Виды спектров и какое вещество дает. Спектральный анализ и виды спектров

Энциклопедия растений 20.09.2019
Энциклопедия растений

Спектральный анализ подразделяют на несколько самостоятельных методов. Среди них выделяют: инфракрасную и ультрафиолетовую спектроскопию, атомно-абсорбционный, люминесцентный и флуоресцентный анализ, спектроскопию отражения и комбинационного рассеяния, спектрофотометрию, рентгеновскую спектроскопию, а также ряд других методов.

Абсорбционный спектральный анализ основан на изучении спектров поглощения электромагнитного излучения. Эмиссионный спектральный анализ проводится по спектрам испускания атомов, молекул или ионов, возбужденных различными способами.

Атомно-эмиссионный спектральный анализ

Спектральным анализом часто называют только атомно-эмиссионный спектральный анализ, который основан на исследовании спектров испускания свободных атомов и ионов в газовой фазе. Его проводят в области длин волн 150-800 нм. В источник излучения вводят пробу исследуемого вещества, после чего в нем происходит испарение и диссоциация молекул, а также возбуждение образовавшихся ионов. Они испускают излучение, которое фиксируется регистрирующим устройством спектрального прибора.

Работа со спектрами

Спектры проб сравнивают со спектрами известных элементов, которые можно найти в соответствующих таблицах спектральных линий. Так узнают состав анализируемого вещества. Количественный анализ подразумевает концентрации данного элемента в анализируемого веществе. Ее узнают по величине сигнала, например, по степени почернения или оптической плотности линий на фотопластинке, по интенсивности светового потока на фотоэлектрическом приемнике.

Виды спектров

Непрерывный спектр излучения дают вещества, находящиеся в твердом или жидком состоянии, а также плотные газы. В таком спектре нет разрывов, в нем представлены волны всех длин. Его характер зависит не только от свойств отдельных атомов, но и от их взаимодействия друг с другом.

Линейчатый спектр излучения характерен для веществ в газообразном состоянии, при этом атомы почти не взаимодействуют друг с другом. Дело в том, что изолированные атомы одного химического элемента излучают волны строго определенной длины волны.

При увеличении плотности газа спектральные линии начинают расширяться. Для наблюдения такого спектра используют свечение газового разряда в трубке или паров вещества в пламени. Если пропускать белый свет через неизлучающий газ, на фоне непрерывного спектра источника появятся темные линии спектра поглощения. Газ интенсивнее всего поглощает свет тех длин волн, которые он испускает в нагретом состоянии.

Совокупность монохроматических компонент в излучении называется спектром .

Спектры излучения

Спектральный состав излучения веществ весьма разнообразен. Но, несмотря на это, все спектры, как показывает опыт, можно разделить на три типа.

Непрерывные спектры

Непрерывный спектр представлет собой сплошную разноцветную полосу.

Белый свет имеет непрерывный спектр. Солнечный спектр или спектр дугового фонаря является непрерывным. Это означает, что в спектре представлены волны всех длин. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу.

Непрерывные (или сплошные) спектры, как показывает опыт, дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. Для получения непрерывного спектра нужно нагреть тело до высокой температуры. Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновении электронов с ионами.

Характер непрерывного спектра и сам факт его существования определяются не только свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом.

Излучение источников, в которых свет испускается атомами вещества, имеет дискретный спектр . Они делятся на:

1. линейчатый

2. полосатый



Линейчатые спектры

Линейчатый спектр состоит изотдельных цветных линий различной яркости, разделенных широкими темными полосами.

Внесем в бледное пламя газовой горелки кусочек асбеста, смоченного раствором обыкновенной поваренной соли. При наблюдении пламени в спектроскоп на фоне едва различимого непрерывного спектра пламени вспыхнет яркая желтая линия. Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени. На рисунке приведены также спектры водорода и гелия. Такие спектры называются линейчатыми. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах).

Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Это самый фундаментальный, основной тип спектров.

Изолированные атомы излучают строго определенные длины волн.

Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом.

При увеличении плотности атомарного газа отдельные спектральные линии расширяются, и, наконец, при очень большом сжатии газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр.

Полосатые спектры

Полосатый спектр состоит из отдельных полос, разделенных темными промежутками.

С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда.

Спектры поглощения

Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны, энергия которых определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны. Так, красное стекло пропускает волны, соответствующие красному свету, и поглощает все остальные.

Если пропускать белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии. Это будет спектр поглощения.

Спектр поглощения представляет собой темные линии на фоне непрерывного спектра источника.

Газ поглощает наиболее интенсивно свет как раз тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра - это линии поглощения, образующие в совокупности спектр поглощения.

Существуют непрерывные, линейчатые и полосатые спектры поглощения.

Различные виды электромагнитных излучений, их свойства и практические применения.

Шкала электромагнитных волн. Границы между различными диапазонами условны

Низкочастотные колебения.

Постоянный ток – частота ν = 0 – 10 Гц .

Атмосферные помехи и переменный ток – частота ν = 10 – 10 4 Гц

Радиоволны.

Частота ν =10 4 – 10 11 Гц

Длина волны λ = 10 -3 – 10 3 м

Получают с помощью колебательных контуров.

Свойства.

Радиоволны различных частот и с различными длинами волн по разному поглощаются и отражаются средами, проявляют свойства дифракции и интерференции.

Применение.

Радиосвязь, телевидение, радиолокация.

Инфракрасное излучение.

Частота ν =3·10 11 – 4·10 14 Гц

Длина волны λ = 8·10 -7 – 2·10 -3 м

Излучаются атомами и молекулами вещества.

Инфракрасное излучение дают все тела при любой температуре. Человек излучает электромагнитные волны λ ≈ 9·10 -6 м.

Свойства.

  • Проходит через некоторые непрозрачные тела, а также сквозь снег, дождь, дымку.
  • Производит химическое действие на фотопластинки.
  • Поглощаясь веществом, нагревает его.
  • Вызывает внутренний фотоэффект у германия.
  • Невидимо.
  • Способно к явлениям интерференции и дифракции.
  • Регистрируют тепловыми методами, фотоэлектрическими и фотографическими.

Применение.

Получают изображения предметов в темноте, приборах ночного видения, в тумане. Используют в криминалистике, в физиотерапии,. в промышленности для сушки окрашенных изделий, стен зданий, древесины, фруктов.

Видимое излучение.

Часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового).

Частота ν =4·10 14 – 8·10 14 Гц

Длина волны λ = 8·10 -7 – 4·10 -7 м

Свойства.

Отражается, преломляется, воздействует на глаз, способно к явлениям дисперсии, интерференции, дифракции.

Ультрафиолетовое излучение.

Частота ν =8·10 14 – 3·10 15 Гц

Длина волны λ =·10 -8 – 4·10 -7 м (но меньше, чем у фиолетового света)

Источники: газоразрядные лампы с трубками из кварца(кварцевые лампы).

Излучается всеми твердыми телами, у которых t > 1000°С, а также светящимися парами ртути.

Свойства.

  • Высокая химическая активность (разложение хлорида серебра, свечение кристаллов сульфида цинка).
  • Невидимо.
  • Убивает микроорганизмы.
  • В небольших дозах благотворно влияет на организм человека (загар), но в больших дозах оказывает отрицательное биологическое воздействие: изменение в развитии клеток и обмене веществ, действие на глаза.

Применение.

В медицине, в косметологии (солярий, загар), в промышленности.

Рентгеновские лучи.

Частота ν =3·10 15 – 3·10 19 Гц

Длина волны λ =·10 -11 – 4·10 -8 м

Излучаются при резком торможении электронов, движущихся с большим ускорением.

Получают при помощи рентгеновской трубки: электроны в вакуумной трубке ускоряются электрическим полем при высоком напряжении, достигая анода, при соударении резко тормозятся. При торможении электроны движутся с ускорением и излучают электромагнитные волны с малой длиной (от 100 до 0,01 нм).

Свойства.

  • Интерференция, дифракция рентгеновских лучей на кристаллической решетке.
  • Большая проникающая способность.
  • Облучение в больших дозах вызывает лучевую болезнь.

Применение.

В медицине (диагностика заболеваний внутренних органов), в промышленности (контроль внутренней структуры различных изделий, сварных швов).

Гамма – излучение (γ – излучение).

Частота ν =3·10 20 Гц и выше

Длина волны λ =3,3·10 -11 м

Источники: атомное ядро (ядерные реакции).

Свойства.

  • Имеет огромную проникающую способность.
  • Оказывает сильное биологическое воздействие.

Применение.

В медицине, в производстве (γ – дефектоскопия).

Виды излучений

Тепловое излучение излучение, при котором потери атомами энергии на излучение света компенсируются за счет энергии теплового движения атомов (или молекул) излучающего тела. Тепловым источником является солнце, лампа накаливания и т. д.

Электролюминесценция (от латинского люминесценция - «свечение») – разряд в газе сопровождающийся свечением. Северное сияние есть проявление электролюминесценции. Используется в трубках для рекламных надписей.

Катодолюминесценция свечение твердых тел, вызванное бомбардировкой их электронами. Благодаря ей светятся экраны электронно-лучевых трубок телевизоров.

Хемилюминесценция излучение света в некоторых химических реакциях, идущих с выделением энергии. Ее можно наблюдать на примере светлячка и других живых организмах, обладающих свойством светиться.

Фотолюминесценция свечение тел непосредственно под действием падающих на них излучений. Примером являются светящиеся краски, которыми покрывают елочные игрушки, они излучают свет после их облучения. Это явление широко используется в лампах дневного света.

Для того чтобы атом начал излучать, ему необходимо передать определенную энергию. Излучая, атом теряет полученную энергию, и для непрерывного свечения вещества необходим приток энергии к его атомам извне.

Спектры





Полосатые спектры

Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда.


Спектральный анализ

Спектральный анализ - совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др. В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа. Атомный и молекулярный спектральный анализы позволяют определять элементный и молекулярный состав вещества, соответственно. В эмиссионном и абсорбционном методах состав определяется по спектрам испускания и поглощения. Масс-спектрометрический анализ осуществляется по спектрам масс атомарных или молекулярных ионов и позволяет определять изотопный состав объекта. Простейший спектральный аппарат - спектрограф.

Схема устройства призменного спектрографа


История

Тёмные линии на спектральных полосках были замечены давно (например, их отметил Волластон), но первое серьёзное исследование этих линий было предпринято только в 1814 году Йозефом Фраунгофером. В его честь эффект получил название «Фраунгоферовы линии». Фраунгофер установил стабильность положения линий, составил их таблицу (всего он насчитал 574 линии), присвоил каждой буквенно-цифровой код. Не менее важным стало его заключение, что линии не связаны ни с оптическим материалом, ни с земной атмосферой, но являются природной характеристикой солнечного света. Аналогичные линии он обнаружил у искусственных источников света, а также в спектрах Венеры и Сириуса.

Фраунгоферовы линии


Вскоре выяснялось, что одна из самых отчётливых линий всегда появляется в присутствии натрия. В 1859 году Г.Кирхгоф и Р.Бунзен после серии экспериментов заключили: каждый химический элемент имеет свой неповторимый линейчатый спектр, и по спектру небесных светил можно сделать выводы о составе их вещества. С этого момента в науке появился спектральный анализ, мощный метод дистанционного определения химического состава.

Для проверки метода в 1868 году Парижская академия наук организовала экспедицию в Индию, где предстояло полное солнечное затмение. Там учёные обнаружили: все тёмные линии в момент затмения, когда спектр излучения сменил спектр поглощения солнечной короны, стали, как и было предсказано, яркими на тёмном фоне.

Природа каждой из линий, их связь с химическими элементами выяснялись постепенно. В 1860 году Кирхгоф и Бунзен при помощи спектрального анализа открыли цезий, а 1861 году - рубидий. А гелий был открыт на Солнце на 27 лет ранее, чем на Земле (1868 и 1895 годы соответственно).

Принцип работы

Атомы каждого химического элемента имеют строго определённые резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектрах видны линии (тёмные или светлые) в определённых местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах.

Оптический спектральный анализ характеризуется относительной простотой выполнения, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10-30 мг), необходимого для анализа на большое число элементов. Атомарные спектры (поглощения или испускания) получают переведением вещества в парообразное состояние путём нагревания пробы до 1000-10000 °C. В качестве источников возбуждения атомов при эмиссионном анализе токопроводящих материалов применяют искру, дугу переменного тока; при этом пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя или плазму различных газов.

Спектр электромагнитных излучений

Свойства электромагнитных излучений. Электромагнитные излучения с различными длинами волн имеют довольно много различий, но все они, от радиоволн и до гамма-излучения, одной физической природы. Все виды электромагнитного излучения в большей или меньшей степени проявляют свойства интерференции, дифракции и поляризации, характерные для волн. Вместе с тем все виды электромагнитного излучения в большей или меньшей мере обнаруживают квантовые свойства.

Общим для всех электромагнитных излучений являются механизмы их возникновения: электромагнитные волны с любой длиной волны могут возникать при ускоренном движении электрических зарядов или при переходах молекул, атомов или атомных ядер из одного квантового состояния в другое. Гармонические колебания электрических зарядов сопровождаются электромагнитным излучением, имеющим частоту, равную частоте колебаний зарядов.

Радиоволны . При колебаниях, происходящих с частотами от 10 5 до 10 12 Гц, возникают электромагнитные излучения, длины волн которых лежат в интервале от нескольких километров до нескольких миллиметров. Этот участок шкалы электромагнитных излучений относится к диапазону радиоволн. Радиоволны применяются для радиосвязи, телевидения, радиолокации.

Инфракрасное излучение. Электромагнитные излучения с длиной волны, меньшей 1-2 мм, но большей 8*10 -7 м, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением.


Область спектра за красным его краем впервые экспериментально была исследована в 1800г. английским астрономом Вильямом Гершелем (1738 - 1822 гг.). Гершель поместил термометр с зачерненным шариком за красный край спектра и обнаружил повышение температуры. Шарик термометра нагревался излучением, невидимым глазом. Это излучение назвали инфракрасными лучами.

Инфракрасное излучение испускают любые нагретые тела. Источниками инфракрасного излучения служат печи, батареи водяного отопления, электрические лампы накаливания.

С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте. Инфракрасное излучение применяется для сушки окрашенных изделий, стен зданий, древесины.

Видимый свет. К видимому свету (или просто свету) относятся излучения с длиной волны примерно от 8*10 -7 до 4*10 -7 м, от красного до фиолетового света.

Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения. Свет является обязательным условием развития зеленых растений и, следовательно, необходимым условием для существования жизни на Земле.

Ультрафиолетовое излучение . В 1801 году немецкий физик Иоганн Риттер (1776 - 1810), исследуя спектр, открыл, что за

его фиолетовым краем имеется область, создаваемая невидимыми глазом лучами. Эти лучи воздействуют на некоторые химические соединения. Под действием этих невидимых лучей происходит разложения хлорида серебра, свечение кристаллов сульфида цинка и некоторых других кристаллов.

Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового света, называют ультрафиолетовым излучением. К ультрафиолетовому излучению относят электромагнитные излучения в диапазоне длин волн от 4*10 -7 до 1*10 -8 м.

Ультрафиолетовое излучение способно убивать болезнетворных бактерий, поэтому его широко применяют в медицине. Ультрафиолетовое излучение в составе солнечного света вызывает биологические процессы, приводящие к потемнению кожи человека - загару.

В качестве источников ультрафиолетового излучения в медицине используются газоразрядные лампы. Трубки таких ламп изготавливают из кварца, прозрачного для ультрафиолетовых лучей; поэтому эти лампы называют кварцевыми лампами.

Рентгеновские лучи. Если в вакуумной трубке между нагретым катодом, испускающим электрон, и анодом приложить постоянное напряжение в несколько десятков тысяч вольт, то электроны будут сначала разгоняться электрическим полем, а затем резко тормозиться в веществе анода при взаимодействии с его атомами. При торможении быстрых электронов в веществе или при переходах электронов на внутренних оболочках атомов возникают электромагнитные волны с длиной волны меньше, чем у ультрафиолетового излучения. Это излучение было открыто в 1895 году немецким физиком Вильгельмом Рентгеном (1845-1923). Электромагнитные излучения в диапазоне длин волн от 10 -14 до 10 -7 м называются рентгеновскими лучами.


Рентгеновские лучи невидимы глазом. Они проходят без существенного поглощения через значительные слои вещества, непрозрачного для видимого света. Обнаруживают рентгеновские лучи по их способности вызывать определенное свечение некоторых кристаллов и действовать на фотопленку.

Способность рентгеновских лучей проникать через толстые слои вещества используется для диагностики заболеваний внутренних органов человека. В технике рентгеновские лучи применяются для контроля внутренней структуры различных изделий, сварных швов. Рентгеновское излучение обладает сильным биологическим действием и применяется для лечения некоторых заболеваний. Гамма-излучение. Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными атомными ядрами и возникающее при взаимодействии элементарных частиц.

Гамма-излучение - самое коротковолновое электромагнитное излучение (<10 -10 м). Его особенностью являются ярко выраженные корпускулярные свойства. Поэтому гамма-излучение обычно рассматривают как поток частиц - гамма-квантов. В области длин волн от 10 -10 до 10 -14 и диапазоны рентгеновского и гамма-излучений перекрываются, в этой области рентгеновские лучи и гамма-кванты по своей природе тождественны и отличаются лишь происхождением.


Введение ………………………………………………………………………………….2

Механизм излучения……………………………………………………………………..3

Распределение энергии в спектре……………………………………………………….4

Виды спектров…………………………………………………………………………….6

Виды спектральных анализов……………………………………………………………7

Заключение………………………………………………………………………………..9

Литература……………………………………………………………………………….11

Введение

Спектр – это разложение света на составные части, лучи разных цветов.

Метод исследования химического состава различных веществ по их линейчатым спектрам испускания или поглощения называют спектральным анализом. Для спектрального анализа требуется ничтожное количество вещества. Быстрота и чувствительность сделали этот метод незаменимым как в лабораториях, так и в астрофизике. Так как каждый химический элемент таблицы Менделеева излучает характерный только для него линейчатый спектр испускания и поглощения, то это дает возможность исследовать химический состав вещества. Впервые его попробовали сделать физики Кирхгоф и Бунзен в 1859 году, соорудивспектроскоп. Свет пропускался в него через узкую щель, прорезанную с одного края подзорной трубы (эта труба с щелью называется коллиматор). Из коллиматора лучи падали на призму, накрытую ящиком, оклеенным изнутри черной бумагой. Призма отклоняла в сторону лучи, которые шли из щели. Получался спектр. После этого завесили окно шторой и поставили у щели коллиматора зажженную горелку. В пламя свечи вводили поочередно кусочки различных веществ, и смотрели через вторую подзорную трубу на получающийся спектр. Оказывалось, что раскаленные пары каждого элемента давали лучи строго определенного цвета, и призма отклоняла эти лучи на строго определенное место, и ни один цвет поэтому не мог замаскировать другой. Это позволило сделать вывод, что найден радикально новый способ химического анализа – по спектру вещества. В 1861 Кирхгоф доказал на основе этого открытия присутствие в хромосфере Солнца ряда элементов, положив начало астрофизике.

Механизм излучения

Источник света должен потреблять энергию. Свет - это электромагнитные волны с длиной волны 4*10 -7 - 8*10 -7 м. Электромагнитные волны излучаются при ускоренном движении заряженных частиц. Эти заряженные частицы входят в состав атомов. Но, не зная, как устроен атом, ничего достоверного о механизме излучения сказать нельзя. Ясно лишь, что внутри атома нет света так же, как в струне рояля нет звука. Подобно струне, начинающей звучать лишь после удара молоточка, атомы рождают свет только после их возбуждения.

Для того чтобы атом начал излучать, ему необходимо передать энергию. Излучая, атом теряет полученную энергию, и для непрерывного свечения вещества необходим приток энергии к его атомам извне.

Тепловое излучение. Наиболее простой и распространенный вид излучения - тепловое излучение, при котором потери атомами энергии на излучение света компенсируются за счет энергии теплового движения атомов или (молекул) излучающего тела. Чем выше температура тела, тем быстрее движутся атомы. При столкновении быстрых атомов (молекул) друг с другом часть их кинетической энергии превращается в энергию возбуждения атомов, которые затем излучают свет.

Тепловым источником излучения является Солнце, а также обычная лампа накаливания. Лампа очень удобный, но малоэкономичный источник. Лишь примерно 12% всей энергии, выделяемой в лампе электрическим током, преобразуется в энергию света. Тепловым источником света является пламя. Крупинки сажи раскаляются за счет энергии, выделяющейся при сгорании топлива, и испускают свет.

Электролюминесценция. Энергия, необходимая атомам для излучения света, может заимствоваться и из нетепловых источников. При разряде в газах электрическое поле сообщает электронам большую кинетическую энергию. Быстрые электроны испытывают соударения с атомами. Часть кинетической энергии электронов идет на возбуждение атомов. Возбужденные атомы отдают энергию в виде световых волн. Благодаря этому разряд в газе сопровождается свечением. Это и есть электролюминесценция.

Катодолюминесценция. Свечение твердых тел, вызванное бомбардировкой их электронами, называют катодолюминисенцией. Благодаря катодолюминесценции светятся экраны электронно-лучевых трубок телевизоров.

Хемилюминесценция. При некоторых химических реакциях, идущих с выделением энергии, часть этой энергии непосредственно расходуется на излучение света. Источник света остается холодным (он имеет температуру окружающей среды). Это явление называется хемиолюминесценкией.

Фотолюминесценция. Падающий на вещество свет частично отражается, а частично поглощается. Энергия поглощаемого света в большинстве случаев вызывает лишь нагревание тел. Однако некоторые тела сами начинают светиться непосредственно под действием падающего на него излучения. Это и есть фотолюминесценция. Свет возбуждает атомы вещества (увеличивает их внутреннюю энергию), после этого они высвечиваются сами. Например, светящиеся краски, которыми покрывают многие елочные игрушки, излучают свет после их облучения.

Излучаемый при фотолюминесценции свет имеет, как правило, большую длину волны, чем свет, возбуждающий свечение. Это можно наблюдать экспериментально. Если направить на сосуд с флюоресцеитом (органический краситель) световой пучок,

пропущенный через фиолетовый светофильтр, то эта жидкость начинает светиться зелено - желтым светом, т. е. светом большей длины волны, чем у фиолетового света.

Явление фотолюминесценции широко используется в лампах дневного света. Советский физик С. И. Вавилов предложил покрывать внутреннюю поверхность разрядной трубки веществами, способными ярко светиться под действием коротковолнового излучения газового разряда. Лампы дневного света примерно в три-четыре раза экономичнее обычных ламп накаливания.

Перечислены основные виды излучений и источники, их создающие. Самые распространенные источники излучения - тепловые.

Распределение энергии в спектре

На экране за преломляющей призмой монохроматические цвета в спектре располагаются в следующем порядке: красный (имеющий наибольшую среди волн видимого света длину волны (к=7,6(10-7 м и наименьший показатель преломления), оранжевый, желтый, зеленый, голубой, синий и фиолетовый (имеющий наименьшую в видимом спектре длину волны (ф=4(10-7 м и наибольший показатель преломления). Ни один из источников не дает монохроматического света, т. е. света строго определенной длины волны. В этом нас убеждают опыты по разложению света в спектр с помощью призмы, а также опыты по интерференции и дифракции.

Та энергия, которую несет с собой свет от источника, определенным образом распределена по волнам всех длин, входящим в состав светового пучка. Можно также сказать, что энергия распределена по частотам, так как между длиной волны и частотой существует простая связь: v = c.

Плотность потока электромагнитного излучения, или интенсивность /, определяется энергией &W, приходящейся на все частоты. Для характеристики распределения излучения по частотам нужно ввести новую величину: интенсивность, приходящуюся на единичный интервал частот. Эту величину называют спектральной плотностью интенсивности излучения.

Спектральную плотность потока излучения можно найти экспериментально. Для этого надо с помощью призмы получить спектр излучения, например, электрической дуги, и измерить плотность потока излучения, приходящегося на небольшие спектральные интервалы шириной Av.

Полагаться на глаз при оценке распределения энергии нельзя. Глаз обладает избирательной чувствительностью к свету: максимум его чувствительности лежит в желто-зеленой области спектра. Лучше всего воспользоваться свойством черного тела почти полностью поглощать свет всех длин волн. При этом энергия излучения (т. е. света) вызывает нагревание тела. Поэтому достаточно измерить температуру тела и по ней судить о количестве поглощенной в единицу времени энергии.

Обычный термометр имеет слишком малую чувствительность для того, чтобы его можно было с успехом использовать в таких опытах. Нужны более чувствительные приборы для измерения температуры. Можно взять электрический термометр, в котором чувствительный элемент выполнен в виде тонкой металлической пластины. Эту пластину надо покрыть тонким слоем сажи, почти полностью поглощающей свет любой длины волны.

Чувствительную к нагреванию пластину прибора следует поместить в то или иное место спектра. Всему видимому спектру длиной l от красных лучей до фиолетовых соответствует интервал частот от v кр до у ф. Ширине соответствует малый интервал Av. По нагреванию черной пластины прибора можно судить о плотности потока излучения, приходящегося на интервал частот Av. Перемещая пластину вдоль спектра, мы обнаружим, что большая часть энергии приходится на красную часть спектра, а не на желто-зеленую, как кажется на глаз.

По результатам этих опытов можно построить кривую зависимости спектральной плотности интенсивности излучения от частоты. Спектральная плотность интенсивности излучения определяется по температуре пластины, а частоту нетрудно найти, если используемый для разложения света прибор проградуирован, т. е. если известно, какой частоте соответствует данный участок спектра.

Откладывая по оси абсцисс значения частот, соответствующих серединам интервалов Av, а по оси ординат спектральную плотность интенсивности излучения, мы получим ряд точек, через которые можно провести плавную кривую. Эта кривая дает наглядное представление о распределении энергии и видимой части спектра электрической дуги.

Спектральные аппараты. Для точного исследования спектров такие простые приспособления, как узкая щель, ограничивающая световой пучок, и призма, уже недостаточны. Необходимы приборы, дающие четкий спектр, т. е. приборы, хорошо разделяющие волны различной длины и не допускающие перекрытия отдельных участков спектра. Такие приборы называют спектральными аппаратами. Чаще всего основной частью спектрального аппарата является призма или дифракционная решетка.

Рассмотрим схему устройства призменного спектрального аппарата. Исследуемое излучение поступает вначале в часть прибора, называемую коллиматором. Коллиматор представляет собой трубу, на одном конце которой имеется ширма с узкой щелью, а на другом - собирающая линза. Щель находится на фокусном расстоянии от линзы. Поэтому расходящийся световой пучок, попадающий на линзу из щели, выходит из нее параллельным пучком и падает на призму.

Так как разным частотам соответствуют различные показатели преломления, то из призмы выходят параллельные пучки, не совпадающие по направлению. Они падают на линзу. На фокусном расстоянии этой линзы располагается экран - матовое стекло или

фотопластинка. Линза фокусирует параллельные пучки лучей на экране, и вместо одного изображения щели получается целый ряд изображений. Каждой частоте (узкому спектральному интервалу) соответствует свое изображение. Все эти изображения вместе и образуют спектр.

Описанный прибор называется спектрографом. Если вместо второй линзы и экрана используется зрительная труба для визуального наблюдения спектров, то прибор называется спектроскопом, описанным выше. Призмы и другие детали спектральных аппаратов необязательно изготовляются из стекла. Вместо стекла применяются и такие прозрачные материалы, как кварц, каменная соль и др.

Виды спектров

Спектральный состав излучения веществ весьма разнообразен. Но, несмотря на это, все спектры, как показывает опыт, можно разделить на несколько типов:

Непрерывные спектры. Солнечный спектр или спектр дугового фонаря является непрерывным. Это означает, что в спектре представлены волны всех длин. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу.

Распределение энергии по частотам, т. е. Спектральная плотность интенсивности излучения, для различных тел различно. Например, тело с очень черной поверхностью излучает электромагнитные волны всех частот, но кривая зависимости спектральной плотности интенсивности излучения от частоты имеет максимум мри определенной частоте. Энергия излучения, приходящаяся на очень малые и очень большие частоты, ничтожно мала. При повышении температуры максимум спектральной плотности излучения смещается в сторону коротких волн.

Непрерывные (или сплошные) спектры, как показывает опыт, дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. Для получения непрерывного спектра нужно нагреть тело до высокой температуры.

Характер непрерывного спектра и сам факт его существования определяются не только свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом.

Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновении электронов с ионами.

Линейчатые спектры. Внесем в бледное пламя газовой горелки кусочек асбеста, смоченного раствором обыкновенной поваренной соли.

При наблюдении пламени в спектроскоп на фоне едва различимого непрерывного спектра пламени вспыхнет яркая желтая линия. Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени. Каждый из них - это частокол цветных линий различной яркости, разделенных широкими темными

полосами. Такие спектры называются линейчатыми. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах). Каждая линия имеет конечную ширину.

Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Это самый фундаментальный, основной тип спектров.

Изолированные атомы излучают строго определенные длины волн. Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом.

При увеличении плотности атомарного газа отдельные спектральные линии расширяются, и, наконец, при очень большом сжатии газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр.

Полосатые спектры. Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно

обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда.

Спектры поглощения. Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны, энергия которых определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны. Так, красное стекло пропускает волны, соответствующие красному свету, и поглощает все остальные.

Если пропускать белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии. Газ поглощает наиболее интенсивно свет как раз тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра - это линии поглощения, образующие в совокупности спектр поглощения.

Существуют непрерывные, линейчатые и полосатые спектры излучения и столько же видов спектров поглощения.

Линейчатые спектры играют особо важную роль, потому что их структура прямо связана со строением атома. Ведь эти спектры создаются атомами, не испытывающими внешних воздействий. Поэтому, знакомясь с линейчатыми спектрами, мы тем самым делаем первый шаг к изучению строения атомов. Наблюдая эти спектры, ученые получили

возможность «заглянуть» внутрь атома. Здесь оптика вплотную соприкасается с атомной физикой.

Виды спектральных анализов

Главное свойство линейчатых спектров состоит в том, что длины волн (или частоты) линейчатого спектра какого-либо вещества зависят только от свойств атомов этого вещества, но совершенно не зависят от способа возбуждения свечения атомов. Атомы

любого химического элемента дают спектр, не похожий на спектры всех других элементов: они способны излучать строго-определенный набор длин волн.

На этом основан спектральный анализ - метод определения химического состава вещества по его спектру. Подобно отпечаткам пальцев у людей линейчатые спектры имеют неповторимую индивидуальность. Неповторимость узоров на коже пальца помогает часто найти преступника. Точно так же благодаря индивидуальности спектров имеется

возможность определить химический состав тела. С помощью спектрального анализа можно обнаружить данный элемент в составе сложного вещества. Это очень чувствительный метод.

На данное время известны следующие виды спектральных анализов - атомный спектральный анализ (АСА) (определяет элементный состав образца по атомным (ионным) спектрам испускания и поглощения),эмиссионный АСА (по спектрам испускания атомов, ионов и молекул, возбуждённым различными источниками электромагнитного излучения в диапазоне от g-излучения до микроволнового),атомно-абсорбционный СА (осуществляют по спектрам поглощения электромагнитного излучения анализируемыми объектами (атомами, молекулами, ионами вещества, находящегося в различных агрегатных состояниях)),атомно-флуоресцентный СА, молекулярный спектральный анализ (МСА ) (молекулярный состав веществ по молекулярным спектрам поглощения, люминесценции и комбинационного рассеяния света.),качественный МСА (достаточно установить наличие или отсутствие аналитических линий определяемых элементов. По яркости линий при визуальном просмотре можно дать грубую оценку содержания тех или иных элементов в пробе),количественный МСА (осуществляют сравнением интенсивностей двух спектральных линий в спектре пробы, одна из которых принадлежит определяемому элементу, а другая (линия сравнения) - основному элементу пробы, концентрация которого известна, или специально вводимому в известной концентрации элементу).

В основе МСА лежит качественное и количественное сравнение измеренного спектра исследуемого образца со спектрами индивидуальных веществ. Соответственно различают качественный и количественный МСА. В МСА используют различные виды молекулярных спектров, вращательные [спектры в микроволновой и длинноволновой инфракрасной (ИК) областях], колебательные и колебательно-вращательные [спектры поглощения и испускания в средней ИК-области, спектры комбинационного рассеяния света (КРС), спектры ИК-флуоресценции], электронные, электронно-колебательные и электронно-колебательно-вращательные [спектры поглощения и пропускания в видимой и ультрафиолетовой (УФ) областях, спектры флуоресценции]. МСА позволяет проводить анализ малых количеств (в некоторых случаях доли мкг и менее) веществ, находящихся в различных агрегатных состояниях.

Количественный анализ состава вещества по его спектру затруднен, так как яркость спектральных ли­ний зависит не только от массы вещества, но и от способа воз­буждения свечения. Так, при низ­ких температурах многие спектраль­ные линии вообще не появляются. Однако при соблюдении стандарт­ных условий возбуждения свечения можно проводить и количественный спектральный анализ.

Самым точным из перечисленных анализов является атомно-абсорбционный СА. Методика проведения ААА по сравнению с др. методами значительно проще, для него характерна высокая точность определения не только малых, но и больших концентраций элементов в пробах. ААА с успехом заменяет трудоёмкие и длительные химические методы анализа, не уступая им в точности.

Заключение

В настоящее время определены спектры всех атомов и составлены таблицы спектров. С помощью спект­рального анализа были открыты многие новые элементы: рубидий, цезий и др. Элементам часто давали названия в соответствии с цветом наиболее интенсивных линий спект­ра. Рубидий дает темно-красные, рубиновые линии. Слово цезий оз­начает «небесно-голубой». Это цвет основных линий спектра цезия.

Именно с помощью спектраль­ного анализа узнали химический состав Солнца и звезд. Другие методы анализа здесь вообще не­возможны. Оказалось, что звезды состоят из тех же самых хими­ческих элементов, которые имеются и на Земле. Любопытно, что гелий первоначально открыли на Солнце, и лишь затем нашли в атмосфере Земли. Название этого

элемента напоминает об истории его откры­тия: слово гелий означает в пере­воде «солнечный».

Благодаря сравнительной просто­те и универсальности спектраль­ный анализ является основным ме­тодом контроля состава вещества в металлургии, машиностроении, атом­ной индустрии. С помощью спект­рального анализа определяют химический состав руд и минералов.

Состав сложных, главным образом органических, смесей анализи­руется по их молекулярным спект­рам.

Спектральный анализ можно производить не только по спектрам испускания, но и по спектрам поглощения. Именно линии поглощения в спектре Солнца и звезд позво­ляют исследовать химический состав этих небесных тел. Ярко светя­щаяся поверхность Солнца - фо­тосфера - дает непрерывный спектр. Солнечная атмосфера поглощает из­бирательно свет от фотосферы, что приводит к появлению линий погло­щения на фоне непрерывного спект­ра фотосферы.

Но и сама атмосфера Солнца излучает свет. Во время солнечных затмений, когда солнечный диск закрыт Луной, происходит обраще­ние линий спектра. На месте ли­ний поглощения в солнечном спект­ре вспыхивают линии излучения.

В астрофизике под спектраль­ным анализом понимают не только определение химического состава звезд, газовых облаков и т. д., но и нахождение по спектрам многих

других физических характеристик этих объектов: температуры, давле­ния, скорости движения, магнитной индукции.

Важно знать, из чего состоят окружающие нас тела. Изобрете­но много способов определения их состава. Но состав звезд и галактик можно узнать только с помощью спектрального анализа.

Экспрессные методы АСА широко применяются в промышленности, сельском хозяйстве, геологии и многих др. областях народного хозяйства и науки. Значительную роль АСА играет в атомной технике, производстве чистых полупроводниковых материалов, сверхпроводников и т. д. Методами АСА выполняется более 3 / 4 всех анализов в металлургии. С помощью квантометров проводят оперативный (в течение 2-3 мин ) контроль в ходе плавки в мартеновском и конвертерном производствах. В геологии и геологической разведке для оценки месторождений производят около 8 млн. анализов в год. АСА применяется для охраны окружающей среды и анализа почв, в криминалистике и медицине, геологии морского дна и исследовании состава верхних слоев атмосферы, при

разделении изотопов и определении возраста и состава геологических и археологических объектов и т. д.

Итак, спектральный анализ применяется почти во всех важнейших сферах человеческой деятельности. Таким образом, спектральный анализ является одним из важнейших аспектов развития не только научного прогресса, но и самого уровня жизни человека.

Литература

Заидель А. Н., Основы спектрального анализа, М., 1965,

Методы спектрального анализа, М, 1962;

Чулановский В. М., Введение в молекулярный спектральный анализ, М. - Л., 1951;

Русанов А. К., Основы количественного спектрального анализа руд и минералов. М., 1971

Иараджули Георгий

Спектры излучения и поглощения.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Спектры. Виды спектров. Спектральный анализ. Презентация по физике ученика 11 класса ГБОУ СОШ № 1465 имени адмирала Н.Г. Кузнецова Иараджули Георгия Учитель физики Круглова Лариса Юрьевна

Понятие спектра и основные сведения Спектр – распределение значений физической величины (обычно энергии, частоты или массы).Графическое представление такого распределения называется спектральной диаграммой. Обычно под спектром подразумевается электромагнитный спектр - спектр частот электромагнитного излучения.

История исследования В научный обиход термин «спектр» ввёл Ньютон в 1671-1672 годах для обозначения многоцветной полосы, похожей на радугу, которая получается при прохождении солнечного луча через треугольную стеклянную призму.

Исторически раньше всех прочих спектров было начато исследование оптических спектров. Первым был Исаак Ньютон, который и ввёл в научный обиход термин "спектр" для обозначения полученной им в опытах над солнечным светом многоцветной полосы, похожей на радугу. В своём труде «Оптика» , вышедшем в 1704 году, опубликовал результаты своих опытов разложения с помощью треугольной стеклянной призмы белого света на отдельные компоненты различной цветности и преломляемости, то есть получил спектры солнечного излучения, и объяснил их природу, показав, что цвет есть собственное свойство света.

Фактически, Ньютон заложил основы оптической спектроскопии: в «Оптике» он описал все три используемых поныне метода разложения света: преломление, интерференцию и дифракцию, а его призма с коллиматором, щелью и линзой была первым спектроскопом. Фрагмент рукописи «Оптики» Ньютона с описанием одного из экспериментов с призмой.

Виды спектров Спектры излучения Спектры поглощения Спектры рассеивания

Спектры излучения Непрерывные Линейчатые Полосатые

Непрерывный спектр Дают тела, находящиеся в твердом, жидком состоянии, а также плотные газы. Чтобы получить, надо нагреть тело до высокой температуры. Характер спектра зависит не только от свойств отдельных излучающих атомов, но и от взаимодействия атомов друг с другом. В спектре представлены волны всех длин и нет разрывов. Непрерывный спектр цветов можно наблюдать на дифракционной решетке. Хорошей демонстрацией спектра является природное явление радуги. Одинаковы для разных веществ, поэтому их нельзя использовать для определения состава вещества

Линейчатый спектр Состоит из отдельных линий разного или одного цвета, имеющих разные расположения Позволяет по спектральным линиям судить о химическом составе источника света Дают все вещества в газообразном атомарном (но не молекулярном) состоянии (атомы практически не взаимодействуют друг с другом) Изолированные атомы данного химического элемента излучают волны строго определенной длины Для наблюдения используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом При увеличении плотности атомарного газа отдельные спектральные линии расширяются

Примеры линейчатых спектров

Полосатый спектр Дают вещества, находящиеся в молекулярном состоянии Спектр состоит из отдельных полос, разделенных темными промежутками. Каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий Для наблюдения используют свечение паров в пламени или свечение газового разряда

Примеры полосатых спектров Спектр угольной дуги (полосы молекул CN и C 2) Спектр испускания паров молекулы йода.

Спектр поглощения Это совокупность частот, поглощаемых данным веществом. Вещество поглощает те линии спектра, которые и испускает, являясь источником света Спектры поглощения получают, пропуская свет от источника, дающего сплошной спектр, через вещество, атомы которого находятся в невозбужденном состоянии Если пропускать белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного спектра источника появятся темные линии. Газ поглощает наиболее интенсивно свет тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра – это линии поглощения, образующие в совокупности спектр поглощения.

Примеры спектров поглощения Фраунгофер Йозеф (1787–1826)-немецкий физик. Усовершенствовал изготовление линз, дифракционных решеток. Подробно описал (1814) линии поглощения в спектре Солнца, названные его именем. Изобрел гелиометр-рефрактор. Фраунгофера справедливо считают отцом астрофизики за его работы в астроскопии. Линии Фраунгофера

Линии поглощения в спектре звёзд

Спектральный анализ Спектральный анализ – метод определения химического состава вещества по его спектру. В 1854 году Г.Р.Кирхгоф и Р.В.Бунзен начали изучать спектры пламени, окрашенного парами металлических солей, и в результате ими были заложены основы спектрального анализа, первого из инструментальных спектральных методов - одних из самых мощных методов экспериментальной науки.

Спектральный анализ окончательно был разработан в 1859 году. Фактически, спектральный анализ открыл новую эпоху в развитии науки - исследование спектров как наблюдаемых наборов значений функции состояния объекта или системы оказалось чрезвычайно плодотворным и, в конечном итоге, привело к появлению квантовой механики: Планк пришёл к идее кванта в процессе работы над теорией спектра абсолютно чёрного тела.

С помощью спектрального анализа можно обнаружить данный элемент в составе сложного вещества если даже его масса не превышает 10 -10 кг. В настоящее время определены спектры всех атомов и составлены таблицы спектров. С помощью спектрального анализа были открыты многие новые элементы: рубидий, цезий и др. Именно с помощью спектрального анализа узнали химический состав Солнца и звезд. Благодаря сравнительной простоте и универсальности спектральный анализ является основным методом контроля состава вещества в металлургии, машиностроении, атомной индустрии. С помощью спектрального анализа определяют химический состав руд и минералов. Состав сложных, главным образом органических, смесей анализируется по их молекулярным спектрам. Спектральный анализ можно производить не только по спектрам испускания, но и по спектрам поглощения. Именно линии поглощения в спектре Солнца и звезд позволяют исследовать химический состав этих небесных тел.

Спектральные аппараты Для точного исследования спектров используют спектральные аппараты. Чаще всего основной частью спектрального аппарата является призма или дифракционная решетка. Для получения спектра излучения видимого диапазона используется прибор, называемый спектроскопом, в котором детектором излучения служит человеческий глаз. Спектроскоп Спектрограф

Спектроскоп Кирхгофа-Бунзена

Рекомендуем почитать

Наверх