Структурная организация митохондрий. Строение митохондрий

Техника для сада 18.10.2019
Техника для сада

МИТОХОНДРИИ (mitochondria ; греч, mitos нить + chondrion зернышко) - органоиды, присутствующие в цитоплазме клеток животных и растительных организмов. М. принимают участие в процессах дыхания и окислительного фосфорилирования, продуцируют энергию, необходимую для функционирования клетки, представляя, таким образом, ее «силовые станции».

Термин «митохондрии» был предложен в 1894 г. Бендой (С. Benda). В середине 30-х гг. 20 в. удалось впервые выделить М. из клеток печени, что позволило исследовать эти структуры биохим, методами. В 1948 г. Хогебумом (G. Hogeboom) были получены окончательные доказательства того, что М. действительно являются центрами клеточного дыхания. Значительные успехи в изучении этих органоидов были сделаны в 60-70 гг. в связи с применением методов электронной микроскопии и молекулярной биологии.

Форма М. варьирует от почти круглых до сильно вытянутых, имеющих вид нитей (рис. 1), Размер их колеблется от 0,1 до 7 мкм. Количество М. в клетке зависит от типа ткани и функционального состояния организма. Так, в сперматозоидах число М. невелико - ок. 20 (на клетку), в клетках эпителия почечных канальцев млекопитающих их содержится до 300 в каждой, а у гигантской амебы (Chaos chaos) обнаружено 500 000 митохондрий, В одной клетке печени крысы ок. 3000 М., однако в процессе голодания животного число М. может сократиться до 700. Обычно М. распределяются в цитоплазме достаточно равномерно, однако в клетках нек-рых тканей М. могут быть постоянно локализованы в участках, особенно нуждающихся в энергии. Напр., в скелетной мышце М. часто находятся в контакте с контрактильными участками миофибрилл, образуя правильные трехмерные структуры. В сперматозоидах М. образуют спиральный футляр вокруг осевой нити хвоста, что, вероятно, связано с возможностью использовать энергию АТФ, синтезируемую в М., для движений хвоста. В аксонах М. концентрируются вблизи синаптических окончаний, где происходит процесс передачи нервных импульсов, сопровождающийся энергозатратой. В клетках эпителия почечных канальцев М. связаны с выпячиваниями базальной клеточной мембраны. Это вызвано необходимостью постоянного и интенсивного снабжения энергией процесса активного переноса воды и растворенных в ней веществ, протекающего в почках.

Электронно-микроскопически установлено, что М. содержит две мембраны - наружную и внутреннюю. Толщина каждой мембраны ок. 6 нм, расстояние между ними - 6-8 нм. Наружная мембрана гладкая, внутренняя образует сложные выросты (кристы), вдающиеся в полость митохондрии (рис. 2). Внутреннее пространство М. носит название матрикса. Мембраны представляют собой пленку из компактно уложенных молекул белков и липидов, в то время как матрикс подобен гелю и содержит в своем составе растворимые белки, фосфаты и другие хим. соединения. Обычно матрикс выглядит гомогенным, лишь в нек-рых случаях в нем можно обнаружить тонкие нити, трубочки и гранулы, содержащие ионы кальция и магния.

Из особенностей строения внутренней мембраны необходимо отметить наличие в ней сферических частиц ок. 8-10 нм в поперечнике, сидящих на короткой ножке и иногда выступающих в матрикс. Эти частицы были открыты в 1962 г. Фернандес-Мораном (H. Fernandez-Moran). Они состоят из белка, обладающего АТФ-азной активностью, получившего обозначение F1. Белок прикрепляется к внутренней мембране только со стороны, обращенной к матриксу. Частицы F1 располагаются на расстоянии 10 нм друг от друга, а в каждой М. содержится 10 4 -10 5 , таких частиц.

В кристах и внутренних мембранах М. содержится большинство дыхательных ферментов (см.), дыхательные ферменты организованы в компактные ансамбли, распределенные с правильными промежутками в кристах М. на расстоянии 20 нм друг от друга.

М. почти всех типов клеток животных и растений построены по единому принципу, однако возможны отклонения в деталях. Так, кристы могут располагаться не только поперек длинной оси органоида, но и продольно, напр, в М. синаптической зоны аксона. В ряде случаев кристы могут ветвиться. В М. простейших организмов, нек-рых насекомых и в клетках клубочковой зоны надпочечников кристы имеют форму трубочек. Число крист различно; так, в М. клеток печени и половых клеток крист очень мало и они короткие, в то время как матрикс обилен; в М. мышечных клеток кристы многочисленны, а матрикса мало. Существует мнение, что число крист коррелирует с окислительной активностью М.

Во внутренней мембране М. осуществляются параллельно три процесса: окисление субстрата цикла Кребса (см. Трикарбоновых кислот цикл), перенос освободившихся при этом электронов и накопление энергии путем образования макроэргических связей аденозинтрифосфата (см. Аденозинфосфорные кислоты). Основной функцией М. является сопряжение синтеза АТФ (из АДФ и неорганического фосфора) и аэробного процесса окисления (см. Окисление биологическое). Накопленная в молекулах АТФ энергия может трансформироваться в механическую (в мышцах), электрическую (нервная система), осмотическую (почки) и т. д. Процессы аэробного дыхания (см. Окисление биологическое) и сопряженного с ним окислительного фосфорилирования (см.) являются основными функциями М. Кроме того, в наружной мембране М. может происходить окисление жирных к-т, фосфолипидов и нек-рых других соединений.

В 1963 г. Насс и Насс (М. Nass, S. Nass) установили, что в М. содержится ДНК (одна или несколько молекул). Все исследованные до сих пор митохондриальные ДНК из животных клеток состоят из ковалентно замкнутых колец диам. ок. 5 нм. У растений митохондриальная ДНК значительно длиннее и не всегда имеет форму кольца. Митохондриальная ДНК во многих отношениях отличается от ядерной. Репликация ДНК происходит при помощи обычного механизма, однако не совпадает во времени с репликацией ядерной ДНК. Количество генетической информации, заключенной в молекуле митохондриальной ДНК, по-видимому, недостаточно для кодирования всех белков и ферментов, содержащихся в М. Митохондриальные гены кодируют в основном структурные белки мембран и белки, участвующие в морфогенезе митохондрий. М. имеют свои транспортные РНК и синтетазы, содержат все компоненты, необходимые для синтеза белка; их рибосомы меньше цитоплазматических и более похожи на рибосомы бактерий.

Продолжительность жизни М. сравнительно невелика. Так, время обновления половины количества М. составляет для печени 9,6-10,2 сут., для почки - 12,4 сут. Пополнение популяции М. происходит, как правило, из предсуществующих (материнских) М. путем их деления или почкования.

Давно высказывалось предположение, что в процессе эволюции М. возникли, вероятно, путем эндосимбиоза примитивных ядросодержащих клеток с бактериоподобными организмами. Имеется большое число доказательств этому: наличие собственной ДНК, более сходной с ДНК бактерий, чем с ДНК ядра клетки; присутствие в М. рибосом; синтез ДНК-зависимой РНК; чувствительность митохондриальных белков к антибактериальному препарату - хлорамфениколу; сходство с бактериями в реализации дыхательной цепи; морфол., биохим, и физиол, различия между внутренней и наружной мембраной. Согласно симбиотической теории клетка-хозяин рассматривается как анаэробный организм, источником энергии для к-рого является гликолиз (протекающий в цитоплазме). В «симбионте» же реализуется цикл Кребса и дыхательная цепь; он способен к дыханию и окислительному фосфорилированию (см.).

М. являются весьма лабильными внутриклеточными органоидами, раньше других реагирующими на возникновение каких-либо патол, состояний. Возможны изменения числа М. в клетке (вернее, в их популяциях) или изменения их структуры. Напр., при голодании, действии ионизирующего облучения число М. уменьшается. Структурные изменения обычно состоят в набухании всего органоида, просветлении матрикса, разрушении крист, нарушении целостности наружной мембраны.

Набухание сопровождается значительным изменением объема М. В частности, при ишемии миокарда объем М. увеличивается в 10 раз и более. Различают два типа набухания: в одном случае оно связано с изменением осмотического давления внутри клетки, в других случаях - с изменениями клеточного дыхания, сопряженного с ферментативными реакциями и первичными функциональными расстройствами, вызывающими изменения водного обмена. Помимо набухания, может происходить вакуолизация М.

Независимо от причин, вызывающих патол, состояние (гипоксия, гиперфункция, интоксикация), изменения М. довольно стереотипны и неспецифичны.

Наблюдаются такие изменения структуры и функции М., к-рые, по-видимому, становились причиной возникновения болезни. В 1962 г. Луфт (R. Luft) описал случай «митохондриальной болезни». Больному с резко повышенной интенсивностью обмена веществ (при нормальной функции щитовидной железы) была сделана пункция скелетной мышцы и найдено повышенное число М., а также нарушение структуры крист. Дефектные митохондрии в клетках печени наблюдались и при выраженном тиреотоксикозе. Виноград (J. Vinograd) с сотр. (с 1937 по 1969) обнаружил, что у больных с определенными формами лейкемии митохондриальные ДНК из лейкоцитов заметно отличались от нормальных. Они представляли собой открытые кольца или группы сцепленных колец. Частота этих аномальных форм снижалась в результате химиотерапии.

Библиография: Гаузе Г. Г. Митохондриальная ДНК, М., 1977,библиогр.; Д e P о-бертис Э., Новинский В. и С а э с Ф. Биология клетки, пер. с англ., М., 1973; Озернюк Н. Д. Рост и воспроизведение митохондрий, М., 1978, библиогр.; Поликар А. и Бесси М. Элементы патологии клетки, пер. с франц., М., 1970; РудинД. и Уилки Д. Биогенез митохондрий, пер. с англ., М., 1970, библиогр.; Серов В. В. и Пауков В. С. Ультраструктурная патология, М., 1975; С э д ж e р Р. Цитоплазматические гены и органеллы, пер. с англ., М., 1975.

Т. А. Залетаева.

О СЛОЖНОМ ПРОСТЫМ ЯЗЫКОМ.

Тема эта сложная и комплексная, затрагивающая сразу же огромное количество биохимических процессов происходящих в нашем организме. Но давайте все таки попробуем разобраться, что же такое митохондрии и как они работают.

И так, митохондрии это одна из самых важных составляющих живой клетки. Если говорить простым языком то можно сказать, что это энергетическая станция клетки . Их деятельность основана на окисление органических соединений и генерации электрического потенциала (энергии освободившейся при распаде молекулы АТФ) для осуществления мышечного сокращения.

Все мы знаем, что работа нашего организма происходит в строгом соответствии с первым законом термодинамики. Энергия не создается в нашем организме, а лишь превращается. Организм только выбирает форму трансформации энергии, не производя ее, от химической к механической и тепловой. Основным источником всей энергии на планете Земля является Солнце. Приходя к нам в форме света, энергия поглощается хлорофиллом растений, там она возбуждает электрон атома водорода и таким образом дает энергию живой материи.

Своей жизнью мы обязаны энергии маленького электрона.

Работа митохондрии заключается в ступенчатом переносе энергии электрона водорода между атомами металлов, присутствующих в группах белковых комплексов дыхательной цепи (электронно-транспортной цепи белков), где каждый последующий комплекс обладает более высоким сродством к электрону притягивая его, чем предыдущий, до тех пор, пока электрон не соединиться с молекулярным кислородом, обладающим наибольшим сродством к электрону.

Каждый раз при передачи электрона по цепи высвобождается энергия которая аккумулируется в виде электрохимического градиента и затем реализовывается в виде мышечного сокращения и выделения тепла.

Серия окислительных процессов в митохондрии позволяющая перенести энергетический потенциал электрона называется «внутриклеточным дыханием» или часто «дыхательной цепью» , так как электрон по цепочки передается от атома к атому до тех пор пока не достигнет своей конечной цели атома кислорода.

Митохондриям нужен кислород для переноса энергии в процессе окисления.

Митохондрии потребляют до 80% кислорода который мы вдыхаем.

Митохондрия представляет из себя постоянную структуру клетки, расположенную в ее цитоплазме. Размер митохондрии обычно составляет от 0,5 до 1 мкм в диаметре. По форме она имеет зернистую структуру и может занимать до 20% объема клетки. Такая постоянная органическая структура клетки называется органелла . К органеллам относятся и миофибриллы – сократительные единицы мышечной клетки; и ядро клетки это тоже органелла. Вообще, любая постоянная структура клетки является органоидом-органеллой.

Открыл митохондрии и впервые описал немецкий анатом и гистолог Рихард Альтман в 1894 году, а название этой органелле дал другой немецкий гистолог К. Бенд в 1897 году. Но только в 1920 году, опять же немецкий биохимик Отто Вагбург, доказал, что с митохондриями связаны процессы клеточного дыхания.

Существует теория, согласно которой митохондрии появились в результате захвата примитивными клетками, клетками которые сами не могли использовать кислород для генерации энергии, бактерий протогенотов, которые могли это делать. Именно потому, что митохондрия ранее представляла из себя отдельный живой организм она и по сей день обладает собственным ДНК.

Митохондрии ранее представляли из себя самостоятельный живой организм.

В ходе эволюции прогеноты предали множество своих генов сформировавшемуся, благодаря повысившейся энергоэффективности, ядру и перестали быть самостоятельными организмами. Митохондрии присутствуют во всех клетках. Даже в сперматозоиде есть митохондрии. Именно благодаря им приводится в движение хвостик сперматозоида осуществляющий его движение. Но особенно много митахондрий в тех местах, где необходима энергия для любых жизненных процессов. И это конечно прежде всего мышечные клетки.

В мышечных клетках митохондрии могут объединяться в группы гигантских разветвленных митохондрий, связанных друг с другом с помощью межмитохондриальных контактов, в которых они создают согласованную работающую кооперативную систему . Пространство в такой зоне имеет повышенную электронную плотность. Новые митохондрии образуются путем простого деления предыдущих органелл. Наиболее «простой» и доступный всем клеткам механизм энергетического обеспечения чаще всего называют общим понятием гликолиз .

Это процесс последовательного разложения глюкозы до пировиноградной кислоты. Если этот процесс происходит без участия молекулярного кислорода или с недостаточным его присутствием, то он называется анаэробный гликолиз . При этом глюкоза расщепляется не до конечных продуктов, а до молочной и пировиноградной кислоты которая далее претерпевает дальнейшие превращения в ходе брожения. Поэтому высвобождающейся энергии бывает меньше, но и скорость получения энергии быстрее. В результате анаэробного гликолиза из одной молекулы глюкозы клетка получает 2 молекулы АТФ и 2 молекулы молочной кислоты. Такой «базовый» энергетический процесс может протекать внутри любой клетки без участия митохондрий .

В присутствии молекулярного кислорода внутри митохондрий осуществляется аэробный гликолиз в рамках «дыхательной цепи». Пировиноградная кислота в аэробных условиях вовлекается в цикл трикарбоновых кислот или цикл Кребса . В результате этого многостадийного процесса из одной молекулы глюкозы образуется 36 молекул АТФ. Сравнение энергетического баланса клетки, имеющей развитые митохондрии и клетки, где они не развиты показывает (при достаточном количестве кислорода) различие в полноте использования энергии глюкозы внутри клетки почти в 20 раз!

У человека, волокна скелетных мышц можно условно разделить на три типа исходя из механических и метаболических свойств: - медленные окислительные; - быстрые гликолитические; - быстрые окислительно-гликолитические.


Быстрые мышечные волокна предназначены для выполнения быстрой и тяжелой работы. Для своего сокращения они используют в основном быстрые источники энергии, а именно криатинфосфот и анаэробный гликолиз. Содержание митохондрий в таких типах волокон значительно меньше чем в медленных мышечных волокнах.

Медленные мышечные волокна выполняют медленные сокращения, но способны работать длительное время. В качестве энергии они используют аэробный гликолиз и синтез энергии из жиров. Это дает гораздо больше энергии чем анаэробный гликолиз, но требует в замен больше времени, так как цепочка деградации глюкозы более сложная и требует присутствия кислорода, транспортировка которого к месту преобразования энергии тоже занимает время. Медленные мышечные волокна называют красными из-за миоглобина – белка, ответственный за доставку кислорода внутрь волокна. Медленные мышечные волокна содержат значительное количество митохондрий.

Возникает вопрос, каким образом и с помощью каких упражнений можно развить в мышечных клетках разветвленную сеть митохондрий? Существуют различные теории и методики тренировок и о них в материале по .

Митохондрии, что же это такое и какую они выполняют функцию. Кончено не каждый человек понимает, зачем ему нужна эта информация. Но, если вы внимательно прочтете эту статью, то ваше мнение поменяется.

Внутреннюю организацию клеток, как животных, так и растений, можно сравнить с коммуной. Как это понимать?

Это означает, что все клетки равны, и они в свою очередь выполняют одну специфическую роль. Основная роль клеток заключается в создании сбалансированного ансамбля.

Что касается митохондрий, то это отдельная структура. Включает в себя множество внутриклеточных функций.

Содержание статьи:
1. Общая информация

Общая информация

Структуру открыли еще в середине XIX века. Стоит отметить, что в течение целых 150 лет, все ученые считали, что митохондрии способны выполнять только единственную функцию, а именно быть энергетической машиной клетки.

Для того чтобы было немного понятно: организм получает питательные компоненты, после чего происходит процесс деградации, который доходит до митохондрии. Затем наблюдается окислительная деградация всех питательных компонентов, которые поступили в организм.

Где же живут митохондрии?

Митохондрии находятся в цитоплазме, а именно в тех районах, где появляется необходимость в АТФ.

Если более внимательно посмотреть с точки зрения биологии, то митохондрий много в мышечной ткани сердца. В сперматозоидах также расположены митохондрии, а их основная цель это создать защитную маскировку. В сперматозоидах митохондрии вырабатывают значительно меньше энергии, чем в мышечной ткани сердца.

Основное строение митохондрий

Митохондрий имеет достаточно сложную структуру. Состоит из двух мембран, а именно из внешней и внутренней. Помимо этого имеется межмембранное пространство.

Внутри самого митохондрия располагается матрикса, иными словами это внутреннее содержимое. Под микроскопом на матриксе можно заметить небольшие выросты, это крист.

Синтез собственного белка происходит за счет ДНК, РНК и конечно же рибосом.

Что касается внешней и внутренней мембраны, то они выполняют разнообразные функции. Именно по этой причины ученые разделили функциональные способности на химический состав.

Мембрана не превышает более чем 10 нм. Внешняя мембрана немного похожа на плазмалемму, поэтому она выполняет барьерную функцию.

Внутренняя мембрана митохондрий состоит из крист, за счет этого она образует мультиферментативную систему.

Функции митохондрий

Самая основная функция митохондрий – синтез АТФ (форма химической энергии). Если внимательно изучить биологию, то можно заметить, что молекула способна образовываться двумя путями.

Первый путь образования осуществляется исключительно в результате субстратного фосфорилирования. Второй путь образования происходит в процессе переноса остатка именно фосфорной кислоты.

Важно! Митохондрии для синтезирования АТФ используют два пути. Почему? Дело в том, что первый путь образования характерен для начального процесса окисления, который в свою очередь осуществляется в матриксе. Второй путь — уже завершающий процесс энергообразования. В этом случае осуществляется связывания митохондрий с кристами.

Процесс энергообразования можно условно разделить на определенные, поэтапные стадии. Первые две стадии протекают исключительно в матриксе, что касается оставшихся стадий, то они протекают в кристах митохондрий.

  1. Из цитоплазмы в митохондрии начинают поступать не только жирные кислоты, но и соли пировиноградной кислоты. Именно в митохондрии происходит превращение кислот в ацетил-коэнзим.
  2. На второй стадии происходит окисление –конэнзим, в медицинской практике также называют ацетил-СоА. Процесс окисления осуществляется в цикле Кребса. На завершающем этапе второго процесс образуется НАДН+ и две молекулы кислорода.
  3. На третьем этапе по дыхательной цепи производится перенос электролитов, непосредственно с НАДН на кислород. После чего образуется вода.
  4. Образование АТФ.

Как вы видите, что процесс образования энергии в организме человека достаточно серьезный.

Зачем же нужны митохондрии?

Теперь вы знаете, что митохондрии это клеточные органеллы, которые являются основным источником энергии. Для производства энергии, органеллам нужен не только кислород, но и глюкоза.

С глюкозой все более просто, пополнить ее запасы можно с пищей, но, а как же быть с кислородом?

Каждый человек воспринимает за дыхание вдох и выдох, это естественное внешнее дыхание. Процесс самого дыхания необходимо рассмотреть с иной точки зрения.

Итак, когда человек вдыхание, кислород начинает поступать в альвеолы, после чего проникает в кровь, затем разноситься дальше по клеткам и тканям организма.

Кислород состоит из клеток, которые в свою очередь могут окислять питательные компоненты и тем самым выделятся энергия. Зафиксируем ваше внимание: конечный результат процесса – и есть выработка в митохондриях энергии. В медицинской практике данный процесс называют клеточным дыханием.

Теперь можно сделать небольшой вывод: чем больше будет митохондрий, тем больше наш организм получит питательных веществ.

Можно ли повысить количество митохондрий самостоятельно?

Да, повысить количество органелл в организме можно, главное знать как. Самый простой способ это заняться аэробным бегом. В момент аэробного бега, человек дышит свободно, тем самым поступает достаточно большое количество кислорода.

Теперь рассмотрим, как же повысить проникновение кислорода в клетку. Итак, для того чтобы увеличить парциальное давление, непосредственно углекислого газа, необходимо ежедневно делать упражнения на носовое дыхание. Например: вдох и выдох через нос. Выдыхать носом очень тяжело для человека, но при этом есть возможность накопить много углекислого газа. Второй способ – проводить дыхательную гимнастику по методу Бутейко.

Самый простой вариант, это конечно же, использовать специальные маски или аппараты.

Помимо упражнений и аппаратов, необходимо придерживаться правильного питания. В рацион включить как можно больше продуктов, которые богаты на полезные витамины и макро и микроэлементы.

Например:

  1. Мясо.
  2. Рыбу.
  3. Фрукты и овощи.

Для того чтобы повысить уровень глюкозы в организме, которая также активно участвует синтезе АТФ, включить в рацион питания сухофрукты, мед (при условии, что нет аллергической реакции на продукт).

Некоторые врачи советуют использовать витамины и добавки в драже или капсулах. Купить витаминный комплекс в состав которого входит магний, витамины из группы В и С, D-рибоза.

Строение и функции митохондрии видео

  • Микроскопический анализ постоянного микропрепарата «Клетки эпителия кожи лягушки»
  • Микроскопический анализ постоянного микропрепарата «Клетки крови лягушки»
  • Микроскопический анализ постоянного микропрепарата «Клетки крови человека»
  • Практическое занятие №2
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • Практическое занятие №3
  • 3. Вопросы для самоподготовки по данной теме:
  • 7. Содержание занятия:
  • Эндоплазматическая сеть (эпс)
  • Рибосомы
  • Пластинчатый комплекс Гольджи
  • Микротрубочки
  • 2. Органоиды с защитной и пищеварительной функцией Лизосомы
  • Пероксисомы (микротельца)
  • 3. Органоиды, участвующие в энергообеспечении клетки
  • Митохондрии
  • 4. Органоиды, участвующие в делении и движении клеток
  • Клеточный центр
  • 7.4. Самостоятельная работа студентов под контролем преподавателя. Практическая работа №1
  • Микроскопический анализ постоянного препарата «Комплекс Гольджи в клетках спинального ганглия»
  • Микроскопический анализ постоянного препарата «Клеточный центр в делящихся клетках лошадиной аскариды»
  • 3. Микроскопический анализ постоянного препарата «Митохондрии в клетках печени»
  • 4. Микроскопический анализ постоянного препарата «Лизосомы»
  • Практическая работа №1 Работа с электронными микрофотографиями:
  • 1. Рибосомы
  • 2. Гранулярная эндоплазматическая сеть
  • Цитоплазматические микротрубочки
  • Практическое занятие № 4
  • 7. Содержания занятия:
  • 7.1. Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия. Митотическая активность в тканях и клетках
  • 7.3. Самостоятельная работа студентов под контролем преподавателя. Практическая работа
  • 1. Митоз (непрямое деление) в клетках корешка лука
  • 2. Амитоз (прямое деление) в клетках печени мыши
  • Практическое занятие №5
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • Решение задач
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 7. Содержания занятия
  • 3.Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 3.Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 7.1. Контроль исходного уровня знаний и умений.
  • 7.2. Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
  • 7.4. Самостоятельная работа студентов под контролем преподавателя.
  • Решение типовых и ситуационных задач
  • 8. Задание для самостоятельной работы студентов.
  • Практическое занятие № 12
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 7.1. Контроль исходного уровня знаний и умений.
  • 7.2. Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
  • 1. Анализ родословных
  • 2. Близнецовый метод исследования генетики человека
  • 7.4. Самостоятельная работа студентов под контролем преподавателя.
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 7.1. Контроль исходного уровня знаний и умений.
  • 7.2. Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
  • 1. Дерматоглифический метод исследования генетики человека
  • 2. Цитогенетический метод в исследовании генетики человека
  • Изучение хромосомного набора
  • Экспресс-метод определения полового хроматина
  • 3. Проведение дактилоскопического анализа
  • Выводы: ___________________________________________________________
  • 4.Цитогенетический анализ кариотипа (по микрофотографиям метафазных пластинок).
  • 5.Экспресс-метод исследования х-полового хроматина в ядрах эпителия слизистой оболочки полости рта
  • 8. Задание для самостоятельной работы студентов.
  • Практическое занятие № 14
  • 2. Учебные цели:
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 7.1. Контроль исходного уровня знаний и умений.
  • 7.2. Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
  • Популяционно-статистический метод
  • 2. Биохимический метод
  • 3. Молекулярно-генетический метод
  • Полимеразная цепная реакция синтеза днк
  • 7.4. Самостоятельная работа студентов под контролем преподавателя. Практическая работа
  • 1. Применение закона Харди-Вайнберга для расчета частот генотипов, аллелей и характеристики генетической структуры популяции (группы), используя тест на праворукость и леворукость
  • Наблюдаемые частоты генотипов и аллелей
  • Наблюдаемые частоты генотипов и аллелей
  • Наблюдаемые и ожидаемые частоты генотипов и аллелей
  • Наблюдаемые частоты генотипов и аллелей
  • Молекулярно-генетический метод: моделирование пцр-анализа делеции f508 гена cftr при диагностике муковисцидоза
  • 5’ Act gcg agc t 3’
  • 3’A ccc gct cta 5’
  • 8. Задание для самостоятельной работы студентов.
  • 7. Содержания занятия:
  • 3.5.2. Дополнительная литература2
  • Митохондрии

    Митохондрии - это структуры палочковидной или овальной формы (греч. mitos - нить, chondros - гранула). Они обнаружены во всех животных клетках (исключая зрелые эритроциты): у высших растений, у водорослей и простейших. Отсутствуют они только у прокариот бактерий.

    Эти органеллы впервые были обнаружены и описаны в конце прошлого столетия Альтманом. Несколько позже эти структуры были названы митохондриями. В 1948 г. Хогебум указал на значение митохондрий как центра клеточного дыхания, а в 1949 г. Кеннеди и Ленинджер установили, что в митохондриях протекает цикл окислительного фосфорилирования. Так было доказано, что митохондрии служат местом генерирования энергии.

    Митохондрии видны в обычном световом микроскопе при специальных методах окраски. В фазово - контрастном микроскопе и в «темном поле» их можно наблюдать в живых клетках.

    Строение, размеры, форма митохондрий очень вариабельны. Это зависит в первую очередь от функционального состояния клеток. Например, установлено, что в мотонейронах мух, летающих непрерывно 2 часа, проявляется огромное количество шаровидных митохондрий, а у мух со склеенными крыльями число митохондрий значительно меньше и они имеют палочковидную форму (Л. Б. Левинсон). По форме они могут быть нитевидными, палочковидными, округлыми и гантелеобразными даже в пределах одной клетки.

    Митохондрии локализованы в клетке, как правило, либо в тех участках, где расходуется энергия, либо около скоплений субстрата (например, липидных капель), если таковые имеются.

    Строгая ориентация митохондрий обнаруживается вдоль жгутиков сперматозоидов, в поперечно-полосатой мышечной ткани, где они располагаются вдоль миофибрилл, в эпителии почечных канальцев локализуются во впячиваниях базальной мембраны и т.д.

    Количество митохондрий в клетках имеет органные особенности, например, в клетках печени крыс содержится от 100 до 2500 митохондрий, а в клетках собирательных канальцев почки - 300, в сперматозоидах различных видов животных от 20 до 72, у гигантской амебы Chaos chaos их число достигает 500 000. Размеры митохондрий колеблются от 1 до 10 мкм.

    Ультрамикроскопическое строение митохондрий однотипно, независимо от их формы и размера. Они покрыты двумя липопротеидными мембранами: наружной и внутренней. Между ними располагается межмембранное пространство.

    Впячивания внутренней мембраны, которые вдаются в тело митохондрий, называются кристами . Расположение крист в митохондриях может быть поперечным и продольным. По форме кристы могут быть простыми и разветвленными. Иногда они образует сложную сеть. В некоторых клетках, например, в клетках клубочковой зоны надпочечника кристы имеют вид трубочек. Количество крист прямо пропорционально интенсивности окислительных процессов, протекающих в митохондриях. Например, в митохондриях кардиомиоцитов их в несколько раз больше, чем в митохондриях гепацитов. Пространство, ограниченное внутренней мембраной, составляет внутреннюю камеру митохондрий. В нем между кристами находится митохондриальный матрикс - относительно электронно плотное вещество.

    Белки внутренней мембраны синтезируются миторибосомами, а белки внешней мембраны - циторибосомами.

    "Наружная мембрана митохондрий по многим показателям сходна с мембранами ЭПС. Она бедна окислительными ферментами. Немного их и в мембранном пространстве. Зато внутренняя мембрана и митохондриальный матрикс буквально насыщены ими. Так, в матриксе митохондрий сосредоточены ферменты цикла Кребса и окисления жирных кислот. Во внутренней мембране локализована цепь переноса электронов, ферменты фосфорилирования (образования АТФ из АДФ), многочисленные транспортные системы.

    Кроме белка и липидов, в состав мембран митохондрий входит РНК, ДНК, последняя обладает генетической специфичностью, и по своим физико-химическим свойствам отличается от ядерной ДНК.

    При электронно-микроскопических исследованиях обнаружено, что поверхность наружной мембраны покрыта мелкими шаровидными элементарными частицами. Внутренняя мембрана и кристы содержат подобные элементарные частицы на «ножках», так называемые грибовидные тельца. Они -состоят из трех частей: головки сферической формы (диаметр 90-100 А°), ножки цилиндрической формы, длиной 5 нм и шириной 3-4 нм, основания, имеющего размеры 4 на 11 нм. Головки грибовидных телец связаны с фосфорилированием, затем обнаружено, что головки содержат фермент, обладающий АТФ-идной активностью.

    В межмембранном пространстве находится вещество, обладающее более низкой электронной плотностью, чем матрикс. Оно обеспечивает сообщение между мембранами и поставляет для ферментов, находящихся в обеих мембранах, вспомогательные катализаторы-коферменты.

    В настоящее время известно, что наружная мембрана митохондрий хорошо проницаема для веществ, имеющих низкий молекулярный вес, в частности, белковых соединений. Внутренняя мембрана митохондрий обладает избирательной проницаемостью. Она практически непроницаема для анионов (Cl -1 , Br -1 , SO 4 -2 , HCO 3 -1 , катионов Sn +2 , Mg +2 , ряда cахаров и большинства аминокислот, тогда как Са 2+ , Мп 2+ , фосфат, многокарбоновые кислоты легко проникают через нее. Имеются данные о наличии во внутренней мембране нескольких переносчиков, специфических к отдельным группам проникающих анионов и катионов. Активный транспорт веществ через мембраны осуществляется благодаря использованию энергии АТФ-азной системы или электрического потенциала, генерируемого на мембране в результате работы дыхательной цепи. Даже АТФ, синтезированная в митохондриях, может выйти с помощью переносчика (сопряженный транспорт).

    Матрикс митохондрий представлен мелкозернистым электронно-плотным веществом. В нем располагаются миторибосомы, фибриллярные структуры, состоящие из молекул ДНК и гранул, имеющих диаметр более 200А ◦ образованные солями: Ca 3 (PO 4) , Ba 3 (PO 4) 2 , Mg 3 (PO 4) . Полагают, что гранулы служат резервуаром ионов Са +2 и Мg +2 . Их количество увеличивается при изменении проницаемости митохондриальных мембран.

    Присутствие в митохондриях ДНК обеспечивает участие митохондрий в синтезе РНК и специфических белков, а также указывает на существование цитоплазматической наследственности. Каждая митохондрия содержит в зависимости от размера одну или несколько молекул ДНК (от 2 до 10). Молекулярный вес митохондриальной ДНК около (30-40)*10 6 у простейших, дрожжей, грибов. У высших животных около (9–10) *10 6.

    Длина ее у дрожжей примерно равна 5 мкм, у растений - 30 мкм. Объем генетической информации, заключенный в митохондриальной ДНК, невелик: он состоит из 15-75 тыс. пар оснований, которые могут кодировать в среднем 25-125 белковых цепей с молекулярным весом около 40000.

    Митохондриальная ДНК отличается от ядерной ДНК рядом особенностей: более высокой скоростью синтеза (в 5-7 раз), она более устойчива к действию ДНК-азы, представляет собой двухкольцевую молекулу, содержит больше гуанина и цитозина, денатурируется при более высокой температуре и легче восстанавливается. Однако не все митохондриальные белки синтезируются митохондриальной системой. Так, синтез цитохрома С и других ферментов обеспечивается информацией, содержащейся в ядре. В матриксе митохондрий локализованы, витамины А, В 2 , В 12 , К, Е, а также гликоген.

    Функция митохондрий заключается в образовании энергии, необходимой для жизнедеятельности клеток. Источником энергии в клетке могут служить различные соединения: белки, жиры, углеводы. Однако единственным субстратом, который немедленно включается в энергетические процессы, является глюкоза.

    Биологические процессы, в результате которых в митохондриях образуется энергия, можно подразделить на 3 группы: I группа - окислительные реакции, включающие две фазы: анаэробную (гликолиз) и аэробную. II группа - дефосфорилирование, расщепление АТФ и высвобождение энергии. III группа - фосфорилирование, сопряженное с процессом окисления.

    Процесс окисления глюкозы вначале происходит без участия кислорода (анаэробным или гликолитическим путем) до пировиноградной или молочной кислоты.

    Однако при этом энергии выделяется лишь небольшое количество. В дальнейшем эти кислоты вовлекаются в процессы окисления, которые протекают с участием кислорода, т. е. являются аэробными. В результате процесса окисления пировиноградной и молочной кислоты, названной циклом Кребса, образуется углекислый газ, вода и большое количество энергии.

    Образующаяся энергия не выделяется в виде тепла, что привело бы к перегреванию клеток и гибели всего организма, а аккумулируется в удобной для хранения и транспорта форме в виде аденозинтрифосфорной кислоты (АТФ). Синтез АТФ происходит из АДФ и фосфорной кислоты и вследствие этого называется фосфорилированием .

    В здоровых клетках фосфорилирование сопряжено с окислением. При заболеваниях сопряженность может разобщаться, поэтому субстрат окисляется, а фосфорилирование не происходит, и окисление переходит в тепло, а содержание АТФ в клетках снижается. В результате повышается температура и падает функциональная активность клеток.

    Итак, основная функция митохондрий заключается в выработке практически всей энергии клетки и происходит синтез компонентов, необходимых для деятельности самого органоида, ферментов «дыхательного ансамбля», фосфолипидов и белков.

    Еще одной стороной деятельности митохондрий является их участие в специфических синтезах, например, в синтезе стероидных гормонов и отдельных липидов. В ооцитах разных животных образуются скопления желтка в митохондриях, при этом они утрачивают свою основную систему. Отработавшие митохондрии могут накапливать также продукты экскреции.

    В некоторых случаях (печень, почки) митохондрии способны аккумулировать вредные вещества и яды, попадающие в клетку, изолируя их от основной цитоплазмы и частично блокируя вредное действие этих веществ. Таким образом, митохондрии способны брать на себя функции других органоидов клетки, когда это требуется для полноценного обеспечения того или иного процесса в норме или в экстремальных условиях.

    Биогенез митохондрий. Митохондрии представляют собой обновляющиеся структуры с довольно кратким жизненным циклом (в клетках печени крысы, например, период полужизни митохондрий охватывает около 10 дней). Митохондрии образуются в результате роста и деления предшествующих митохондрий. Деление их может происходить тремя способами: перетяжкой, отпочковыванием небольших участков и возникновением дочерних митохондрий внутри материнской. Делению (репродукции) митохондрий предшествует репродукция собственной генетической системы - митохондриальной ДНК.

    Итак, согласно взглядам большинства исследователей, образование митохондрий происходит преимущественно путем саморепродукции их de novo.

    В клетках любых живых организмов есть особые органеллы, которые двигаются, функционируют, сливаются между собой и размножаются. Называются они митохондриями или хондриосомами. Подобные структуры содержатся как в клетках простейших организмов, так и в клетках растений и животных. Долгое время при изучении изучались и функции митохондрии, потому что она представляла особый интерес.

    Действительно, на клеточном уровне митохондрии выполняют конкретную и весьма важную функцию - образуют энергию в виде аденозинтрифосфата. Это ключевой нуклеотид в обмене организмов и преобразовании его в энергию. АТФ выступает в роли универсального источника энергии, необходимой для протекания любых биохимических процессов в организме. В этом главные функции митохондрии - поддерживать жизнедеятельность на клеточном уровне за счёт формирования АТФ.

    Процессы, происходящие в клетках, долгое время представляли особый интерес учёных, потому что это помогало лучше понять структуру и возможности организма. Процесс познания всегда занимает долгое время. Так Карл Ломанн в 1929 году открыл аденозинтрифосфат, а Фриц Липман в 1941 году разобрался в том, что он является основным поставщиком энергии в клетки.

    Строение митохондрий

    Внешний вид представляет такой же интерес, как и функции митохондрии. Размеры и формы этих органелл непостоянны и могут быть разными в зависимости от видов живых существ. Если описывать средние значения, то гранулярная и нитевидная митохондрия, состоящая из двух мембран, имеет размеры порядка 0,5 микромиллиметра в толщину, а длина может достигать 60 микромиллиметров.

    Как уже было сказано выше, учёные долгое время пытались разобраться в вопросе, каково строение и функции митохондрий. Основные сложности были с недостаточно развитостью оборудования, потому что изучать микромир другими способами практически невозможно.

    В митохондрий содержится больше, чем в клетках растений, потому что для животных преобразование энергии с эволюционной точки зрения более важно. Впрочем, объяснять подобные процессы достаточно сложно, но в клетках растений подобные функции берут на себя в основном хлоропласты.

    В клетках митохондрии могут располагаться в самых разных местах, где есть потребность в АТФ. Можно сказать, что у митохондрий достаточно универсальное строение, поэтому они могут появляться в разных местах.

    Функции митохондрии

    Основная функция митохондрий - синтез молекул АТФ. Это своего рода энергетическая станция клетки, которая за счёт окисления различных высвобождает энергию за счёт их распада.

    Главным источником энергии, т.е. соединением, используемым для распада, является Её в свою очередь организм получает из белков, углеводов и жиров. Есть два пути образования энергии, причём митохондрии используют оба. Первый из них связан с окислением пирувата в матриксе. Второй связан уже с кристами органелл и непосредственно завершает процесс энергообразования.

    В целом данный механизм достаточно сложен и происходит в несколько этапов. Выстраиваются длинные единственная цель которых - энергообеспечение других клеточных процессов. Поддержание организма на клеточном уровне позволяет сохранить его жизнедеятельность в целом. Именно поэтому учёные долгое время пытались разгадать, как именно происходят данные процессы. Со временем многие вопросы были решены, особенно в этом помогло изучение ДНК и структуры остальных небольших клеток микромира. Без этого вряд ли можно было бы представить развитие данной науки в целом, а также изучение организма человека и высокоразвитых животных.

    Рекомендуем почитать

    Наверх