Спектральный состав излучения лазеров. Спектр генерации полупроводникового лазера

Ландшафтный дизайн и планировка 20.09.2019
Ландшафтный дизайн и планировка

Первым принцип действия лазера, физика которого основывалась на законе излучения Планка, теоретически обосновал Эйнштейн в 1917 году. Он описал поглощение, спонтанное и вынужденное электромагнитное излучение с помощью вероятностных коэффициентов (коэффициенты Эйнштейна).

Первопроходцы

Теодор Мейман был первым, кто продемонстрировал принцип действия основанный на оптической накачке с помощью лампы-вспышки синтетического рубина, производившего импульсное когерентное излучение с длиной волны 694 нм.

В 1960 г. иранские ученые Джаван и Беннетт создали первый газовый квантовый генератор с использованием смеси газов He и Ne в соотношении 1:10.

В 1962 году Р. Н. Холл продемонстрировал первый из арсенида галлия (GaAs), излучавший на длине волны 850 нм. Позже в том же году Ник Голоняк разработал первый полупроводниковый квантовый генератор видимого света.

Устройство и принцип действия лазеров

Каждая лазерная система состоит из активной среды, помещенной между парой оптически параллельных и высокоотражающих зеркал, одно из которых полупрозрачное, и источника энергии для ее накачки. В качестве среды усиления может выступать твердое тело, жидкость или газ, которые обладают свойством усиливать амплитуду световой волны, проходящей через него, вынужденным излучением с электрической или оптической накачкой. Вещество помещается между парой зеркал таким образом, что свет, отражающийся в них, каждый раз проходит через него и, достигнув значительного усиления, проникает сквозь полупрозрачное зеркало.

Двухуровневые среды

Рассмотрим принцип действия лазера с активной средой, атомы которой имеют только два уровня энергии: возбужденный E 2 и базовый Е 1 . Если атомы с помощью любого механизма накачки (оптического, электрического разряда, пропускания тока или бомбардировки электронами) возбуждаются до состояния E 2 , то через несколько наносекунд они вернутся в основное положение, излучая фотоны энергии hν = E 2 - E 1 . Согласно теории Эйнштейна, эмиссия производится двумя различными способами: либо она индуцируется фотоном, либо это происходит спонтанно. В первом случае имеет место вынужденное излучение, а во втором - спонтанное. При тепловом равновесии вероятность вынужденного излучения значительно ниже, чем спонтанного (1:10 33), поэтому большинство обычных источников света некогерентны, а лазерная генерация возможна в условиях, отличных от теплового равновесия.

Даже при очень сильной накачке населенность двухуровневых систем можно лишь сделать равной. Поэтому для достижения инверсной населенности оптическим или иным способом накачки требуются трех- или четырехуровневые системы.

Многоуровневые системы

Каков принцип действия трехуровневого лазера? Облучение интенсивным светом частоты ν 02 накачивает большое количество атомов с самого низкого уровня энергии E 0 до верхнего Е 2 . Безызлучательный переход атомов с E 2 до E 1 устанавливает инверсию населенности между E 1 и E 0 , что на практике возможно только, когда атомы длительное время находятся в метастабильном состоянии E 1, и переход от Е 2 до Е 1 происходит быстро. Принцип действия трехуровневого лазера заключается в выполнении этих условий, благодаря чему между E 0 и E 1 достигается инверсия населенности и происходит усиление фотонов энергией Е 1 -Е 0 индуцированного излучения. Более широкий уровень E 2 мог бы увеличить диапазон поглощения длин волн для более эффективной накачки, следствием чего является рост вынужденного излучения.

Трехуровневая система требует очень высокой мощности накачки, так как нижний уровень, задействованный в генерации, является базовым. В этом случае для того, чтобы произошла инверсия населенности, до состояния E 1 должно быть накачано более половины от общего числа атомов. При этом энергия расходуется впустую. Мощность накачки можно значительно уменьшить, если нижний уровень генерации не будет базовым, что требует, по крайней мере, четырехуровневой системы.

В зависимости от природы активного вещества, лазеры подразделяются на три основные категории, а именно, твердый, жидкий и газовый. С 1958 года, когда впервые наблюдалась генерация в кристалле рубина, ученые и исследователи изучили широкий спектр материалов в каждой категории.

Твердотельный лазер

Принцип действия основан на использовании активной среды, которая образуется путем добавления в изолирующую кристаллическую решетку металла переходной группы (Ti +3 , Cr +3 , V +2 , Со +2 , Ni +2 , Fe +2 , и т. д.), редкоземельных ионов (Ce +3 , Pr +3 , Nd +3 , Pm +3 , Sm +2 , Eu +2,+3 , Tb +3 , Dy +3 , Ho +3 , Er +3 , Yb +3 , и др.), и актиноидов, подобных U +3 . ионов отвечают только за генерацию. Физические свойства базового материала, такие как теплопроводность и имеют важное значение для эффективной работы лазера. Расположение атомов решетки вокруг легированного иона изменяет ее энергетические уровни. Различные длины волн генерации в активной среде достигаются путем легирования различных материалов одним и тем же ионом.

Гольмиевый лазер

Примером является квантовый генератор, в котором гольмий заменяет атом базового вещества кристаллической решетки. Ho:YAG является одним из лучших генерационных материалов. Принцип действия гольмиевого лазера состоит в том, что алюмоиттриевый гранат легируется ионами гольмия, оптически накачивается лампой-вспышкой и излучает на длине волны 2097 нм в ИК-диапазоне, хорошо поглощаемом тканями. Используется этот лазер для операций на суставах, в лечении зубов, для испарения раковых клеток, почечных и желчных камней.

Полупроводниковый квантовый генератор

Лазеры на квантовых ямах недороги, позволяют массовое производство и легко масштабируются. Принцип действия полупроводникового лазера основан на использовании диода с p-n-переходом, который производит свет определенной длины волны путем рекомбинации носителя при положительном смещении, подобно светодиодам. LED излучают спонтанно, а лазерные диоды - вынужденно. Чтобы выполнить условие инверсии заселенности, рабочий ток должен превышать пороговое значение. Активная среда в полупроводниковом диоде имеет вид соединительной области двух двумерных слоев.

Принцип действия лазера данного типа таков, что для поддержания колебаний никакого наружного зеркала не требуется. Отражающая способность, создаваемая благодаря слоев и внутреннему отражению активной среды, для этой цели достаточна. Торцевые поверхности диодов скалываются, что обеспечивает параллельность отражающих поверхностей.

Соединение, образованное одного типа, называется гомопереходом, а созданное соединением двух разных - гетеропереходом.

Полупроводники р и n типа с высокой плотностью носителей образуют р-n-переход с очень тонким (≈1 мкм) обедненным слоем.

Газовый лазер

Принцип действия и использование лазера этого типа позволяет создавать устройства практически любой мощности (от милливатта до мегаватта) и длин волн (от УФ до ИК) и позволяет работать в импульсном и непрерывном режимах. Исходя из природы активных сред, различают три типа газовых квантовых генераторов, а именно атомные, ионные, и молекулярные.

Большинство газовых лазеров накачиваются электрическим разрядом. Электроны в разрядной трубке ускоряются электрическим полем между электродами. Они сталкиваются с атомами, ионами или молекулами активной среды и индуцируют переход на более высокие энергетические уровни для достижения состояния населения инверсии и вынужденного излучения.

Молекулярный лазер

Принцип действия лазера основан на том, что, в отличие от изолированных атомов и ионов, в атомных и ионных квантовых генераторах молекулы обладают широкими энергетическими зонами дискретных энергетических уровней. При этом каждый электронный энергетический уровень имеет большое число колебательных уровней, а те, в свою очередь, - несколько вращательных.

Энергия между электронными энергетическими уровнями находится в УФ и видимой областях спектра, в то время как между колебательно-вращательными уровнями - в дальней и ближней ИК областях. Таким образом, большинство молекулярных квантовых генераторов работает в далекой или ближней ИК областях.

Эксимерные лазеры

Эксимеры представляют собой такие молекулы как ArF, KrF, XeCl, которые имеют разделенное основное состояние и стабильны на первом уровне. Принцип действия лазера следующий. Как правило, в основном состоянии число молекул мало, поэтому прямая накачка из основного состояния не представляется возможной. Молекулы образуются в первом возбужденном электронном состоянии путем соединения обладающих большой энергией галогенидов с инертными газами. Населенность инверсии легко достигается, так как число молекул на базовом уровне слишком мало, по сравнению с возбужденным. Принцип действия лазера, кратко говоря, состоит в переходе из связанного возбужденного электронного состояния в диссоциативное основное состояние. Населенность в основном состоянии всегда остается на низком уровне, потому что молекулы в этой точке диссоциируют на атомы.

Устройство и принцип действия лазеров состоит в том, что разрядную трубку наполняют смесью галогенида (F 2) и редкоземельного газа (Ar). Электроны в ней диссоциируют и ионизируют молекулы галогенида и создают отрицательно заряженные ионы. Положительные ионы Ar + и отрицательные F - реагируют и производят молекулы ArF в первом возбужденном связанном состоянии с последующим их переходом в отталкивающее базовое состояние и генерацией когерентного излучения. Эксимерный лазер, принцип действия и применение которого мы сейчас рассматриваем, может применяться для накачки активной среды на красителях.

Жидкостный лазер

По сравнению с твердыми веществами, жидкости более однородны, и обладают большей плотностью активных атомов, по сравнению с газами. В дополнение к этому, они не сложны в производстве, позволяют просто отводить тепло и могут быть легко заменены. Принцип действия лазера состоит в использовании в качестве активной среды органических красителей, таких как DCM (4-дицианометилен-2-метил-6-p- диметиламиностирил-4Н-пиран), родамина, стирила, LDS, кумарина, стильбена, и т. д., растворенных в надлежащем растворителе. Раствор молекул красителя возбуждается излучением, длина волны которого обладает хорошим коэффициентом поглощения. Принцип действия лазера, кратко говоря, заключается в генерации на большей длине волны, называемой флуоресценцией. Разница между поглощенной энергией и излучаемыми фотонами используется безызлучательными энергетическими переходами и нагревает систему.

Более широкая полоса флуоресценции жидкостных квантовых генераторов обладает уникальной особенностью - перестройкой длины волны. Принцип действия и использование лазера этого типа как настраиваемого и когерентного источника света, приобретает все большее значение в спектроскопии, голографии, и в биомедицинских приложениях.

Недавно квантовые генераторы на красителях стали использоваться для разделения изотопов. В этом случае лазер избирательно возбуждает один из них, побуждая вступить в химическую реакцию.

Внимание! Меры предосторожности :

Не направляйте лазерное излучение в глаза! Прямое попадание в глаза лазерного излучения опасно для зрения!

С разрешения руководителя работ включите лазер и установите экран и решётку так, чтобы дифракционная картина была наиболее чёткой.

Изменяя расстояние L , посмотрите, как это влияет на положение максимумов. Опишите и зарисуйте то, что Вы наблюдали.

Установите дифракционную решётку на определённом расстоянии L от щели и измерьте расстояния l 1 и l 2 (см. рис. 9.3) для максимумов первого порядка. Вычислите длину волны излучения лазера. Оцените абсолютную и относительную погрешности измерения, запишите результат для длины волны лазера.

Задание 2. Определение длин волн некоторых цветов спектра

В этом задании источником света является лампа накаливания, дающая непрерывный спектр.

Измерения в задании 2 проводятся в соответствии с инструкцией на рабочем месте. Результаты измерений заносятся в табл. 9.1. Следует определить расстояния l 1 и l 2 для каждого цвета четыре раза: при двух значениях k и двух разных расстояниях L .

Таблица 9.1

№ п.п. Цвет k L , l 1 , l 2 , , sin a l,
Красный Зеленый Фиолетовый
Красный Зеленый Фиолетовый
Красный Зеленый Фиолетовый

Анализ и обработка результатов измерений

1. Опишите в отчёте наблюдаемый спектр, дайте объяснение тому, что максимумы имеют столь существенную ширину.

2. Заполните полностью табл. 9.1. Значение постоянной d получите на рабочем месте. Опишите в отчёте наблюдаемую Вами картину. Составьте таблицы обработки для каждого цвета и запишите конечный результат по общим правилам.

3. Сравните полученные Вами значения длин волн каждого цвета с приведёнными в табл.. П. …

Контрольные вопросы

1. Дайте определение: дифракции волн, принципа Гейгенса-Френеля, когерентности волн. Письменный ответ на этот вопрос необходимо включить в отчет.

2. Назовите составные части лабораторной установки и их назначение.

3. Какие величины измеряются в данной работе непосредственно? Какие вычисляются?

4. В чём заключается явление дифракции света? При каких условиях она наблюдается?

5. Что представляет собой дифракционная решётка и каковы её основные параметры?

6. Выведите формулу дифракционной решётки (9.3).

7. Дайте определение длины волны. Как она связана с частотой света?

8. В каком интервале длин волн лежит видимый свет?

9. Выведите и запишите расчётные формулы для определения длин волн видимого света с помощью дифракционной решетки.

10.Как зависит угол отклонения дифракционного максимума от длины волны и периода решётки?

11. В каком порядке от центрального максимума располагаются цвета дифракционных максимумов? Объясните наблюдаемый порядок цветов.

12.В чём отличие лазерного излучения от естественного света?

Работа № 10. ИЗУЧЕНИЕ ПОЛЯРИЗАЦИИ СВЕТА

Цель работы : исследовать прохождение света через поляроиды, проверить закон Малюса, оценить качество поляроидов, исследовать поляризацию света, прошедшего сквозь несколько стеклянных пластин.

Оборудование : оптическая скамья, источник света, поляризатор в оправе, анализатор, совмещённый с фотоэлементом, набор стеклянных пластин, источник питания, микроамперметр.

Краткая теория

Из теории Максвелла следует, что световая волна является поперечной . Поперечность световых волн (как и любых других электромагнитных волн) выражается в том, что колебания векторов и перпендикулярны направлению распространения волны (рис. 10.1). Плоская монохроматическая волна, распространяющаяся в вакууме вдоль оси x , описывается уравнениями:

; (10.1)
, (10.2)

где и – текущие значения напряжённостей электрического и магнитного полей; и – амплитуды колебаний, w – частота колебаний, – начальная фаза колебаний.

При взаимодействии света с веществом переменное электрической поле воздействует на отрицательно заряженные электроны атомов и молекул этого вещества, в то время как действие со стороны магнитного поля на заряженные частицы незначительно. Поэтому в процессах распространения света главную роль играет вектор , и дальнейшем мы будем говорить только о нём.



Большинство источников света состоит из огромного количества излучающих атомов, и поэтому в световом луче присутствует большое количество волн с различной пространственной ориентацией векторов . Кроме того, эта ориентация беспорядочно меняется за чрезвычайно малые промежутки времени (рис. 10.2, а). Подобное излучение называется неполяризованным, или естественным светом. Свет, в котором направления колебаний вектора каким-либо образом упорядочены, называется поляризованным , а процесс получения поляризованного света называется поляризацией . Если колебания вектора происходят в одной плоскости, то волна называется плоско-поляризованной или линейно-поляризованной (рис. 10.2, б). Частично поляризованным называется свет, в котором имеется преимущественное направление колебаний векторов (рис. 10.2, в).

Поляризация света наблюдается при прохождении света через анизотропные вещества. Основное свойство таких веществ заключается в том, что они могут пропускать только те световые волны, в которых векторы колеблются лишь в строго определённой плоскости, которую называют плоскостью колебаний . Плоскость, в которой локализовано магнитное поле, называется плоскостью поляризации . На рис. 10.1 плоскость колебаний вертикальна, а плоскость поляризации – горизонтальна.

Для получения и исследования поляризованного света чаще всего применяют поляроиды . Они изготавливаются из очень мелких кристаллов турмалина или геропатита (сернокислого йод-хинина), нанесённых на прозрачную плёнку или стекло. Однако есть и другие способы получения плоско-поляризованного света из естественного, например, при отражении от диэлектрика под определённым углом, зависящим от показателя преломления диэлектрика. Подробней этот способ будет рассмотрен ниже.

Проведём мысленно следующий опыт. Возьмем два поляроида и источник света (рис. 10.3). Первый поляроид называется поляризатором , т.к. он поляризует свет. Его плоскостью колебаний является плоскость ППс . После прохождения через поляризатор вектор будет колебаться только в этой плоскости. Вращая поляризатор вокруг направления светового пучка, мы не заметим никаких изменений в интенсивности прошедшего через него света. Подумайте почему? Анализ света на поляризацию делают с помощью второго поляроида, через который пропускают исследуемый свет. В этом случае второй поляроид называется анализатором , его плоскостью поляризации является плоскость ААс . Вращая анализатор, мы заметим, что интенсивность прошедшего сквозь него света будет максимальной, если плоскости ППс и ААс совпадают, и минимальной, если эти плоскости перпендикулярны. Если же эти плоскости составляют некоторый угол a (см. рис. 10.3), то интенсивность света за анализатором будет принимать промежуточное значение.

Найдем зависимость между углом a и интенсивностью I света, прошедшего сквозь оба поляроида. Обозначим амплитуду электрического вектора луча, прошедшего через поляризатор, буквой Е 0 . Плоскость колебаний анализатора ААс повёрнута относительно плоскости колебаний поляризатора ППс на угол a (см. рис. 10.4). Разложим вектор на составляющие: параллельную плоскости колебаний анализатора êê и перпендикулярную к ней ^ . Параллельная составляющая êê пройдёт через анализатор, а перпендикулярная ^ – нет.

Из рис. 10.4 следует, что амплитуда световой волны за анализатором

где S – площадь, по которой распределяется энергия; t – время. Поскольку энергия света – это совокупная энергия электрического и магнитного полей, то её величина пропорциональна квадратам напряжённостей этих полей:

Полученное равенство носит название закона Малюса : интенсивность света, прошедшего через анализатор, равна интенсивности света, прошедшего через поляризатор, умноженной на квадрат косинуса угла между плоскостями поляризации анализатора и поляризатора.

Заметим, что свет, прошедший через поляризатор, станет не только плоско поляризованным, но и уменьшит свою интенсивность в два раза. Если интенсивность естественного света считать одинаковой во всех направлениях, перпендикулярных вектору скорости , то интенсивность света за поляризатором

где I max и I min – наибольшая и наименьшая интенсивности света за анализатором, соответствующие напряжённостям Е max и Е min на рис. 10.2, в.

Явление поляризации можно также наблюдать при отражении или преломлении света на границе двух изотропных диэлектриков. При этом в отражённом луче будут преобладать колебания, перпендикулярные к плоскости падения (на рис. 10.5 они обозначены точками). Опытным путем было показано, что степень поляризации в отражённом луче зависит от величины угла падения, причём с возрастанием угла падения доля поляризованного света растёт, и при определённом его значении отражённый свет оказывается полностью поляризованным. Брюстер установил, что величина этого угла полной поляризации зависит от относительного показателя преломления и определяется соотношением:

tg a Бр = n 2 /n 1 . (10.9)

Соотношение носит название закона Брюстера, а угол a Б называют углом Брюстера. При дальнейшем увеличении угла падения степень поляризации света снова уменьшается. Таким образом, при угле падения, равном углу Брюстера, отражённый свет линейно поляризован в плоскости, перпендикулярной плоскости падения. Используя (10.9) и закон преломления, можно показать, что при падении под углом Брюстера отражённый и преломлённый лучи составляют 90°. Проверьте это!.

При падении света под углом Брюстера преломлённый луч также поляризуется. В преломлённом луче будут преобладать колебания, параллельные плоскости падения (на рис. 10.5 они обозначены стрелками). Поляризация преломлённых лучей при этом угле падения будет максимальной, но далеко не полной. Если же подвергнуть преломлённые лучи второму, третьему и т.д. преломлению, то степень поляризации возрастёт. Поэтому для поляризации света можно использовать 8–10 пластинок (так называемая стопа Столетова). Прошедший через них свет окажется практически полностью поляризованным. Таким образом, эта стопа может служить поляризатором или анализатором. В нашей установке наборы из 2–12 пластин используются в качестве поляризатора.

Описание установки


Для исследования поляризации используется укреплённая на оптической скамье установка, схема которой приведена на рис. 10.6.

Цифрами на схеме обозначены: 1– лампа , 2 – съёмный поляризатор , 3 – поворотный столик , 4 – набор стеклянных пластин , надеваемых на штыри поворотного столика, 5 – анализатор , 6 – фотоэлемент , 7 – измеритель интенсивности света (ИИС), преобразующий энергию света в электрический сигнал; его показания пропорциональны световому потоку, падающему на фотоэлемент. Поворотный столик 3может вращаться вокруг вертикальной оси, тем самым можно изменять угол падения света на стеклянную пластину 4. Для измерения этого угла падения имеется специальная шкала. Положение столика фиксируется винтом. Анализатор 5может вращаться вокруг горизонтальной оси, стрелкой на нём указано положение плоскости поляризации. У анализатора имеется шкала 8, по которой определяется положение его плоскости поляризации (ААс ). На съёмном поляризаторе 2 также имеется вертикальная стрелка, которая показывает положение его плоскости поляризации ППс. Фотоэлемент, совмещенный с анализатором, также может вращаться вокруг вертикальной оси. Тем самым можно проводить измерения интенсивности света, отражённого от набора пластин 4.

Выполнение работы

Задание 1. Проверка закона Малюса

1. Установите съёмный поляризатор 2 (набор пластин 4 уберите).

2. Включите лампу. Поверните фотоэлемент-анализатор 6 так, чтобы на него попадал свет от лампы. Добейтесь симметричного расположения элементов установки относительно луча света.

3. Установите положение плоскости ААс по шкале 8 на 0°. Запишите показания измерителя 7 в табл. 10.1. Это будет интенсивность света, прошедшего через поляризатор и анализатор в относительных единицах. Повторите измерения, изменяя угол между плоскостями поляризации поляризатора и анализатора от 0° до 360° через 10°, и также запишите их в табл. 10.1.

Таблица 10.1

Задание 2. Исследование поляризации преломлённого света

1. Установите съёмную пластину с двумя стеклами (N = 2).

2. Установите угол падения света на пластину 56° (это угол Брюстера для стекла с показателем преломления n = 1,5).

3. Установите фотоэлемент для регистрации интенсивности прошедшего через пластины света согласно рис. 10.7 (максимальное значение показаний ИИС подтверждает хорошее попадание света на фотоэлемент).

4. Обратите внимание, что преломлённый свет поляризован в плоскости падения, поэтому максимальное значение интенсивности будет при положении ААс 90° по шкале 8 (вопросы 12, 13, 14). Измерьте интенсивность прошедшего через пластины света при двух положениях ААс : при 90° и при 0°. Запишите результаты измерений в табл. 10.2.

5. Аналогичные измерения проведите для N = 4, 7, 12 пластин. Запишите результаты измерений в табл. 10.2.

Таблица 10.2


Похожая информация.


ОПТИЧЕСКИЕ СТАНДАРТЫ ЧАСТОТЫ - лазеры со стабильной во времени частотой (10 -14 - 10 -15), её воспроизводимостью (10 -13 - 10 -14). О. с. ч. применяются в физ. исследованиях и находят практич. приложение в метрологии, локации, геофизике, связи, навигации и машиностроении. Деление частоты О. с. ч. до радиодиапазона сделало возможным создание шкалы времени, основанной на использовании периода оптич. .
О. с. ч. обладают преимуществами по сравнению с квантовыми стандартами частоты СВЧ-диапазона: эксперименты, связанные с измерением частоты при использовании лазеров, требуют меньшего времени, т. к. абс. частота в 10 4 - 10 5 раз превышает нелазерные стандарты частоты. Абс. интенсивность и ширина , являющихся реперами частоты, в оптич. диапазоне в 10 5 - 10 6 раз больше, чем в СВЧ-диапазоне, при одной и той же относит. ширине. Это позволяет создавать О. с. ч. с более высокой кратковрем. стабильностью частоты. При делении частоты О. с. ч. до радиодиапазона относит. ширина линии излучения практически не меняется (если используется СВЧ стандарт, флуктуац. спектр его сигнала существенно расширяется при умножении частоты в 10 5 - 10 6 раз). Роль квадратичного Доплера эффекта ,ограничивающего долговрем. стабильность и воспроизводимость частоты, одинакова.

Принцип стабилизации . Стабилизация частоты лазера, как и стандартов радио диапазона, основана на использовании спектральных линий атомного или молекулярного газа (оптич. реперы), к центру к-рых "привязывается" частота v с помощью электронной системы автоматич. подстройки частоты. Т. к. линии усиления лазеров обычно значительно превосходят ширину полосы пропускания оптического резонатора , то нестабильность (v ) частоты v генерации в большинстве случаев определяется изменением оптич. длины резонатора Осн. источниками нестабильности l являются тепловой дрейф, механич. и акустич. возмущения элементов конструкции , флуктуации показателя преломления газоразрядной плазмы. С помощью оптич. репера система автоподстройки вырабатывает сигнал, пропорц. величине и знаку расстройки между частотой v и частотой v 0 центра спектральной линии, с помощью к-рого частота лазера настраивается на центр линии ( = v - v 0 = 0). Относит. точность настройки обратно пропорц. произведению спектральной линии ( - ширина линии) на отношение сигнал/шум при её индикации.
Для получения узкой линии излучения и высокой кратковрем. стабильности частоты (стабильность за времена с) необходимо использовать реперы достаточно высокой интенсивности с шириной значительно превосходящей характерный диапазон частотных возмущений Для газовых лазеров характерная ширина спектра акустич. возмущений ~ 10 3 - 10 4 Гц, поэтому требуемая ширина резонанса Гц (относит, ширина 10 -9 - 10 -10). Это позволяет использовать системы автоматич. подстройки частоты с широкой полосой (10 4 Гц) для эфф. подавления быстрых флуктуации длины резонатора.
Для достижения высокой долговрем. стабильности и воспроизводимости частоты необходимы оптич. линии высокой добротности, т. к. при этом уменьшается влияние разл. факторов на сдвиги частоты центра линии.

Оптические реперы . Используемые в СВЧ-диапазоне методы получения узких спектральных линий оказались не применимыми в оптич. области спектра (доплеровское уширение мало в СВЧ-диапазоне). Для О. с. ч. важны методы, к-рые позволяют получать резонансы в центре спектральной линии. Это даёт возможность непосредственно связать частоту излучения с частотой квантового перехода. Перспективны три метода: метод насыщенного поглощения, двухфотонного резонанса и метод разнесённых оптич. полей. Осн. результаты по стабилизации частоты лазеров получены с помощью метода насыщенного поглощения, к-рый основан на нелинейном взаимодействии встречных световых волн с газом. Нелинейно поглощающая ячейка с газом низкого давления может находиться внутри резонатора лазера (активный репер) и вне его (пассивный репер). Из-за эффекта насыщения (выравнивание населённостей уровней частиц газа в сильном поле) в центре доплеровски-уширенной линии поглощения возникает провал с однородной шириной, к-рая может быть в 10 5 - 10 6 раз меньше доплеровской ширины. В случае внутренней поглощающей ячейки уменьшение поглощения в центре линии приводит к появлению узкого пика на контуре зависимости мощности от частоты генерации. Ширина нелинейного резонанса в молекулярном газе низкого давления определяется прежде всего столкновениями и эффектами, обусловленными конечным временем пролёта частицы через световой пучок. Уменьшение ширины резонанса сопровождается резким падением его интенсивности (пропорц. кубу давления).
Наиб. узкие резонансы насыщенного поглощения с относит, шириной10 -11 получены в СН 4 на компонентахи Е колебательно-вращат. линии Р (7) полосы v 3 (см. Молекулярные спектры ),к-рые близки к центру линии усиления гелий-неонового лазера на= 3,39 мкм. Для точного совмещения линий усиления и поглощения используют 22 Ne и увеличивают давление Не в активной среде лазера либо помещают активную среду в магн. поле (для Е -компоненты).
Схема О. с. ч., использующего сверхузкий резонанс (с относит. шириной 10 -11 - 10 - 12 ) в качестве репера, состоит из вспомогательного стабильного по частоте лазера 2 с узкой линией излучения, перестраиваемого лазера 2 и системы получения узкого резонанса (рис. 1). Узкая линия излучения перестраиваемого лазера, к-рый используется для получения сверхузкого резонанса, обеспечивается посредством фазовой синхронизации этого лазера со стабильным.

Рис. 1. Схема оптического стандарта частоты: ЧФАП - частотно-фазовая автоподстройка; СУР - система получения сверхузкого резонанса; АПЧ - система автоматической подстройки частоты; ЗГ - звуковой генератор; РГ - радиогенератор; Д - фото детектор.

Долговрем. стабильность перестраиваемого лазера достигается плавной настройкой его частоты на максимум сверхузкого резонанса с помощью экстремальной системы автоподстройки. При этом возможно одновременно получать высокие значения кратковрем. и долговрем. стабильностей и воспроизводимости частоты.
Стабильность частоты. Наиб. высокая стабильность частоты получена в ИК-диапазоне с Не - Ne-лазером ( = 3,39 мкм) с внутр. ячейкой поглощения. Т. к. абс. частота его известна с высокой точностью (10 -11), то этот лазер может быть использован как самостоят. вторичный эталон частоты для измерения абс. частот в оптич. и ИК-дпапазонах. Ширина линии излучения такого лазера составляет 0,07 Гц (рис. 2). Стабильность частоты за времена усреднения= 1 - 100 с равна 4 х 10 -15 (рис. 3).
Долговрем. стабильность и воспроизводимость частоты Не - Ne-лазеров с телескопич. расширением пучка, стабилизированных по резонансам в СН 4 на линиях поглощения F 2 2 и Е (см. выше) с добротностью ~10 11 , достигают ~10 -14 . Принципиальным фактором, ограничивающим воспроизводимость и точность частоты, является квадратичный .

Лит.: Басов Н. Г., Летохов В. С., Оптические стандарты частоты, "УФН", 1968, т. 96, с. 585; Jennings D. A., Petersen F. R., Evenson К. М., Direct frequency measurement of the 260 THz (1.15mм) 20 Ne Laser and beyond, в кн.: Laser spectroscopy. IV. Proc. 4 th-Intern. Conf., Rottach-Egern, Fed. Rep. of Germany, June 11 - 15 1979, ed. by H. Walther, K. W. Kothe, В. - , 1979, p. 39; Proceedings of Third Symposium on Freq. Standarts and Metrology, Aussois, France, 12 - 15 Oct. 1981, "J. Phys.", 1981, v. 42, Colloq. С 8, № 12; Багаев С. Н., Чеботаев В. П., Лазерные стандарты частоты, "УФН", 1986, т. 148, с. 143; Knight D. J. E., A tabulation of absolute laser - frequence measurements, "Metrologia", 1986, v 22, p. 251.

В. П. Чеботаев .

Реальное излучение содержит в себе не одну определенную частоту колебаний, а некоторый набор различных частот, называемый спектром или спектральным составом данного излучения. Излучение называется монохроматическим, если оно содержит очень узкий интервал частот (или длин волн ). В видимой области монохроматическое излучение вызывает световое ощущение определенного цвета; например, излучение, охватывающее интервал длин волн от 0,55 до 0,56 мкм, воспринимается как зеленый цвет. Чем уже интервал частот данного излучения, тем более монохроматическим оно является. Формула (1.2) относится к идеально монохроматическому излучению, содержащему одну частоту колебаний.

Раскаленные твердые и жидкие тела испускают непрерывный (или сплошной) спектр электромагнитных волн очень широкого интервала частот. Светящиеся разреженные газы испускают линейчатый спектр, состоящий из отдельных монохроматических излучений, называемых спектральными линиями; каждая спектральная линия характеризуется определенной частотой колебаний (или длиной волны), расположенной в середине охватываемого ею узкого интервала частот. Если источниками излучения являются не отдельные (изолированные, свободные) атомы, а молекулы газа, то спектр состоит из полос (полосатый спектр), каждая полоса охватывает более широкий непрерывный Интервал длин волн, чем спектральная линия.

Линейчатый (атомный) спектр каждого вещества является характерным для пего; благодаря этому возможен спектральный анализ, т. е. определение химического состава вещества по длинам волн спектральных линий испускаемого им излучения.

Допустим, что электромагнитная волна распространяется вдоль некоторой прямой, которую будем называть лучом. Можно интересоваться изменением вектора в определенной точке луча с течением

времени; возможно, что в. этой точке изменяется не только величина вектора как это следует из формулы (1.2), но и ориентировка вектора в пространстве. Далее можно зафиксировать величину и направление вектора в различных точках луча, но в определенный момент времени. Если окажется, что в различных точках вдоль луча все векторы лежат в одной плоскости, то излучение называется плоскополяризованным или линейно-поляризованным; такое излучение дает источник, который в процессе излучения сохраняет плоскость колебаний. Если же плоскость колебаний источника волны со временем изменяется, то вектор в волне не лежит в определенной плоскости и излучение не будет плоскополяризованным. В частности, можно получить волну, в которой вектор равномерно вращается вокруг луча. Если же вектор изменяет свою ориентировку вокруг луча совершенно беспорядочно, то излучение называется естественным. Такое излучение получается от светящихся твердых, жидких и газообразных тел, у которых плоскости, колебаний элементарных источников излечения - атомов и молекул - ориентированы в пространстве беспорядочно.

Таким образом, простейшим излучением является монохроматическая пласкополяризованная волна. Плоскость, в которой лежат вектор и вектор направления распространения волны, называется плоскостью колебаний плоскость, перпендикулярная плоскости колебаний (т. е. плоскость, в которой лежит вектор Н), называется плоскостью поляризации.

Скорость распространения электромагнитных волн в вакууме есть одна из важнейших констант физики и равна

В других средах она меньше к определяется по формуле (см. ч. III, § 29)

где соответственно диэлектрическая и магнитная проницаемости среды.

При переходе излучения из одной среды в другую частота колебаний в волне сохраняется, но длина волны К изменяется; обычно, если это не оговорено, К обозначает длину волны в вакууме.

Выше указывалось, что видимое излучение (которое мы называем светом) охватывает длины волн от 400 до при специальной тренировке глаз может воспринимать свет длиной волны от 320 до 900 нм. Более широкий интервал длин волн от 1 см до , охватывающий также ультрафиолетовую и инфракрасную области, называется оптическим излучением.

1.1. Виды спектров.

На первый взгляд лазерный пучок кажется очень простым по своей структуре. Это практически одночастотное излучение, имеющее спектрально чистый цвет: He-Ne лазер имеет излучение красного цвета (633 нм), кадмиевый лазер излучает синий цвет (440 нм, аргоновый лазер излучает несколько линий в сине-зеленой области спектра (488 нм, 514 нм и др.), полупроводниковый лазер - красное излучение (650 нм) и т.д. На самом деле спектр излучения лазера имеет довольно сложную структуру и определяется двумя параметрами - спектром излучения рабочего вещества (для He-Ne лазера, например, это красная спектральная линия излучения неона, возбужденного электрическим разрядом) и резонансными явлениями в оптическом резонаторе лазера.

Для сравнения, на рисунках справа приведены спектры излучения солнца (A) и обычной лампочки накаливания (B) (верхний рис.), спектр ртутной лампы (рис. справа) и сильно увеличенный спектр генерации He-Ne лазера (рис. внизу).

Спектр лампы накаливания, как и солнечный спектр, относится к непрерывным спектрам, которые полностью заполняет видимый спектральный диапазон электромагнитного излучения (400-700 нм). Спектр ртутной лампы относится к линейчатым спектрам, который так же заполняет весь видимый диапазон, но состоит из отдельных спектральных компонент различной интенсивности. Кстати, до появления лазеров монохроматическое излучение получали, выделяя отдельные спектральные компоненты излучения ртутной лампы.

1.2. Спектр излучения в He-Ne лазере.

Спектр излучения лазера является монохроматическим, т. е. имеет очень узкую спектральную ширину, но, как видно из рисунка, он так же имеет сложную структуру .

Процесс формирования лазерного спектра рассмотрим на основе хорошо изученного He-Ne лазера. Исторически это был первый лазер непрерывного действия, работающий в видимом диапазоне спектра. Он был создан А. Джаваном в 1960 г.

На рис. справа показаны энергетические уровни возбужденной смеси гелия и неона . Возбужденный атом гелия или неона - это атом, у которого один или несколько электронов внешней оболочки при столкновениях с электронами и ионами газового разряда переходят на более высокие энергетические уровни и в дальнейшем могут перейти на более низкий энергетический уровень или вернуться обратно, на нейтральный уровень, с испусканием светового кванта - фотона.

Возбуждение атомов производится электрическим током, проходящим через газовую смесь. Для He-Ne лазера это слаботоковый, тлеющий разряд (типичные токи разряда - 20-50 мА). Картина энергетических уровней и механизм излучения достаточно сложны даже для такого "классического" лазера, которым является He-Ne лазер, поэтому мы ограничимся рассмотрением только основных деталей этого процесса. Атомы гелия, возбужденные до уровня 2S при столкновениях с атомами неона передают им накопленную энергию, возбуждая их до уровня 5S (поэтому гелия в газовой смеси больше, чем неона). С уровня 5S электроны могут перейти на ряд более низких энергетических уровней. Нас интересует только переход 5S - 3P (оба уровня в действительности расщеплены на ряд подуровней из-за квантовой природы механизмов возбуждения и излучения). Длина волны излучения фотонов при этом переходе - 633 нм.

Отметим еще один важный факт, принципиально важный для получения когерентного излучения. При правильно подобранных пропорции гелия и неона, давлении смеси газов в трубке и величине разрядного тока электроны накапливаются на уровне 5S и их количество превышает количество электронов, находящихся на нижнем уровне 3P. Это явление называется инверсной заселенностью уровня. Однако, это пока еще не лазерное излучение. Это одна из спектральных линий в спектре излучения неона. Ширина спектральной линии зависит от нескольких причин, главные из которых: - конечная ширина энергетических уровней (5S и 3P), участвующих в излучении и определяемая квантовым принципом неопределенности, связанным со временем пребывания атомов неона в возбужденном состоянии, - уширение линии связанное с постоянным движением возбужденных частиц в разряде под воздействием электрического поля (так называемый эффект Доплера). С учетом этих факторов ширина линии (специалисты называют ее контуром рабочего перехода) равна примерно двум десятитысячным ангстрема. Для таких узких линий в расчетах удобнее использовать ее ширину в частотной области. Воспользуемся формулой перехода:

dn 1 =dl c/l 2 (1)

где dn 1 - ширина спектральной линии в частотной области, Гц, dl - ширина спектральной линии (0,000002 нм), l - длина волны спектральной линии (633нм), c - скорость света. Подставив все значения (в одной системе измерения), получим ширину линии 1,5 ГГц. Конечно, такую узкую линию можно считать вполне монохроматической по сравнению со всем спектром излучения неона, но назвать это когерентным излучением еще нельзя. Для получения когерентного излучения в лазере используется оптический резонатор (интерферометр).

1.3. Оптический резонатор лазера.

Оптический резонатор представляет собой два зеркала, находящихся на оптической оси и обращенных отражающими поверхностями друг к другу, рис. справа. Зеркала могут быть плоскими или сферическими. Плоские зеркала очень трудно юстировать и генерация лазерного излучения может быть нестабильной. Резонатор со сферическими зеркалами (конфокальный резонатор) гораздо стабильнее, но пучок лазера может быть неоднородным по сечению из-за сложного, многомодового состава излучения. На практике чаще всего используют полуконфокальный резонатор с задним сферическим и передним плоским зеркалом. Такой резонатор относительно стабилен и дает однородный (одномодовый) пучок.

Главным свойством любого резонатора является образование в нем стоячих электромагнитных волн. В случае He-Ne лазера стоячие волны образуются для излучения спектральной линии неона с длиной волны 633 нм. Этому способствует максимальный коэффициент отражения зеркал, подобранный как раз для этой длины волны. В лазерных резонаторах используются диэлектрические зеркала с многослойным напылением, позволяющим получить коэффициент отражения 99% и выше. Как известно, условие образования стоячих волн заключается в том, что расстояние между зеркалами должно быть равно целому числу полуволн:

nl =2L (2)

где n - целое число или порядок интерференции, l - длина волны излучения внутри интерферометра, L - расстояние между зеркалами.

Из условия резонанса (2) можно получить расстояние между резонансными частотами dn 2:

dn 2 =c/2L (3)

Для полутораметрового резонатора газового лазера (He-Ne лазер ЛГН-220) эта величина составляет примерно 100 МГц. Только излучение с таким частотным периодом может многократно отражаться от зеркал резонатора и усиливаться по мере прохождения через инверсную среду - возбужденную электрическим разрядом смесь гелия и неона. Причем, что чрезвычайно важно, при прохождении этого излучения вдоль резонатора, его фазовая структура не изменяется, что приводит к когерентным свойствам усиленного излучения. Этому способствует инверсная заселенность уровня 5S, о которой говорилось выше. Электрон с верхнего уровня переходит на нижний синхронно с фотоном, инициирующим этот переход, поэтому фазовые параметры волн, соответствующих обоим фотонам одинаковы. Такая генерация когерентного излучения происходит по всему пути излучения внутри резонатора. Кроме того, резонансные явления приводят к гораздо большему сужению линии излучения, в результате чего наибольшее усиление получается в центре резонансного пика.
Через определенное число проходов интенсивность когерентного излучения становится настолько высокой, что превышает естественные потери в резонаторе (рассеяние в активной среде, потери на зеркалах, дифракционный потери и т.д.) и часть его выходит за пределы резонатора. Для этого выходное, плоское зеркало сделано с немного меньшим коэффициентом отражения (99,6-99,7%). В результате спектр генерации лазера имеет вид, показанный на третьем рис. сверху. Число спектральных компонент обычно не превышает десяти.

Просуммируем еще раз все факторы, определяющие частотные характеристики излучения лазера. Прежде всего, рабочий переход характеризуется естественной шириной контура. В реальных условиях за счет различных факторов контур уширяется. В пределах уширенной линии размещаются резонансные линии интерферометра, число которых определяется шириной контура перехода и расстоянием между соседними пиками. Наконец, в центре пиков располагаются чрезвычайно узкие спектральные линии излучения лазера, которые и определяют спектр выходного излучения лазера.

1.4. Когерентность лазерного излучения.

Уточним, какую длину когерентности обеспечивает излучение He-Ne лазера. Воспользуемся формулой, предложенной в работе :

по мере прохождения через инверсную среду - возбужденную электрическим разрядом смесь гелия и неона. Причем, что чрезвычайно важно, при прохождении этого излучения вдоль резонатора, его фазовая структура не изменяется, что приводит к когерентным свойствам усиленного излучения. Этому способствует инверсная заселенность уровня 5S, о которой говорилось выше. Электрон с верхнего уровня переходит на нижний синхронно с фотоном, инициирующим этот переход, поэтому фазовые параметры волн, соответствующих обоим фотонам одинаковы. Такая генерация когерентного излучения происходит по всему пути излучения внутри резонатора. Кроме того, резонансные явления приводят к гораздо большему сужению линии излучения, в результате чего наибольшее усиление получается в центре резонансного пика.

dt =dn -1 (4)

где dt - время когерентности, представляющее собой верхний предел временного интервала, на котором амплитуда и фаза монохроматической волны являются постоянными. Перейдем к привычной для нас длине когерентности l, с помощью которой легко оценивать глубину записываемой на голограмме сцены:

l=c/dn (5)

Подставляя данные в формулу (5), в т.ч., полную ширину спектра dn 1 = 1,5 ГГц, получим длину когерентности 20 см. Это довольно близко к реальной длине когерентности He-Ne лазера, имеющего неизбежных потери излучения в резонаторе. Измерения длины когерентности с помощью интерферометра Майкельсона дают величину 15-17 см (на уровне 50%-го уменьшения амплитуды интерференционной картины). Интересно оценить длину когерентности отдельной спектральной компоненты, выделенной резонатором лазера. Ширина резонансного пика интерферометра dn 3 (см. третий сверху рис.) определяется его добротностью и равна примерно 0,5 МГц. Но, как говорилось выше, резонансные явления приводят к еще большему сужению лазерной спектральной линии dn 4 , формирующейся вблизи центра резонансного пика интерферометра (третий сверху рис.). Теоретический расчет дает ширину линии восемь тысячных герца! Однако эта величина не имеет большого практического смысла, так как для длительного существования такой узкой спектральной компоненты необходимы значения механической стабильности резонатора, теплового дрейфа и других параметров, которые абсолютно невозможны в реальных условиях эксплуатации лазера. Поэтому мы ограничимся шириной резонансного пика интерферометра. Для ширины спектра 0,5 МГц длина когерентности, рассчитанная по формуле (5) равна 600 м. Это тоже очень неплохо. Остается только выделить одну спектральную компоненту, оценить ее мощность и удержать ее на одном месте. Если же она за время экспонирования голограммы "пройдется" по всему рабочему контуру (по причине, например, температурной нестабильности резонатора), мы опять получим те же 20 см когерентности.

1.5. Спектр генерации ионного лазера.

Расскажем коротко о спектре генерации другого газового лазера - аргонового. Этот лазер, как и криптоновый, относится к ионным лазерам, т.е. в процессе генерации когерентного излучения участвуют уже не атомы аргона, а их ионы, т. е. атомы, один или несколько электронов внешней оболочки которого оторваны под воздействием мощного дугового разряда, который проходит через активное вещество. Ток разряда достигает нескольких десятков ампер, электрическая мощность блока питания - несколько десятков киловатт. Необходимо обязательное интенсивное водяное охлаждение активного элемента, иначе произойдет его тепловое разрушение. Естественно, в таких жестких условиях картина возбуждения атомов аргона еще более сложная. Возникает генерация сразу нескольких лазерных спектральных линиях, ширина рабочего контура каждой из них существенно больше ширины контура линии He-Ne лазера и составляет несколько гигагерц. Соответственно, длина когерентности лазера уменьшается до нескольких сантиметров. Для записи голограмм большого формата необходима частотная селекция спектра генерации, о чем пойдет речь во второй части этой статьи.

1.6. Спектр генерации полупроводникового лазера.

Перейдем к рассмотрению спектра генерации полупроводникового лазера, представляющего большой интерес для процесса обучения голографии и для начинающих голографистов. Исторически первыми были разработаны инжекционные полупроводниковые лазеры на основе арсенида галия, рис. справа.

Так как его конструкция достаточно проста, рассмотрим принцип работы полупроводникового лазера на его примере. Активным веществом, в котором происходит генерация излучения, является монокристалл арсенида галия, имеющий форму параллепипеда со сторонами длиной несколько сотен микрон. Две боковые грани делаются параллельными и полируются с высокой степенью точности. За счет большого показателя преломления (n = 3,6), на границе кристалл-воздух получается достаточно большой коэффициент отражения (около 35%), что достаточно для получения генерации когерентного излучения без дополнительного напыления отражающих зеркал. Две другие грани кристалла скошены под некоторым углом; через них индуцированное излучение не выходит. Генерация когерентного излучения происходит в p-n переходе, который создается путем диффузии акцепторных примесей (Zn, Cd и др.) в область кристалла, легированную донорными примесями (Te, Se и др.). Толщина активной области в перпендикулярном к p-n переходу направлении составляет около 1 мкм. К сожалению, в такой конструкции полупроводникового лазера пороговая плотность тока накачки оказывается достаточно большой (около 100 тыс. ампер на 1 кв.см.). Поэтому этот лазер мгновенно разрушается при работе в непрерывном режиме при комнатной температуре и требует сильного охлаждения. Лазер стабильно работает при температуре жидкого азота (77 K) или гелия (4,2K).

Современные полупроводниковые лазеры делают на базе двойных гетеропереходов, рис. справа. В такой структуре пороговую плотность тока удалось уменьшить на два порядка, до 1000 А/см. кв. При такой плотности тока возможна стабильная работа полупроводникового лазера и при комнатной температуре. Первые образцы лазеров работали в инфракрасном диапазоне (850 нм). При дальнейшем совершенствовании технологии формирования полупроводниковых слоев, появились лазеры как с увеличенной длиной волны (1.3 - 1,6 мкм) для оптоволоконных линий связи, так и с генерацией излучения в видимой области (650 нм). Уже существуют лазеры, излучающие в синей области спектра. Большим преимуществом полупроводниковых лазеров является их высокий КПД (соотношение энергии излучения к электрической энергии накачки), которое доходит до 70%. Для газовых лазеров, как для атомарных, так и ионных, КПД не превышает 0,1%.

В связи со спецификой процесса генерации излучения в полупроводниковом лазере, ширина спектра излучения гораздо больше ширины спектра He-Ne лазера, рис. справа.

Ширина рабочего контура составляет около 4 нм. Число спектральных гармоник может достигать нескольких десятков. Это накладывает серьезное ограничение на длину когерентности лазера. Если воспользоваться формулами (1), (5), теоретическая длина когерентности составит всего 0,1 мм. Однако, как показали прямые измерения длины когерентности на интерферометре Майкельсона и запись отражающих голограмм, реальная длина когерентности полупроводниковых лазеров доходит до 4-5 см. Это говорит о том, что реальный спектр генерации полупроводникового лазера не так богат гармониками и имеет не такую большую ширину контура рабочего перехода, как предсказывает теория. Однако, справедливости ради, стоит заметить, что степень когерентности излучения полупроводниковых лазеров сильно меняется как от образца к образцу, так и от режима его работы (величина тока накачки, условия охлаждения и т.д.

Рекомендуем почитать

Наверх