Названия алкенов. Общая формула алкенов

Озеленение 25.09.2019
Озеленение

Алкены вступают в разнообразные реакции, в которых образуются соединения других классов. Поэтому алкены являются важными интер-медиатами в органическом синтезе. При синтезе многих типов веществ бывает полезно получить вначале алкен и уже его превращать в требуемое соединение.

Все реакции алкенов можно условно разделить на две группы. Одну из них образуют протекающие в две стадии реакции электрофильного присоединения, другую - все прочие реакции. Мы начнем ниже рассмотрение со второй группы реакций.

Гидрирование

Алкены реагируют с газообразным водородом в присутствии катализаторов (как правило, благородных металлов). Два атома водорода присоединяются при этом по двойной связи алкена и образуется алкан. Эта реакция подробно разбиралась в гл. 3. Приведем еще два примера:

Озонолиз

Эта реакция необычна в том отношении, что в ней происходит полный разрыв двойной углерод-углеродной связи и расщепление углеродного скелета молекулы на две части. Алкен обрабатывают озоном, а затем цинковой пылью. В результате молекула алкена расщепляется по двойной связи и образуется две молекулы альдегида и (или) кетона. Из циклоалкенов образуются ациклические соединения с двумя альдегидными (или кетонными) группами:

Например:

Заметьте, что в последних двух примерах при раскрытии кольца циклоалкена образуется одна ациклическая молекула, а не две, как из ациклических алкенов.

Реакция озонолиза используется как для синтеза альдегидов и кетонов, так и для установления строения алкенов. Например, пусть при озонолизе неизвестного алкена образуется смесь двух альдегидов:

В этом случае строение алкена может быть логически установлено следующим образом. Атомы углерода, связанные в молекулах альдегидов двойными связями с атомами кислорода, были в молекуле исходного алкена связаны двойной связью между собой:

Другой пример:

Структура алкена должна быть циклической, поскольку мы должны соединить два конца одной и той же молекулы:

Окисление

Разбавленный водный раствор перманганата калия превращает алкены в диолы (гликоли). В результате этой реакции две гидроксильные группы присоединяются с одной стороны двойной связи (цис- или син-присоединение).

Поэтому из циклоалкенов образуются цис-диолы. В общем виде уравнение реакции выглядит так:

Например:

Наилучшим образом синтез диолов протекает в слабощелочной среде и мягких условиях (невысокая температура и разбавленный раствор перманганата калия). В более жестких условиях (кислый катализ, нагревание) происходит расщепление молекулы по двойной связи и образуются карбоновые кислоты.

Реакция с перманганатом калия используется не только для получения диолов, Но и служит простым тестом, позволяющим легко определять алкены. Раствор перманганата имеет интенсивную фиолетовую окраску. Если в исследуемом образце содержится алкен, то при добавлении к нему нескольких капель раствора перманганата фиолетовая окраска последнего немедленно переходит в коричневую. Такое же изменение окраски вызывают только алкины и альдегиды. Соединения большинства других классов в этих условиях не реагируют. Описанная выше процедура называется пробой Байера. Ниже показано отношение соединений различных классов к пробе Байера: положительная проба (фиолетовая окраска исчезает), отрицательная проба (фиолетовая окраска сохраняется).

Аллильное галогенирование

Если алкены подвергать свободнорадикальному галогенированию, легче всего замещаются на галоген атомы водорода при углеродном атоме, соседствующем с двойной связью. Это положение в молекуле алкена называется аллильным:

Специфическим реагентом для аллильного бромирования является -бромсукцинимид Он представляет собой твердое вещество,

с которым удобно работать в лаборатории, тогда как молекулярный бром - летучая, высокотоксичная и опасная в обращении жидкость При нагревании (иногда необходим катализ пероксидами) N-бромсукцинимид становится источником атомов брома.

Галогенирование идет в аллильное положение, так как промежуточно образующийся при этом аллильный радикал стабильнее, чем любой другой свободный радикал, который может получиться из молекулы алкена. Поэтому именно этот радикал образуется легче других. Повышенная устойчивость аллильного радикала объясняется его резонансной стабилизацией, в результате которой неспаренный электрон оказывается делокализован по двум углеродным атомам. Ниже показан механизм аллильного хлорирования:

Алкены расщепляются озоном с образованием альдегидов и кетонов, что позволяет устанавливать строение алкенов. Алкены подвергаются гидрированию с образованием алканов и окислению с образованием диолов. Кроме зтих реакций с участием двойной связи для алкенов характерно селективное галогенирование в положение, соседнее с двойной связью. Сама двойная связь при этом не затрагивается.

Электр офильное присоединение к алкенам

Реакции электрофильного присоединения, отличаясь друг от друга природой присоединяющихся по двойной связи групп, имеют одинаковый двухстадийный механизм. На первой его стадии электрофильная (обладающая сродством к электрону) частица (например, катион) притягивается -электронным облаком и присоединяется по двойной связи:

В большинстве случаев выполняется правило Марковникова - электрофил присоединяется к наиболее гидрогенизированному концу двойной связи, а нуклеофил к противоположному. Подробнее об этих реакциях идет речь в тех главах, где рассматривается образование соответствующих функциональных групп. Например, присоединение бромоводорода обсуждается в гл. 5 (там, где идет речь о синтезе галогеналканов) присоединение воды рассмотрено в гл. 7 (синтез спиртов). Здесь мы только еще раз подчеркнем роль положительно заряженных частиц, имеющих незаполненную внешнюю электронную оболочку, и их взаимодействия с -электронами. Приведем также несколько примеров:

Алкены реагируют с электрофильными реагентами, которые присоединяются по двойной связи. Реакция протекает в две стадии. Таким путем получают соединения различных классов, например галогеналканы и спирты.

Схема 6-1. Реакции электрофильного присоединения к алкенам

НЕПРЕДЕЛЬНЫЕ, ИЛИ НЕНАСЫЩЕННЫЕ, УГЛЕВОДОРОДЫ РЯДА ЭТИЛЕНА (АЛКЕНЫ, ИЛИ ОЛЕФИНЫ)

Алкены , или олефины (от лат. olefiant - масло — старое название, но широко используемое в химической литературе. Поводом к такому названию послужил хлористый этилен, полученный в XVIII столетии, — жидкое маслянист вещество.) — алифатические непредельные углеводороды, в молекулах которых между углеродными атомами имеется одна двойная связь.

Алкены образуют гомологический ряд с общей формулой CnH2n

1. Гомологический ряд алкенов

Гомологи:

С H 2 = CH 2 этен

С H 2 = CH - CH 3 пропен

С H2=CH-CH2-CH3 бутен -1

С H2=CH-CH2-CH2- СН 3 пентен -1

2. Физические свойства

Этилен (этен) - бесцветный газ с очень слабым сладковатым запахом, немного легче воздуха, малорастворим в воде.

С2 - С4 (газы)

С5 - С17 (жидкости)

С18 - (твёрдые)

· Алкены не растворяются в воде, растворимы в органических растворителях (бензин, бензол и др.)

· Легче воды

· С увеличением Mr температуры плавления и кипения увеличиваются

3. Простейшим алкеном является этилен - C2H4

Структурная и электронная формулы этилена имеют вид:

В молекуле этилена подвергаются гибридизации одна s - и две p -орбитали атомов C (sp 2-гибридизация).

Таким образом, каждый атом C имеет по три гибридных орбитали и по одной негибридной p -орбитали. Две из гибридных орбиталей атомов C взаимно перекрываются и образуют между атомами C

σ - связь. Остальные четыре гибридных орбитали атомов C перекрываются в той же плоскости с четырьмя s -орбиталями атомов H и также образуют четыре σ - связь. Две негибридные p -орбитали атомов C взаимно перекрываются в плоскости, которая расположена перпендикулярно плоскости σ - связь, т.е. образуется одна П - связь.

По своей природе П - связь резко отличается от σ - связь; П - связь менее прочная вследствие перекрывания электронных облаков вне плоскости молекулы. Под действием реагентов П - связь легко разрывается.

Молекула этилена симметрична; ядра всех атомов расположены в одной плоскости и валентные углы близки к 120°; расстояние между центрами атомов C равно 0,134 нм.

Если атомы соединены двойной связью, то их вращение невозможно без того, чтобы электронные облака П - связь не разомкнулись.

4. Изомерия алкенов

Наряду со структурной изомерией углеродного скелета для алкенов характерны, во-первых, другие разновидности структурной изомерии - изомерия положения кратной связи и межклассовая изомерия .

Во-вторых, в ряду алкенов проявляется пространственная изомерия , связанная с различным положением заместителей относительно двойной связи, вокруг которой невозможно внутримолекулярное вращение.

Структурная изомерия алкенов

1. Изомерия углеродного скелета (начиная с С4Н8):

2. Изомерия положения двойной связи (начиная с С4Н8):

3. Межклассовая изомерия с циклоалканами, начиная с С3Н6:

Пространственная изомерия алкенов

Вращение атомов вокруг двойной связи невозможно без ее разрыва. Это обусловлено особенностями строения p-связи (p-электронное облако сосредоточено над и под плоскостью молекулы). Вследствие жесткой закрепленности атомов поворотная изомерия относительно двойной связи не проявляется. Но становится возможной цис -транс -изомерия.

Алкены, имеющие у каждого из двух атомов углерода при двойной связи различные заместители, могут существовать в виде двух пространственных изомеров, отличающихся расположением заместителей относительно плоскости p-связи. Так, в молекуле бутена-2СН3-СН=СН-СН3 группы СН3 могут находиться либо по одну сторону от двойной связи вцис -изомере, либо по разные стороны в транс -изомере.

ВНИМАНИЕ! цис-транс - Изомерия не проявляется, если хотя бы один из атомов С при двойной связи имеет 2 одинаковых заместителя.

Например,

бутен-1 СН2=СН-СН2-СН3 не имеет цис - и транс -изомеров, т.к. 1-й атом С связан с двумя одинаковыми атомами Н.

Изомеры цис - и транс - отличаются не только физическими

,

но и химическими свойствами, т.к. сближение или удаление частей молекулы друг от друга в пространстве способствует или препятствует химическому взаимодействию.

Иногда цис-транс -изомерию не совсем точно называют геометрической изомерией . Неточность состоит в том, что все пространственные изомеры различаются своей геометрией, а не только цис - и транс -.

5. Номенклатура

Алкены простого строения часто называют, заменяя суффикс -ан в алканах на -илен: этан — этилен, пропан — пропилен и т.д.

По систематической номенклатуре названия этиленовых углеводородов производят заменой суффикса -ан в соответствующих алканах на суффикс -ен (алкан — алкен, этан — этен, пропан — пропен и т.д.). Выбор главной цепи и порядок названия тот же, что и для алканов. Однако в состав цепи должна обязательно входить двойная связь. Нумерацию цепи начинают с того конца, к которому ближе расположена эта связь. Например:

Непредельные (алкеновые) радикалы называют тривиальными названиями или по систематической номенклатуре:

(Н2С=СН—) винил или этенил

(Н2С=CН—СН2) аллил

К непредельным относят углеводороды, содер­жащие в молекулах кратные связи между атомами углерода. Непредельными являются алкены, алкины, алкадиены (полиены). Непредельным харак­тером обладают также циклические углеводороды, содержащие двойную связь в цикле (циклоалкены), а также циклоалканы с небольшим числом атомов углерода в цикле (три или четыре атома). Свойство «непредельности» связано со способностью этих ве­ществ вступать в реакции присоединения , прежде всего водорода, с образованием предельных, или насыщенных, углеводородов - алканов.

Строение алкенов

Ациклические углеводороды, содер­жащие в молекуле помимо одинарных связей, одну двойную связь между атомами углерода и соответ­ствующие общей формуле С n Н 2n .

Свое второе название - олефины - алкены по­лучили по аналогии с жирными непредельными кислотами (олеиновая, линолевая), остатки кото­рых входят в состав жидких жиров - масел (от англ. oil - масло).

Атомы углерода, между которыми есть двойная связь, находятся в состоянии sр 2 -гибридизации . Это означает, что в гибриди­зации участвуют одна s- и две р-орбитали, а одна р-орбиталь остается негибридизованной.

Перекрывание гибридных ор­биталей приводит к образова­нию σ-связи, а за счет неги­бридизованных р-орбиталей соседних атомов углерода об­разуется вторая, π-связь. Таким образом, двойная связь состоит из одной σ- и одной π-связи .

Гибридные орбитали атомов, образующих двой­ную связь, находятся в одной плоскости, а орбита­ли, образующие π-связь, располагаются перпенди­кулярно плоскости молекулы.

Двойная связь (0,132 нм) короче одинарной, а ее энергия больше, т. к. она является более проч­ной. Тем не менее, наличие подвижной, легко по­ляризуемой π-связи приводит к тому, что алкены химически более активны, чем алканы, и способны вступать в реакции присоединения.

Гомологический ряд алкенов

Первые три члена гомологического ряда алкенов газы, с C 5 H 10 до C 17 H 34 – жидкости, с C 18 H 36 – твердые вещества. Жидкие и твердые алкены практически нерастворимы в воде, но хорошо растворимы в органических растворителях.

В соответствии с правилами ИЮПАК, в названии гомологов ряда алкенов используется суффикс -ен. Положение двойной связи указывается с помощью цифры, обозначающей месторасположение связи. Цифра проставляется после названия основной цепи через дефис. Нумерация атомов в молекуле алкена начинается с того конца, к которому ближе связь, например, алкен, отвечающий формуле CH 3 −CH 2 −CH=CH−CH 3 следует называть пентен-2, поскольку связь начинается у второго атома углерода, начиная с конца цепи.

Неразветвленные алкены составляют гомологи­ческий ряд этена (этилена): С 2 Н 4 - этен, С 3 Н 6 - пропен, C 4 H 8 - бутен, С 5 Н 10 - пентен, С 6 Н 12 - гексен и т. д.

Изомерия и номенклатура алкенов

Для алкенов, так же как и для алканов, ха­рактерна структурная изомерия . Структурные изомеры отличаются друг от друга строением угле­родного скелета. Простейший алкен, для которого характерны структурные изомеры, - это бутен.

Особым видом структурной изомерии является изомерия положения двойной связи:

Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение ато­мов углерода, поэтому молекулы алканов могут приобретать самую разнообразную форму. Вра­щение вокруг двойной связи невозможно, что приводит к появлению у алкенов еще одного ви­да изомерии - геометрической , или цис- транс-изомерии .

Цис-изомеры отличаются от транс-изомеров пространственным расположением фрагментов мо­лекулы (в данном случае метильных групп) относи­тельно плоскости π-связи, а следовательно, и свой­ствами.

Алкены изомерны циклоалканам (межклассо­вая изомерия), например:

Номенклатура алкенов, разработанная ИЮПАК, схожа с номенклатурой алканов.

1. Выбор главной цепи . Образование названия углеводорода начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле. В случае алкенов главная цепь должна содержать двойную связь.

2. Нумерация атомов главной цепи . Нумера­ция атомов главной цепи начинается с того конца, к которому ближе находится двойная связь. На­пример, правильное название соединения:

5-метилгексен-2, а не 2-метилгексен-4, как мож­но было бы предположить.

Если по положению двойной связи нельзя опре­делить начало нумерации атомов в цепи, то его определяет положение заместителей так же, как для предельных углеводородов.

3. Формирование названия . Названия алкенов формируются так же, как и названия алканов. В конце названия указывают номер атома углеро­да, у которого начинается двойная связь, и суф­фикс -ен, обозначающий принадлежность соедине­ния к классу алкенов. Например:

Физические свойства алкенов

Первые три представителя гомологического ряда алкенов - газы; вещества состава С 5 Н 10 — С 16 Н 32 - жидкости; высшие алкены - твердые вещества.

Температуры кипения и плавления закономерно повышаются при увеличении молекулярной массы соединений.

Химические свойства алкенов

Реакции присоединения. Напомним, что отли­чительной чертой представителей непредельных углеводородов - алкенов является способность вступать в реакции присоединения. Большинство этих реакций протекает по механизму электро­фильного присоединения .

1. Гидрирование алкенов . Алкены способны присоединять водород в присутствии катализато­ров гидрирования, металлов - платины, палладия, никеля:

Эта реакция протекает при атмосферном и по­вышенном давлении и не требует высокой тем­пературы, т. к. является экзотермической. При повышении температуры на тех же катализато­рах может пойти обратная реакция - дегидрирование.

2. Галогенирование (присоединение галогенов). Взаимодействие алкена с бромной водой или рас­твором брома в органическом растворителе (CCl 4) приводит к быстрому обесцвечиванию этих раство­ров в результате присоединения молекулы галогена к алкену и образования дигалогеналканов:

3. Гидрогалогенирование (присоединение гало­геноводорода).

Эта реакция подчиняется правилу Марковникова :

При присоединении галогеноводорода к алкену водород присоединяется к более гидрированному атому углерода, т. е. атому, при котором нахо­дится больше атомов водорода, а галоген - к ме­нее гидрированному.

4. Гидратация (присоединение воды). Гидра­тация алкенов приводит к образованию спиртов. Например, присоединение воды к этену лежит в ос­нове одного из промышленных способов получения этилового спирта:

Обратите внимание на то, что первичный спирт (с гидроксогруппой при первичном углероде) обра­зуется только при гидратации этена. При гидрата­ции пропена или других алкенов образуются вто­ричные спирты.

Эта реакция протекает также в соответствии с правилом Марковникова - катион водорода при­соединяется к более гидрированному атому углеро­да, а гидроксогруппа - к менее гидрированному.

5. Полимеризация . Особым случаем присоеди­нения является реакция полимеризации алкенов:

Эта реакция присоединения протекает по сво­боднорадикальному механизму.

Реакции окисления.

1. Горение . Как и любые органические соедине­ния, алкены горят в кислороде с образованием СО 2 и Н 2 О:

2. Окисление в растворах . В отличие от алканов алкены легко окисляются под действием растворов перманганата калия. В нейтральных или щелочных растворах происходит окисление алкенов до диолов (двухатомных спиртов), причем гидроксильные группы присоединяются к тем атомам, между ко­торыми до окисления существовала двойная связь:

К непредельным относят углеводороды, содержащие в молекулах кратные связи между атомами углерода. Непредельными являются алкены, алкины, алкадиены (полиены) . Непредельным характером обладают также циклические углеводороды, содержащие двойную связь в цикле (циклоалкены ), а также циклоалканы с небольшим числом атомов углерода в цикле (три или четыре атома). Свойство «непредельности» связано со способностью этих веществ вступать в реакции присоединения, прежде всего водорода, с образованием предельных, или насыщенных углеводородов - алканов.

Строение алкенов

Ациклические углеводороды, содержащие в молекуле помимо одинарных связей, одну двойную связь между атомами углерода и соответствующие общей формуле СnН2n. Свое второе название - олефины - алкены получили по аналогии с жирными непредельными кислотами (олеиновая, линолевая), остатки которых входят в состав жидких жиров - масел.
Атомы углерода, между которыми есть двойная связь, находятся в состоянии sр 2 -гибридизации. Это означает, что в гибридизации участвуют одна s- и две р-орбитали, а одна р-орбиталь остается негибридизованной. Перекрывание гибридных орбиталей приводит к образованию σ-связи, а за счет негибридизованных р-орбиталей
соседних атомов углерода образуется вторая, π-связь. Таким образом, двойная связь состоит из одной σ- и одной π — связи. Гибридные орбитали атомов, образующих двойную связь, находятся в одной плоскости, а орбитали, образующие π -связь, располагаются перпендикулярно плоскости молекулы. Двойная связь (0,132 им) короче одинарной, а ее энергия больше, т. к. она является более прочной. Тем не менее, наличие подвижной, легко поляризуемой π -связи приводит к тому, что алкены химически более активны, чем алканы, и способны вступать в реакции присоединения.

Строение этилена

Образование двойной связи в алкенах

Гомологический ряд этена

Неразветвленные алкены составляют гомологи- ческий ряд этена (этилена ): С 2 Н 4 - этен, С 3 Н 6 - пропен, С 4 Н 8 - бутен, С 5 Н 10 - пентен, С 6 Н 12 - гексен, С 7 Н 14 - гептен и т.д.

Изомерия алкенов

Для алкенов характерна структурная изомерия. Структурные изомеры отличаются друг от друга строением углеродного скелета. Простейший алкен, для которого характерны структурные изомеры, - это бутен:


Особым видом структурной изомерии является изомерия положения двойной связи:

Алкены изомерны циклоалканам (межклассовая изомерия), например:



Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение атомов углерода, поэтому молекулы алканов могут приобретать самую разнообразную форму. Вращение вокруг двойной связи невозможно, что приводит к появлению у алкенов еще одного вида изомерии - геометрической, или цис- и транс- изомерии .


Цис-изомеры отличаются от транс-изомеров пространственным расположением фрагментов молекулы (в данном случае метильных групп) относительно плоскости π -связи, а следовательно, и свойствами.

Номенклатура алкенов

1. Выбор главной цепи. Образование названия углеводорода начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле. В случае алкенов главная цепь должна содержать двойную связь.
2. Нумерация атомов главной цепи. Нумерация атомов главной цепи начинается с того конца, к которому ближе находится двойная связь.
Например,правильное название соединения:

Если по положению двойной связи нельзя определить начало нумерации атомов в цепи, то его определяет положение заместителей так же, как для предельных углеводородов.

3. Формирование названия. В конце названия указывают номер атома углерода, у которого начинается двойная связь, и суффикс -ен , обозначающий принадлежность соединения к классу алкенов. Например:

Физические свойства алкенов

Первые три представителя гомологического ряда алкенов - газы; вещества состава С5Н10 — С16Н32 - жидкости; высшие алкены - твердые вещества.
Температуры кипения и плавления закономерно повышаются при увеличении молекулярной массы соединений.

Химические свойства алкенов

Реакции присоединения . Напомним, что отличительной чертой представителей непредельных углеводородов - алкенов является способность вступать в реакции присоединения. Большинство этих реакций протекает по механизму электрофильного присоединения .
1. Гидрирование алкенов. Алкены способны присоединять водород в присутствии катализаторов гидрирования, металлов - платины, палладия, никеля:

Эта реакция протекает при атмосферном и повышенном давлении и не требует высокой температуры, т. к. является экзотермической. При повышении температуры на тех же катализаторах может пойти обратная реакция - дегидрирование.

2. Галогенирование (присоединение галогенов) . Взаимодействие алкена с бромной водой или раствором брома в органическом растворителе (СС14) приводит к быстрому обесцвечиванию этих растворов в результате присоединения молекулы галогена к алкену и образования дигалогеналканов.
3. Гидрогалогенирование (присоединение галогеноводорода) .

Эта реакция подчиняется
При присоединении галогеноводорода к алкену водород присоединяется к более гидрированному атому углерода, т. е. атому, при котором находится больше атомов водорода, а галоген - к менее гидрированному.


4. Гидратация (присоединение воды). Гидратация алкенов приводит к образованию спиртов. Например, присоединение воды к этену лежит в основе одного из промышленных способов получения этилового спирта.

Обратите внимание на то, что первичный спирт (с гидроксогруппой при первичном углероде) образуется только при гидратации этена. При гидратации пропена или других алкенов образуются вторичные спирты .

Эта реакция протекает также в соответствии с правилом Марковникова - катион водорода присоединяется к более гидрированному атому углерода, а гидроксогруппа - к менее гидрированному.
5. Полимеризация. Особым случаем присоединения является реакция полимеризации алкенов:

Эта реакция присоединения протекает по свободнорадикальному механизму.
Реакции окисления.
1. Горение. Как и любые органические соединения, алкены горят в кислороде с образованием СО2 и Н2О:

2. Окисление в растворах. В отличие от алканов алкены легко окисляются под действием растворов перманганата калия. В нейтральных или щелочных растворах происходит окисление алкенов до диолов (двухатомных спиртов), причем гидроксильные группы присоединяются к тем атомам, между которыми до окисления существовала двойная связь:




Алкеновые углеводороды (олефины) являются одним из классов органических веществ, которым присущи свои . Виды изомерии алкенов у представителей данного класса не повторяются с изомерией других органических веществ.

Вконтакте

Характерные признаки класса

Этиленовыми олефинами именуют один из классов непредельных углеводородов, содержащих одну двойную связь.

По физическим свойствам представители данной категории непредельных соединений являются:

  • газами,
  • жидкостями,
  • твердыми соединениями.

В составе молекул присутствует не только «сигма»-связь, но и «пи»-связь. Причиной этому является наличие в структурной формуле гибридизации «sp2 », которой свойственно расположение атомов соединения в одной плоскости.

При этом между ними формируется угол не менее ста двадцати градусов. Негибридизованным орбиталям «р » свойственно расположение как поверх молекулярной плоскости, так и под ней.

Такая особенность строения приводит к формированию дополнительных связей – «пи» или «π ».

Описанная связь менее прочна по сравнению с «сигма»-связями, так как перекрывание боком имеет слабое сцепление. Для суммарного распределения электронных плотностей образующихся связей характерна неоднородность. При вращении возле углерод-углеродной связи происходит нарушение перекрывания «р»-орбиталей. Для каждого алкена (олефина) такая закономерность является отличительным признаком.

Практически всем этиленовым соединениям присущи высокие температуры кипения и плавления, характерные не для всех органических веществ. Представители указанного класса непредельных углеводов быстро растворяются в и других растворителях органического состава.

Внимание! Ациклические непредельные соединения этиленовые углеводороды имеют общую формулу — C n H 2n.

Гомология

Исходя из того, что общая формула алкенов C n H 2n , им присуща определенная гомология. Гомологический ряд алкенов начинает первый представитель этилен или этен. Данное вещество в обычных условиях является газом и содержит два атома углерода и четыре атома водорода – C 2 H 4 . За этеном гомологический ряд алкенов продолжает пропен и бутен. Их формулы следующие: «C 3 H 6 » и «C 4 H 8 ». При обычных условиях они также являются газами, которые тяжелее , а значит, собирать их необходимо пробиркой, перевернутой вниз дном.

Общая формула алкенов позволяет рассчитать следующего представителя данного класса, имеющего не менее пяти атомов углерода в структурной цепи. Это пентен с формулой «C 5 H 10 ».

По физическим характеристикам указанное вещество относится к жидкостям, так же как двенадцать следующих соединений гомологической линии.

Среди алкенов с указанными характеристиками есть и твердые вещества, которые начинаются с формулы C 18 H 36 . Жидким и твердым этиленовым углеводородам не свойственно растворение в воде, но при попадании в органические растворители они вступают с ними в реакцию.

Описанная общая формула алкенов подразумевает замену ранее стоявшего суффикса «ан» на «ен». Это закреплено правилами ИЮПАК. Какого бы представителя данной категории соединений мы не взяли, у них всех есть описанный суффикс.

В названии этиленовых соединений всегда присутствует определенная цифра, которая указывает на местоположение двойной связи в формуле. Примерами этого служит: «бутен-1» или «пентен-2». Атомную нумерацию начинают с того края, к которому ближе находится двойная конфигурация. Это правило является «железным» во всех случаях.

Изомерия

В зависимости от имеющегося вида гибридизации алкенов им присущи некоторые типы изомерии, каждый из которых имеет свои особенности и строение. Рассмотрим основные виды изомерии алкенов.

Структурного типа

Структурная изомерия подразделяется на изомеры по:

  • углеродному скелету;
  • расположению двойной связи.

Структурные изомеры углеродного скелета возникают в случае появления радикалов (ответвлений от главной цепи).

Изомерами алкенов указанной изомерии будут:

CH 2 =CHCH 2 CH 3.

2-метилпропен-1:

CH 2 =CCH 3

У представленных соединений общее количество углеродных и водородных атомов (C 4 H 8), но разное строение углеводородного скелета. Это структурные изомеры, хотя свойства их не одинаковы. Бутену-1 (бутилену) присущ характерный запах и наркотические свойства, раздражающие дыхательные пути. Данными особенностями не обладает 2-метилпропен-1.

В данном случае нет изомеров у этилена (C 2 H 4), так как он состоит только из двух углеродных атомов, куда нельзя подставить радикалы.

Совет! Радикал разрешается ставить к средним и предпоследним углеродным атомам, но не разрешается располагать их около крайних заместителей. Данное правило работает для всех непредельных углеводородов.

Относительно расположения двойной связи различают изомеры:

CH 2 =CHCH 2 CH 2 -CH 3.

CH 3 -СH= CHCH 2 -CH 3.

Общая формула алкенов у представленных примеров: C 5 H 10, , но местоположение одной двойной связи различное. Свойства указанных соединений будут различаться. Это структурная изомерия.

Изомерия

Пространственного типа

Пространственная изомерия алкенов связана с характером расположения углеводородных заместителей.

На основании этого различают изомеры:

  • «Цис»;
  • «Транс».

Общая формула алкенов позволяет создавать «транс-изомеры» и «цис-изомеры» у одного и того же соединения. Возьмем, к примеру, бутилен (бутен). Для него можно создать изомеры пространственного строения, по-разному расположив относительно двойной связи заместителей. С примерами изомерия алкенов будет выглядеть так:

«цис-изомер» «транс-изомер»

Бутен-2 Бутен-2

Из указанного примера видно, что у «цис-изомеров» по одну сторону плоскости расположения двойной связи находятся два одинаковых радикала. Для «транс-изомеров» это правило не работает, так как у них относительно углеродной цепи «С=С» располагаются два не похожих заместителя. Учитывая данную закономерность, можно самим строить «цис» и «транс» изомеры для различных ациклических этиленовых углеводородов.

Представленные «цис-изомер» и «транс-изомер» для бутена-2 невозможно превратить один в другой, так как для этого необходимо вращение вокруг имеющейся углеродной двойной цепочки (С=С). Чтобы осуществить данное вращение необходимо определенное количество энергии, чтобы разорвать существующую «p-связь».

На основании всего вышеизложенного можно сделать вывод, что изомеры «транс» и «цис» вида являются индивидуальными соединениями с определенным набором химических и физических свойств.

Нет изомеров у какого алкена. Пространственных изомеров не имеет этилен из-за одинакового расположения водородных заместителей относительно двойной цепи.

Межклассовые

Межклассовая изомерия у алкеновых углеводородов распространена значительно. Причиной этому служит сходность общей формулы представителей данного класса с формулой циклопарафинов (циклоалканов). У данных категорий веществ в одинаковое количество углеродных и водородных атомов, кратное составу (C n H 2n).

Межклассовые изомеры будут выглядеть так:

CH 2 =CHCH 3.

Циклопропан:

Выходит, что формуле C 3 H 6 отвечают два соединения: пропен-1 и циклопропан. Из структурного строения видно разное расположение углерода относительно друг друга. По свойствам указанные соединения также разные. Пропен-1 (пропилен) – это газообразное соединение с низкой температурой кипения. Для циклопропана характерно газообразное состояние с резким запахом и едким вкусом. Химические свойства данных веществ также различаются, но состав у них идентичен. В органический данный вид изомеров именуют межклассовым.

Алкены. Изомерия алкенов. ЕГЭ. Органическая химия.

Алкены: Строение, номенклатура, изомерия

Вывод

Алкеновая изомерия – это их важная характеристика, благодаря которой в природе появляются новые соединения с другими свойствами, которые находят применение в промышленности и быту.

Рекомендуем почитать

Наверх