, в направлении раскрытия, при этом подпружиненный крючок 14 запорного устройства выходит из зацепления с осью, установленной на панели 1, связанной с рамой 2. После того, как подвижный элемент двигателя 8 выбирает зазор холостого хода, и крючок 14 полностью освобождает ось, он входит в зацепление с рамой 2, и конструкция начинает синхронно раскрываться под действием двигателя 7 и тросовой передачи. При этом двигатель 7 половину пути обеспечивает постоянную скорость раскрытия, преодолевая момент сопротивления приводных пружин 9, а вторую половину пути обеспечивает постоянную скорость раскрытия, сдерживая батарею солнечную, раскрываемую под действием момента, созданного приводными пружинами 9. Во время раскрытия шкивы 5, установленные с возможностью холостого хода и связанные с крючками 14 запорных устройств, установленных в шарнирных соединениях 4 между панелями 1, панелью 1 и рамой 2, последовательно поворачиваются относительно панелей 1 и рамы 2, на которых они установлены, и обеспечивают возможность крючкам 14 во всех запорных устройствах в раскрытом положении войти в зацепление за ось.

2. Складывание (повторное складывание) - синхронное, учувствует как двигатель 7, так и приводные пружины 9.

Батарея солнечная находится в раскрытом положении и удерживается приводными пружинами 9 и запорными устройствами, установленными в каждом шарнирном соединении 4. После начала работы двигателя 7 его подвижный элемент 8 поворачивается в зазорах, обеспечивающих холостой ход относительно рамы 2, в сторону складывания, при этом крючок 14 запорного устройства выходит из зацепления с осью, установленной неподвижно относительно рамы 2. После того как подвижный элемент 8 двигателя выбирает зазор холостого хода и крючок 14 полностью освобождает ось, он входит в зацепление с рамой и конструкция начинает синхронно складываться под действием двигателя 7 и тросовой передачи. При этом двигатель 7 половину пути обеспечивает постоянную скорость раскрытия, преодолевая момент сопротивления приводных пружин 9, а вторую половину пути обеспечивает постоянную скорость раскрытия, сдерживая батарею солнечную, раскрываемую под действием момента созданного приводными пружинами 9. Во время складывания шкивы 5, установленные с возможностью холостого хода и связанные с крючками 14 запорных устройств, установленных в шарнирных соединениях 4 между панелями 1, панелью 1 и рамой 2, последовательно поворачиваются относительно панелей 1 и рамы 2, на которых они установлены, и взаимодействуя с крючками 14 запорных механизмов панелей 1 и рамы 2, выводят их из зацепления с осью. Сложившись панели 1, упираются в замки на корпуса космического аппарата 3 и удерживаются приводными пружинами 9, установленными в каждом шарнирном соединении 4. В этот момент подвижный элемент 8 двигателя поворачивается в зазорах, обеспечивающих холостой ход относительно рамы 2, при этом крючок 14 запорного устройства входит в зацепление с осью, установленной на панели 1, связанной с рамой 2. Батарея солнечная находится в сложенном положении и удерживается приводными пружинами 9, установленными в каждом шарнирном соединении 4, и запорным устройством, установленным в шарнирном соединении 4 между КА 3 и рамой 2.

Повторное раскрытие - синхронное, участвует как двигатель 7, так и приводные пружины 9, установленные в шарнирных соединениях 4.

Батарея солнечная находится в сложенном положении и, упираясь на замки, установленные на космическом аппарате 3, удерживается приводными пружинами 9, установленными в каждом шарнирном соединении 4, работающими на складывание батареи солнечной, и запорным устройством, установленным в шарнирном соединении 4 космического аппарата 3 и рамы 2. После начала работы двигателя 7 его подвижный элемент 8 поворачивается в зазорах, обеспечивающих холостой ход относительно рамы 2, в сторону раскрытия, при этом крючок 14 запорного устройства выходит из зацепления с осью, установленной на панели 1, связанной с рамой 2. После того как подвижный элемент 8 двигателя выбирает зазор холостого хода и крючок 14 полностью освобождает ось, он входит в зацепление с рамой 2, и конструкция начинает синхронно раскрываться под действием двигателя 7 и системы синхронизации. При этом двигатель 7 половину пути обеспечивает постоянную скорость раскрытия, преодолевая момент сопротивления приводных пружин 9, а вторую половину пути обеспечивает постоянную скорость раскрытия, сдерживая батарею солнечную, раскрываемую под действием момента, созданного приводными пружинами 9. Во время раскрытия шкивы 5, установленные с возможностью холостого хода и связанные с крючками 14 запорных устройств, установленных в шарнирных соединениях 4 между панелями 1, панелью 1 и рамой 2, последовательно поворачиваются относительно панелей 1 и рамы 2, на которых они установлены, и обеспечивают возможность крючкам 14 во всех запорных устройствах в раскрытом положении войти в зацепление за ось.

Во время работы в составе космического аппарата батарея солнечная может принимать следующие конфигурации:

Конфигурация в транспортировочном положении:

все панели батареи солнечной сложены и удерживаются на космическом аппарате с помощью замков;

Конфигурация в раскрытом положении (многократно):

все панели батареи солнечной раскрыты и удерживаются с помощью приводных пружин и запорных устройств.;

Конфигурация в сложенном положении (многократно):

все панели батареи солнечной сложены и удерживаются с помощью приводных пружин и запорных устройств.

Солнечная батарея космического аппарата, содержащая панели и раму, соединенные между собой через раму с космическим аппаратом, с расположенными по краям соосными шарнирными соединениями со шкивами, попарно соединенными тросовой передачей, отличающаяся тем, что солнечная батарея имеет двигатель, установленный в одном из шарнирных соединений, способный многократно переводить батарею солнечную из сложенного положения в раскрытое положение и обратно с постоянной скоростью движения, и приводные пружины, входящие в состав каждого шарнирного соединения, способные вращать панели и раму как в сторону раскрытия, так и в сторону складывания солнечной батареи, при этом первую половину пути в процессе раскрытия или складывания солнечной батареи приводные пружины создают вращение в противоположном направлении вращения подвижного элемента двигателя, а вторую половину пути - создают вращение в направлении вращения подвижного элемента двигателя, обеспечивая полное раскрытие или складывание батареи солнечной в крайних ее положениях, причем в каждом шарнирном соединении, соединяющем панели между собой, а также панель с рамой, установлены запорные устройства, выполненные в виде подпружиненного крючка, зацепляющегося за раскрываемый элемент в раскрытом положении, который вводится в зацепление или выводится из зацепления, взаимодействуя со шкивом системы синхронизации, установленным в том же шарнирном соединении, в процессе раскрытия или складывания батареи солнечной, для обеспечения заданной жесткости в раскрытом положении, в свою очередь в шарнирном соединении, соединяющем раму и космический аппарат, установлено запорное устройство, выполненное в виде подпружиненного крючка, зацепляющегося за раскрываемый/складываемый элемент как в сложенном положении, так и в раскрытом положении батареи солнечной, который выводится из зацепления или вводится в зацепление, взаимодействуя с подвижным элементом двигателя в процессе раскрытия или складывания батареи солнечной для обеспечения заданной жесткости в раскрытом или сложенном положении.

Похожие патенты:

Изобретение относится к управлению угловым движением космического аппарата (КА) с силовыми гироскопами (СГ) и солнечными батареями (СБ), установленными на взаимно противоположных сторонах КА.

Изобретение относится к управлению относительным движением космических аппаратов (КА), преимущественно с одноосно вращающимися панелями солнечных батарей (СБ). В процессе полета ориентированный по местной вертикали КА непрерывно вращается по курсу, а панели СБ синхронно и непрерывно поворачиваются нормалью к Солнцу.

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Согласно способу при совпадении направления на Солнце с плоскостью орбиты КА совмещают строительную ось КА, отвечающую его максимальному моменту инерции, с этим направлением.

Группа изобретений относится к области сбора, преобразования и передачи солнечной энергии потребителям. Система содержит, в качестве основных, такие элементы как первичное (2), промежуточные (4, 5) и передающее (10) зеркала, а также энергетический модуль (8).

Изобретение относится к бортовым системам электропитания (СЭП), преимущественно низкоорбитальных космических аппаратов (КА) с трехосной ориентацией. СЭП содержит панели солнечной батареи с устройством изменения их ориентации, размещенные с внешней стороны боковых сотопанелей приборного контейнера.

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ), имеющих положительную выходную мощность своей тыльной поверхности. Способ включает измерение высоты (Н) околокруговой орбиты КА и угол (ε) между направлением на Солнце и геоцентрическим радиус-вектором КА. При нахождении ε в определенном интервале, зависящем от Н, от углов (f1, f2) полураствора зон чувствительности рабочей и тыльной поверхностей СБ и от максимального значения угла (f1*) между нормалью к рабочей поверхности СБ и направлением на Солнце, - разворачивают СБ в положение, при котором излучение Земли поступает на СБ вне указанных зон чувствительности. Это положение отвечает совмещению указанной нормали с плоскостью, содержащей направление на Солнце и радиус-вектор КА. При этом угол (ρ) между этой нормалью и радиус-вектором КА лежит в интервале, зависящем от ε, f1, f2, f1*, Н и угла (γ) между направлениями от КА в надир и на ближайшую к КА точку терминатора. В данном положении измеряют напряжение, ток и выходную мощность СБ с учетом углов ε и ρ. Технический результат состоит в минимизации влияния излучения Земли при определении выходной мощности СБ. 1 ил.

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение и измерение тока от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ. Определяют текущее значение угла падения (α) солнечного излучения на поверхность СБ. При значении α в заданном диапазоне, определяемом характеристиками оптического защитного покрытия рабочей поверхности СБ и геометрическими параметрами её зоны чувствительности, измеряют текущее значение тока (I) от СБ. Выходной ток СБ определяют по величине I с поправочным коэффициентом, зависящим от α и k - абсолютного показателя преломления защитного покрытия СБ. Технический результат состоит в обеспечении учета влияния преломления и отражения солнечного излучения оптическим защитным покрытием на измеряемый выходной ток СБ. 1 ил.

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение, измерение напряжения (U) и тока (I) от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ, и определение выходной мощности СБ. При этом разворачивают КА и СБ до достижения минимальной освещенности рабочей поверхности СБ отраженным от поверхности КА солнечным излучением при А < ε, где А – угол между вектором нормали к рабочей поверхности СБ и вектором направления на Солнце; ε - угол полураствора так называемой зоны чувствительности этой рабочей поверхности. В дальнейшем измеряют значения U, I и А, определяя максимальную выходную мощность СБ как U. I/cos(А). Технический результат состоит в снижении влияния отраженного от поверхности КА излучения на измеряемую выходную мощность СБ. 1 ил.

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает поворот панели СБ в положения, при которых рабочая поверхность СБ освещена Солнцем, измерение значений тока от СБ, сравнение определяемого параметра, характеризующего текущее состояние панели СБ, с задаваемыми значениями и контроль текущего состояния панели СБ по результатам сравнения. Дополнительно измеряют вектор направления на Солнце в связанной с КА системе координат, определяют угол выставки СБ в ее текущее дискретное положение, определяют текущие значения угла падения солнечного излучения на поверхность защитного покрытия СБ, выполняют поворот СБ в не менее чем два выбранных дискретных положения СБ, измеряют значение тока от СБ. Состояние панели СБ оценивают по состоянию ее оптического защитного покрытия, характеризуемому текущим значением его абсолютного показателя преломления, определяемым по значениям угла падения солнечного излучения на поверхность защитного покрытия СБ и значениям тока. Техническим результатом изобретения является обеспечение оценки текущего значения абсолютного показателя преломления защитного покрытия СБ. 1 ил.

Изобретение относится к конструкции раскрывающихся солнечных батарей (СБ) космических аппаратов. СБ имеет гибкую плёночно-сотовую структуру, соты которой выполнены в виде четырех- или шестигранных пирамид. Пирамиды соединены друг с другом по ребрам своих воображаемых оснований. Фотоэлектрические преобразователи размещены на боковых гранях пирамид, принимая солнечное излучение со стороны указанных оснований. В развернутом положении СБ может иметь сферическую конфигурацию, в которой вершины всех пирамид сходятся в центре сферы. На рабочей поверхности СБ м.б. размещена защитная пленка со специальными свойствами. Сотовая конструкция СБ в развернутом положении м.б. ликвидирована путём ее нагрева до температуры испарения пленки или выше. Технический результат изобретения состоит в повышении эффективности СБ путём увеличения коэффициента поглощения за счет увеличения количества переотражений света от фотоприемного слоя внутри пирамид, а также – в снижении зависимости коэффициента поглощения от угла падения солнечного излучения и в упрощении технологии изготовления и эксплуатации СБ. 14 з.п. ф-лы, 5 ил.

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) с инерционными исполнительными органами включает ориентацию нормали к рабочей поверхности СБ на Солнце, измерение значений тока от СБ и контроль текущего состояния СБ по результатам сравнения текущих измеренных значений тока и значений тока, измеренных на предыдущих этапах полета. Контроль состояния панели СБ выполняют по результатам сравнения полученных значений тока от СБ, каждое из которых умножено на отношение квадратов определенного на момент соответствующего измерения тока текущего значения расстояния от Земли до Солнца и среднего расстояния от Земли до Солнца. Техническим результатом изобретения является повышение точности оценки текущей эффективности СБ, обеспечение одинаковых условий замера тока от СБ на фоне штатного полета КА в ориентации, при которой суммарный внешний возмущающий момент за виток достигает минимального значения.

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает ориентацию рабочей поверхности СБ на Солнце, измерение значений тока от СБ, контроль текущего состояния СБ по результатам сравнения текущих измеренных значений тока и значений тока, измеренных на предыдущих этапах полета. Дополнительно поддерживают орбитальную ориентацию КА, при которой ось вращения СБ перпендикулярна плоскости орбиты и нормаль к рабочей поверхности СБ в задаваемом дискретном положении направлена в зенит. Последовательно разворачивают СБ в дискретные положения, в которых значение угла между нормалью к рабочей поверхности СБ и направлением на Солнце составляет величину менее фиксированного значения, измеряют значения угла между направлением на Солнце и плоскостью орбиты КА на моменты прохождения подсолнечной точки витков орбиты. Измеряют ток от СБ в момент прохождения подсолнечной точки витка орбиты, на котором измеряемое значение угла достигает локального минимума, определяют текущее значение расстояния от Земли до Солнца. Техническим результатом изобретения является повышение эффективности контроля состояния СБ КА.

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает разворот СБ относительно направления на Солнце, измерение значений тока от СБ, сравнение измеренных значений тока с задаваемыми значениями и контроль текущего состояния панели СБ по результатам сравнения. Дополнительно для каждой структурной группы фотоэлементов панели СБ поворачивают СБ относительно КА в задаваемое исходное положение, строят задаваемую исходную ориентацию КА и выполняют его поворот вокруг задаваемого вектора поворота до прохождения положений, в одном из которых все фотоэлементы группы освещены Солнцем, а в другом - затенены от Солнца корпусом КА. В процессе поворота КА непрерывно измеряют ток от СБ и определяют параметры ориентации КА. Поворачивают СБ относительно КА в другое задаваемое исходное положение и повторяют вышеуказанные операции. После выполнения операций для всех структурных групп фотоэлементов панели СБ сравнивают измеренные значения токов от СБ с их расчетными значениями. По результатам сравнения определяют работоспособность групп фотоэлементов. Техническим результатом изобретения является обеспечение определения работоспособности конкретных структурных групп фотоэлементов панели СБ. 2 ил.

Использование: в области электротехники в автономных системах электропитания (СЭП) космических аппаратов (КА). Технический результат - повышение надежности эксплуатации КА путем ограничения величины кратковременного понижения выходного напряжения системы электропитания при отказе элементов, находящихся в «горячем» резерве. Согласно способу питания нагрузки постоянным током в автономной системе электропитания космического аппарата, содержащей солнечную батарею, подключенную к нагрузке, из «n» единичных нагрузок, включенных параллельно, через стабилизированный преобразователь напряжения и выходной фильтр, аккумуляторные батареи, подключенные через разрядные преобразователи к входу выходного фильтра, зарядные преобразователи, силовые цепи между выходом выходного фильтра и единичными нагрузками проектируют с сопротивлениями исходя из соотношения:ρ⋅l⋅j/Iн≥R≥Uн / Iкз.макс, где Uн - напряжение на выходе автономной системы электропитания, В; Iн - номинальный ток единичной нагрузки, А; ρ - удельное сопротивление, Ом⋅мм2/м; l - длина силовой цепи между выходом выходного фильтра и единичной нагрузкой, м; j - выбранная плотность тока, А/мм2; Iкз.макс - допустимый максимальный кратковременный ток короткого замыкания в цепи единичной нагрузки, А. Кроме того, выходные фильтры автономной системы электропитания рассчитывают с учетом допустимого кратковременного тока короткого замыкания. 1 з.п. ф-лы, 1 ил.

Изобретение относится к космической технике и может быть использовано в системах энергоснабжения космических аппаратов. Батарея солнечная содержит панели и раму, многократно раскрываемые и складываемые синхронно. КА, рама и панели соединены между собой посредством шарнирных соединений. Все ШС соединены последовательно тросовой передачей со шкивами. Для многоразового перевода БС в раскрытое и сложенное положение предусмотрен двигатель, установленный в одном из ШС. Каждый ШС содержит приводные пружины, обеспечивающие полное раскрытие или складывание батареи солнечной, и запорное устройство, фиксирующее раскрытое положение БС, выполненное в виде подпружиненного крючка. Для управления запорными устройствами каждый крючок кинематически связан со шкивом системы синхронизации, установленным в соответствующем ШС. Техническим результатом изобретения является обеспечение многоразового раскрытия и складывания БС и ее фиксации в крайних положениях с заданной жесткостью. 5 ил.

Это фотоэлектрические преобразователи - полупроводниковые устройства, преобразующие солнечную энергию в постоянный электрический ток. Проще говоря, это основные элементы устройства, которое мы называем «солнечными батареями». С помощью таких батарей на космических орбитах работают искусственные спутники Земли. Делают такие батареи у нас в Краснодаре - на заводе «Сатурн». Руководство завода пригласило автора этого блога посмотреть на производственный процесс и рассказать о нем у себя в дневнике.

1. Предприятие в Краснодаре входит в структуру Федерального космического агентства, но владеет «Сатурном» компания «Очаково», которая в буквальном смысле спасла это производство в 90-е годы. Владельцы «Очаково» выкупили контрольный пакет акций, который чуть было не ушел к американцам. «Очаково» вложила сюда большие средства, закупила современное оборудование, сумела удержать специалистов и теперь «Сатурн» - один из двух лидеров на российском рынке производства солнечных и аккумуляторных батарей для нужд космической отрасли - гражданской и военной. Вся прибыль, которую получает «Сатурн», остается здесь, в Краснодаре, и идет на развитие производственной базы.

2. Итак, всё начинается здесь - на участке т.н. газофазной эпитаксии. В этом помещении стоит газовый реактор, в котором на подложке из германия в течение трех часов выращивается кристаллический слой, который будет служить основой для будущего фотоэлемента. Стоимость такой установки - около трех миллионов евро.

3. После этого подложке предстоит пройти еще долгий путь: на обе стороны фотоэлемента нанесут электрические контакты (причем, на рабочей стороне контакт будет иметь «рисунок-гребенку», размеры которой тщательно рассчитываются, чтобы обеспечить максимальное прохождение солнечного света), на подложке появится просветляющее покрытие и т.д. - всего более двух десятков технологических операций на различных установках, прежде чем фотоэлемент станет основой солнечной батареи.

4. Вот, например, установка фотолитографии. Здесь на фотоэлементах формируются «рисунки» электрических контактов. Машина производит все операции автоматически, по заданной программе. Здесь и свет соответствующий, который не вредит светочувствительному слою фотоэлемента - как раньше, в эпоху аналоговой фотографии, мы пользовались «красными» лампами.

5. В вакууме установки напыления с помощью электронного луча наносятся электрические контакты и диэлектрики, а также наносятся просветляющие покрытия (они увеличивают ток, вырабатываемый фотоэлементом на 30%).

6. Ну вот, фотоэлемент готов и можно приступать к сборке солнечной батареи. К поверхности фотоэлемента припаиваются шины, чтобы потом соединить их друг с другом, а на них наклеивается защитное стекло, без которого в космосе, в условиях радиации, фотоэлемент может не выдержать нагрузок. И, хотя толщина стекла всего 0,12 мм, батарея с такими фотоэлементами будет долго работать на орбите (на высоких орбитах больше пятнадцати лет).

7. Электрическое соединение фотоэлементов между собой осуществляется серебряными контактами (их называют шинками) толщиной всего 0,02 мм.

8. Чтобы получить нужное напряжение в сети, вырабатываемое солнечной батареей, фотоэлементы соединяются последовательно. Вот так выглядит секция последовательно соединенных фотоэлементов (фотоэлектрических преобразователей - так правильно).

9. Наконец, солнечная батарея собрана. Здесь показана только часть батареи – панель в формате макета. Таких панелей на спутнике может быть до восьми, в зависимости от того, какая нужна мощность. На современных спутниках связи она достигает 10 кВт. Такие панели будут смонтированы на спутнике, в космосе они раскроются, как крылья и с их помощью мы будем смотреть спутниковое телевидение, пользоваться спутниковым интернетом, навигационными системами (спутники «Глонасс» используют краснодарские солнечные батареи).

10. Когда космический аппарат освещается Солнцем, вырабатываемая солнечной батареей электроэнергия питает системы аппарата, а избыток энергии запасается в аккумуляторной батарее. Когда космический аппарат находится в тени от Земли, аппаратом используется электроэнергия, запасенная в аккумуляторной батарее. Никель-водородная батарея, обладая высокой энергоемкостью (60 Вт ч/кг) и практически неисчерпаемым ресурсом, широко используется на космических аппаратах. Производство таких батарей - еще одна часть работы завода «Сатурн». На этом снимке сборку никель-водородной аккумуляторной батареи производит кавалер медали ордена «За заслуги перед Отечеством» II степени Анатолий Дмитриевич Панин.

11. Участок сборки никель-водородных аккумуляторов. Начинка аккумулятора подготавливается к размещению в корпусе. Начинка - это положительные и отрицательные электроды, разделённые сепараторной бумагой - в них и происходит преобразование и накопление энергии.

12. Установка для электронно-лучевой сварки в вакууме с помощью которой изготавливается корпус аккумулятора из тонкого металла.

13. Участок цеха, где корпуса и детали аккумуляторов испытываются на воздействие повышенного давления. В связи с тем, что накопление энергии в аккумуляторе сопровождается образованием водорода, и давление внутри аккумулятора повышается, испытания на герметичность - неотъемлемая часть процесса изготовления аккумуляторов.

14. Корпус никель-водородного аккумулятора - очень важная деталь всего устройства, работающего в космосе. Корпус рассчитан на давление 60 кг·с/см 2 , при испытаниях разрыв произошел при давлении 148 кг·с/см 2 .

15. Проверенные на прочность аккумуляторы заправляют электролитом и водородом, после чего они готовы к работе.

16. Корпус никель-водородной аккумуляторной батареи изготавливается из специального сплава металлов и должен быть механически прочным, легким и обладать высокой теплопроводностью. Аккумуляторы устанавливаются в ячейки и между собой не соприкасаются.

17. Аккумуляторы и собранные из них батареи подвергаются электрическим испытаниям на установках собственного производства. В космосе уже невозможно будет ничего поправить и заменить, поэтому здесь тщательно испытывают каждое изделие.

18. Вся космическая техника подвергается испытаниям на механические воздействия с помощью вибрационных стендов, которые имитируют нагрузки при выведении космического аппарата на орбиту.

19. В целом завод «Сатурн» произвел самое благоприятное впечатление. Производство хорошо организовано, цеха чистые и светлые, народ работает квалифицированный, общаться с такими специалистами - одно удовольствие и очень интересно человеку, хоть в какой-то степени интересующемуся нашим космосом. Уезжал с «Сатурна» в отличном настроении - всегда приятно посмотреть у нас на место, где не занимаются пустой болтовней и не перекладывают бумажки, а делают настоящее, серьезное дело, успешно конкурируют с такими же производителями в других странах. Побольше бы в России такого.

Запуск аппарата, получившего название Solar Probe Plus, состоится летом 2018 года. Он выйдет на орбиту Солнца в 2021 году и совершит 24 полных оборота. Зонд будет двигаться по вытянутой орбите. Ближайшее расстояние между ним и звездой составит 6,2 млн км. Это абсолютный рекорд: самая близкая дистанция, на которую к Солнцу подходили искусственные аппараты, была больше в семь раз. Кроме того, это расстояние почти в 10 раз меньше, чем расстояние между Солнцем и ближайшей к нему планетой — Меркурием.

Предложение отправить аппарат к звезде впервые появилось в США в 1958 году. Спустя почти 50 лет — в 2005 году — NASA объявило изучение атмосферы Солнца флагманским проектом и пояснило, что миссия ждёт воплощения и «является важнейшим приоритетом (агентства. — RT ) при учёте ресурсов». С самого начала за создание необходимого оборудования взялась Лаборатория прикладной физики университета Джонса Хопкинса. На специалистов организации легли заботы о том, чтобы разработать научные приборы, которые позволят исследователям ответить на главные вопросы об атмосфере Солнца. В проекте примут участие и другие научно-исследовательские центры. Это несколько лабораторий NASA, Калифорнийский технологический институт, Калифорнийский университет в Лос-Анджелесе и другие.

Давние загадки

Учёных интересуют два основных вопроса, на которые так и не смогли однозначно ответить предыдущие исследования. Первый из них: почему солнечная корона горячее, чем его видимая поверхность? Температура поверхности Солнца составляет несколько тысяч градусов по Цельсию, температура короны же может достигать миллионов градусов. Второй вопрос: за счёт чего ускоряется солнечный ветер — поток частиц, которые вырываются из короны со скоростью 300-1200 километров в секунду? Ответы на них помогут разобраться во вполне земных явлениях. Дело в том, что солнечный ветер вызывает магнитные бури и участвует в формировании полярных сияний. Процессы, которые происходят в атмосфере Солнца, могут нарушать работу энергосистем, спутниковых систем и летательных аппаратов на Земле.

Сформулировать эти вопросы помогли наблюдения астрономов и работа астрофизиков. Однако ответить на них можно, только изучив эти явления с близкого, пусть и по космическим меркам, расстояния. Аппарат, для которого в 2014 году начался этап строительства, запустят к Солнцу летом 2018 года. Сейчас же к концу подходит его сборка.

«Solar Probe Plus подлетит к Солнцу ближе, чем любой другой аппарат, и почти в 10 раз ближе, чем Меркурий, что диктует множество технических сложностей, с которыми мы никогда ещё не сталкивались, — пояснял перед началом этапа сборки Эндрю Дрисман, управляющий проектом в Лаборатории прикладной физики. — И с точки зрения поиска способов сделать аппарат, который выдержит условия в такой близости от Солнца, и с точки зрения сбора данных идея постройки функционального зонда такого рода мучила инженеров и учёных десятки лет. Но наконец мы подошли ещё на шаг ближе к тому, чтобы воплотить её в реальность».

Потрогать Солнце и не обжечься

Благодаря материалам и щиту из углепластика аппарат сможет выдерживать температуры почти до 1400 градусов по Цельсию. Приборы на борту смогут измерять электромагнитное поле Солнца, скорость, плотность и температуру ветра, а также его структуру. Установленный на зонде телескоп сможет передавать снимки явлений, происходящих в солнечной короне. Кроме процесса нагрева короны и движения частиц в ней, исследователи надеются изучить взаимодействие между слоями атмосферы звезды.

Стоит отметить, что звёздные ветры — истечение плазмы из светил — пронизывают значительную часть космического пространства. По этой причине изучение Солнца поможет учёным продвинуться и в исследовании атмосферы других звёзд. Однако любопытно уже и то, что миссия, по словам Лики Гахатакурты из NASA, впервые позволит жителям Земли «потрогать, попробовать на вкус и понюхать Солнце».

Рекомендуем почитать

Наверх