Закон термодинамики простыми словами. Цикл состоит из четырех процессов

Постройки 20.09.2019
Постройки

Второй закон термодинамики - один из основных законов физики, закон о неспадання энтропии в изолированной системе . Он накладывает ограничения на количество полезной работы , которую может осуществить тепловой двигатель . На основополагающем уровне второй закон термодинамики определяет направление протекания процессов в физической системе - от порядка к беспорядка. Существует много различных формулировок второго закона термодинамики, в целом эквивалентных между собой.


1. Формулировка


2. Альтернативные формулировки

Приведенная формулировка очень формальное. Существует очень много альтернативных формулировок второго закона термодинамики. Например, Планк предложил такую ​​формулировку:

Невозможно построить машину, которая бы работала циклически, охлаждающей же источник тепла или поднимала вверх грузы, не вызывая при этом никаких изменений в природе.

Невозможно превратить теплоту в работу, не выполняя никакой другой действия кроме охлаждения системы.

Природа стремится перейти из состояний с меньшей вероятностью реализации в состояния с большей вероятностью реализации.

Невозможно создать вечный двигатель 2-го рода

Самопроизвольный переход тепла от менее нагретого к более нагретого невозможен

Там где есть разница температур там возможно выполнение работы

Распространены следующие формулировки:

Невозможно построить вечный двигатель второго рода.

Невозможно передать тепло от холодного тела к горячему, не затратив при этом энергию.

Каждая система стремится перейти от порядка к беспорядка.


3. Историческая справка

Второй закон термодинамики был сформульваний в середине 19-го века, в те времена, когда создавалась теоретическая основа для конструирования и построения тепловых машин. Опыты Майера и Джоуля установили эквивалентность между тепловой и механической энергиями (первый закон термодинамики). Возник вопрос об эффективности тепловых машин. Экспериментальные исследования свидетельствовали о том, что часть тепла обязательно теряется при работе любой машины.

В 1850-х, 1860-х годах Клаузиус в ряде публикаций разработал понятие энтропии . В 1865 году он наконец-то выбрал для нового понятия имя. Эти публикации доказали также, что тепло невозможно полностью превратить в полезную работу, сформулировав таким образом второй закон термодинамики.

Статистическую интерпретацию второму закону термодинамики дал Больцман, введя новое определение для энтропии, которое базировалось на микроскопических атомистических представлениях.


4. Статистическая интерпретация

Из статистического определения энтропии очевидно, что рост энтропии соответствует переходу к такому макроскопического состояния, характеризующегося наибольшим значением микроскопических состояний.


5. Стрела времени

Если исходное состояние термодинамической системы неравновесное, то со временем она переходит к равновесному состоянию, увеличивая свою энтропию. Этот процесс протекает только в одну сторону. Обратный процесс - переход от равновесного состояния к начальному неравновесного, не реализуется. То есть, течение времени получает направление.

Законы физики, описывающие микроскопический мир, инвариантные относительно замены t на-t. Данное утверждение справедливо как в отношении законов классической механики, так и законов квантовой механики. В микроскопическом мире действуют консервативные силы, нет трения, которое является диссипацией энергии, т.е. преобразованием других видов энергии в энергию теплового движения, а это в свою очередь связано с законом неспадання энтропии.

Представим себе, например, газ в резервуаре, помещенном в большую резервуар. Если открыть клапан менее резервуара, то газ через некоторое время заполнит больше резервуар таким образом, что его плотность выровняется. Согласно законам микроскопического мира, существует также и обратный процесс, когда газ из большего резервуара соберется в меньшую резервуар. Но в макроскопическом мире такое никогда не реализуется.


6. Тепловая смерть

Если энтропия каждой изолированной системы только увеличивается со временем, а Вселенная изолированной системой, то когда-нибудь энтропия достигнет максимума, после чего любые изменения в нем станут невозможными.

Такие рассуждения, которые появились после установки второго закона термодинамики, получили название тепловой смерти. Эта гипотеза широко дискутировалась в 19-ом столетии.

Каждый процесс в мире приводит к рассеиванию части энергии и перехода ее в тепло, ко все большему беспорядка. Конечно, наша Вселенная еще достаточно молод. Термоядерные процессы в звездах вызывающих постоянный потока энергии на Землю, например. Земля есть и еще долго будет оставаться открытой системой, которая получает энергию из различных источников: от Солнца, от процессов радиоактивного распада в ядре т.д.. В открытых системах, энтропия может уменьшаться, что приводит к появлению различных упорядоченных стуктур.

Второй закон термодинамики

Второй закон термодинамики устанавливает критерии, позволяющие определить направление самопроизвольного протекания процессов.

Самопроизвольными называют процессы, которые протекают в системе без затраты энергии извне.

Процессы бывают обратимыми и необратимыми. Необратимые процессы идут самопроизвольно лишь в одном направлении. После протекания данных процессов, сопровождающихся изменениями в системе и окружающей среде, невозможно вернуть одновременно и систему и окружающую среду в исходное состояние.

Обратимыми являются процессы, после которых систему и окружающую среду можно вернуть в исходное состояние.

Второй закон термодинамики имеет несколько формулировок, в варианте, предложенном Клаузиусом, он выглядит следующим образом: невозможен самопроизвольный переход теплоты от холодного тела к горячему.

Физический смысл второго закона термодинамики заключается в том, что любой самопроизвольный процесс протекает в направлении, при котором система из менее вероятного состояния переходит в более вероятное состояние. Другими словами, самопроизвольному протеканию процесса способствует увеличение неупорядоченности в системе.

Для характеристики меры неупорядоченности используется термодинамическая функция – энтропия S , которая связана с термодинамической вероятностью системы формулой Больцмана:

S = k · lnW, (25)

где k – постоянная Больцмана.

Под термодинамической вероятностью W понимают число равновероятных микроскопических состояний, которыми может быть реализовано данное макроскопическое состояние системы. Для определения термодинамической вероятности системы необходимо найти число различных вариантов положений всех частиц системы в пространстве.

Энтропия является количественной мерой беспорядка в системе. Чем больше W, тем хаотичнее система, тем больше величина энтропии. Нагревание вещества приводит к увеличению энтропии, а охлаждение – к уменьшению. При приближении к абсолютному нулю (-273ºС) энтропия стремится к нулю, что позволяет определить абсолютные значения энтропии различных веществ, значения которых при стандартных условиях представлены в таблицах. Следует отметить, что в отличие от энтальпии образования, энтропия простого вещества, даже находящегося в кристаллическом состоянии, не равна нулю, т.к. при температуре, отличающейся от абсолютного нуля, макросостояние кристалла может быть реализовано не единственным макросостоянием, а большим числом равновероятных состояний.

Другая формулировка второго закона термодинамики выглядит так: полная энтропия всегда увеличивается в самопроизвольном процессе.

Увеличение энтропии ΔS при протекании процесса должно превышать или быть равным отношению количества теплоты Q, переданного системе, к температуре Т, при которой теплота передаётся:

Уравнение (26) является математической записью второго начала термодинамики . В данном уравнении знак неравенства относится к необратимым самопроизвольным процессам, а знак равенства – к обратимым процессам.

Согласно уравнению (26), изменение энтропии при обратимом переходе системы из состояния 1 в состояние 2 можно определить как:

ΔS = S 2 – S 1 = . (27)

Фазовые переходы сопровождаются тепловым эффектом, называемым теплотой фазового перехода ΔН ф.п. , и являются изотермическими процессами (Т ф.п. = const). Для фазового перехода одного моля вещества изменение энтропии равно:

ΔS ф.п. = . (28)

В процессах плавления, испарения жидкости или сублимации вещества энтропия увеличивается, так как разрушается упорядоченная кристаллическая решётка. Обратные процессы: кристаллизации, конденсации, десублимации сопровождаются уменьшением неупорядоченности в системе, и следовательно, уменьшением энтропии.

При изменении температуры вещества от Т 1 до Т 2 при постоянном давлении изменение энтропии определяется по формуле:

поскольку С р = const, то

ΔS = С р · ln . (30)

Для изохорных процессов

при С v = const

ΔS = С v · ln . (32)

Стандартной энтропией ΔS называется энтропия 1 моля вещества в стандартных условиях. Изменение стандартной энтропии ΔS при протекании химической реакции можно рассчитать по уравнению, основываясь на следствии из закона Гесса:

Наиболее хаотичной формой вещества является газообразное состояние, поэтому если в результате химической реакции число молей газа увеличивается, то хаотичность, а следовательно, и энтропия системы возрастает.

Обычно определяют не абсолютн6ое значение энтропии, а её изменение (S 2 – S 1) в том или ином процессе. Для вычисления изменения энтропии при переходе одного моля идеального газа из одного состояния в другое используют формулы.

Лекция 17

Второй закон термодинамики

Вопросы

    Тепловые двигатели и холодильные машины. Цикл Карно.

    Энтропия, второй закон термодинамики.

3. Реальные газы. Уравнение Ван-дер-Ваальса.

Изотермы реальных газов. Фазовая диаграмма.

4. Внутренняя энергия реального газа.

Эффект Джоуля – Томсона.

1. Тепловые двигатели и холодильные машины. Цикл Карно

Циклом называется круговой процесс, при котором система, пройдя через ряд состояний, возвращается в исходное положение.

Прямой цикл

КПД двигателя

Обратный цикл

холодильныйкоэф-нт

отопительныйкоэф-нт

Цикл Карно – это цикл идеального двигателя, в котором тепло подводится и отводится в изотермических условиях при температурах нагревателяТ 1 и холодильникаТ 2 , переход отТ 1 кТ 2 и обратно осуществляется в адиабатных условиях.

А ц = А 12 + А 23 + А 34 + А 41 (1)

, (2)

, (3)

, (4)

. (5)


. (6)



(7)

Теоремы Карно:

    Коэффициент полезного действия тепловой машины, работающей при данных значениях температур нагревателя и холодильника, не может быть больше, чем коэффициент полезного действия машины, работающей по обратимому циклу Карно при тех же значениях температур нагревателя и холодильника.

    Коэффициент полезного действия тепловой машины, работающей по циклу Карно, не зависит от рода рабочего тела, а зависит только от температур нагревателя и холодильника.

Зависимость КПД цикла Карно от температуры нагревателя (t 2 = 0 o C )

t 1 , o C

t , %

;


, (8)

теорема Карно послужила основанием для установления термоди­нами­чес­кой шкалы температур , такая термодинамическая шкала не связана со свойствами какого-то определенного термометрического тела.

  1. Энтропия, второй закон термодинамики

Энтропией называется отношение теплоты, подводимой к термодина­мической системе в некотором процессе, к абсолютной температуре этого тела.

(9)

Эта функция была впервые введена С.Карно под названием приведенной теплоты , затем названа Клаузиусом (1865 г.).

, (10)

тепло подводится,

тепло отводится.

Изменение энтропии в частных случаях политропного процесса

1.


изобарный процесс.

(11)

2 .




изотермический процесс

1-й закон термодинамики:


(12)

3. Адиабатный процесс.



процесс изоэнтропный (13)

4. Изохорный процесс.

Второй закон термодинамики устанавливаетнаправление протекания тепловых процессов.

Формулировка немецкого физика Р. Клаузиус а : невозможен процесс, единственным результатом которого была бы передача энергии путем теплообмена от тела с низкой температурой к телу с более высокой температурой.

Формулировка английского физика У. Кельвин а : в циклически действующей тепловой машине невозможен процесс, единственным результатом которого было бы преобразование в механическую работу всего количества теплоты, полученного от единственного теплового резервуара.

Вероятностная формулировка австрийского физика Л.Больцмана : Он предложил рассматривать энтропию как меру статистического беспорядка замкнутой термодинамической системе. Всякое состояние системы c большим беспорядком характеризуется большим беспорядком. Термодинамическая вероятность W состояния системы – это число способов , которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний , осуществляющих данное макросостояние. По определению термодинамическая вероятность W >> 1.

S = k ln W , (14)

где k = 1,38·10 –23 Дж/К – постоянная Больцмана.

Таким образом, энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамической системы.

Все самопроизвольно протекающие процессы в замкнутой системе, приближающие систему к состоянию равновесия и сопровождающиеся ростом энтропии, направлены в сторону увеличения вероятности состояния.

(15)

т.е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов), либо оставаться постоянной (в случае обратимых процессов).

Так как энтропия возрастает только в неравновесном процессе, то ее увеличение происходит до тех пор, пока система не достигнет равновесного состояния. Следовательно, равновесное состояние соответ­ству­ет максимуму энтропии. С этой точки зрения энтропия является мерой близости системы к состоянию равновесия, т.е. к состоянию с мини­маль­ной потенциальной энергией.

3. Реальные газы. Уравнение Ван-дер-Ваальса. Изотермы реальных газов. Фазовая диаграмма

Поведение реального газа отличается от поведения идеального газа. Так, радиус молекул большинства газов порядка 10 -10 м (1Ǻ), следовательно, объем молекул порядка 410  30 м 3 . В 1 м 3 газа при нормальных условиях содержится 2,710 25 молекул. Таким образом, собственный объем молекул в 1 м 3 при нормальных условиях будет порядка 1,210  4 м 3 , т.е. около 0,0001 от объема, занятого газом.

Любое вещество в зависимости от параметров состояния может находиться в различных агрегатных состояниях :твердом, жидком, газообразном, плазменном .

Нидерландский физик Ван-дер-Ваальс ввел две поправки в уравнение Менделеева-Клапейрона:

1. Учет собственного объема молекулы

Объем одной молекулы: ;

Недоступный объем пары молекул (в расчете на одну молекулу):

учетверенный объем молекулы.

Недоступный объем на все N A молекул одного киломоля:


внутреннее давление; а – постоянная Ван-дер-Ваальса, характери­зую­щая силы межмолекулярного притяжения.

Уравнение Ван-дер-Ваальса для одного моля газа (уравнение состояния реальных газов):

. (16)

Уравнение Ван-дер-Ваальса для произвольной массы газа



. (17)

При фиксированных значениях давления и температуры уравнение (16) имеет три корня относительно V (V 1 , V 2 , V 3)

(V V 1 )(V V 2)(V V 3 ) = 0.

Простая формулировка первого закона термодинамики может звучать примерно так: изменение внутренней энергии той или иной системы возможно исключительно при внешнем воздействии. То есть другими словами, чтобы в системе произошли какие-то изменения необходимо приложить определенные усилия извне. В народной мудрости своеобразным выражением первого закона термодинамики могут служить пословицы – «под лежачий камень вода не течет», «без труда не вытащишь рыбку из пруда» и прочая. То есть на примере пословицы про рыбку и труд, можно представить, что рыбка и есть наша условно закрытая система, в ней не произойдет никаких изменений (рыбка сама себя не вытащит из пруда) без нашего внешнего воздействия и участия (труда).

Интересный факт: именно первый закон термодинамики устанавливает, почему потерпели неудачу все многочисленные попытки ученых, исследователей, изобретателей изобрести «вечный двигатель», ведь его существование является абсолютно невозможным согласно этому самому закону, почему, смотрите абзац выше.

В начале нашей статьи было максимального простое определение первого закона термодинамики, в действительности в академической науке существует целых четыре формулировки сути данного закона:

  • Энергия ни откуда не появляется и ни куда не пропадает, она лишь переходит из одного вида в другой (закон сохранения энергии).
  • Количество теплоты, полученной системой, идет на совершение ее работы против внешних сил и изменение внутренней энергии.
  • Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданной системе, и не зависит от способа, которым осуществляется этот переход.
  • Изменение внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты, переданной системе, и работой, совершенной системой над внешними силами.

Формула первого закона термодинамики

Формулу первого закона термодинамики можно записать таким образом:

Количество теплоты Q, передаваемое системе равно суме изменения ее внутренней энергии ΔU и работы A.

Процессы первого закона термодинамики

Также первый закон термодинамики имеет свои нюансы в зависимости от проходящих термодинамических процессов, которые могут быть изохронными и изобарными, и ниже мы детально опишем о каждом из них.

Первый закон термодинамики для изохорного процесса

Изохорным процессом в термодинамике называют процесс, происходящий при постоянном объеме. То есть, если будь-то в газе или жидкости нагреть вещество в сосуде, произойдет изохорный процесс, так как объем вещества останется неизменным. Это условие имеет влияние и на первый закон термодинамики, проходящий при изохорном процессе.

В изохорном процессе объем V является константой, следовательно, газ работы не совершает A = 0

Из этого выходит следующая формула:

Q = ΔU = U (T2) – U (T1).

Здесь U (T1) и U (T2) – внутренние энергии газа в начальном и конечном состояниях. Внутренняя энергия идеального газа зависит только от температуры (закон Джоуля). При изохорном нагревании тепло поглощается газом (Q > 0), и его внутренняя энергия увеличивается. При охлаждении тепло отдается внешним телам (Q < 0).

Первый закон термодинамики для изобарного процесса

Аналогично изобарным процессом называется термодинамический процесс, происходящий в системе при постоянном давлении и массе газа. Следовательно, в изобарном процессе (p = const) работа, совершаемая газом, выражается следующим уравнением первого закона термодинамики:

A = p (V2 – V1) = p ΔV.

Изобарный первый закон термодинамики дает:

Q = U (T2) – U (T1) + p (V2 – V1) = ΔU + p ΔV. При изобарном расширении Q > 0 – тепло поглощается газом, и газ совершает положительную работу. При изобарном сжатии Q < 0 – тепло отдается внешним телам. В этом случае A < 0. Температура газа при изобарном сжатии уменьшается, T2 < T1; внутренняя энергия убывает, ΔU < 0.

Применение первого закона термодинамики

Первый закон термодинамике имеет практическое применение к различным процессам в физике, например, позволяет вычислить идеальные параметры газа при разнообразных тепловых и механических процессах. Помимо сугубо практичного применение можно этому закону найти применение и философское ведь что ни говорите, но первый закон термодинамики является выражением одного из самых общих законов природы – закона сохранения энергии. Еще Еклезиаст писал, что ничто ни откуда не появляется и никуда не уходит, все пребывает вечно, постоянно трансформируясь, в этом и кроется вся суть первого закона термодинамики.

Первый закон термодинамики, видео

И в завершение нашей статьи вашему вниманию образовательное видео о первом законе термодинамике и внутренней энергии.

Лекция 17

Второй закон термодинамики

Вопросы

    Тепловые двигатели и холодильные машины. Цикл Карно.

    Энтропия, второй закон термодинамики.

3. Реальные газы. Уравнение Ван-дер-Ваальса.

Изотермы реальных газов. Фазовая диаграмма.

4. Внутренняя энергия реального газа.

Эффект Джоуля – Томсона.

1. Тепловые двигатели и холодильные машины. Цикл Карно

Циклом называется круговой процесс, при котором система, пройдя через ряд состояний, возвращается в исходное положение.

Прямой цикл

КПД двигателя

Обратный цикл

холодильныйкоэф-нт

отопительныйкоэф-нт

Цикл Карно – это цикл идеального двигателя, в котором тепло подводится и отводится в изотермических условиях при температурах нагревателяТ 1 и холодильникаТ 2 , переход отТ 1 кТ 2 и обратно осуществляется в адиабатных условиях.

А ц = А 12 + А 23 + А 34 + А 41 (1)

, (2)

, (3)

, (4)

. (5)


. (6)



(7)

Теоремы Карно:

    Коэффициент полезного действия тепловой машины, работающей при данных значениях температур нагревателя и холодильника, не может быть больше, чем коэффициент полезного действия машины, работающей по обратимому циклу Карно при тех же значениях температур нагревателя и холодильника.

    Коэффициент полезного действия тепловой машины, работающей по циклу Карно, не зависит от рода рабочего тела, а зависит только от температур нагревателя и холодильника.

Зависимость КПД цикла Карно от температуры нагревателя (t 2 = 0 o C )

t 1 , o C

t , %

;


, (8)

теорема Карно послужила основанием для установления термоди­нами­чес­кой шкалы температур , такая термодинамическая шкала не связана со свойствами какого-то определенного термометрического тела.

  1. Энтропия, второй закон термодинамики

Энтропией называется отношение теплоты, подводимой к термодина­мической системе в некотором процессе, к абсолютной температуре этого тела.

(9)

Эта функция была впервые введена С.Карно под названием приведенной теплоты , затем названа Клаузиусом (1865 г.).

, (10)

тепло подводится,

тепло отводится.

Изменение энтропии в частных случаях политропного процесса

1.


изобарный процесс.

(11)

2 .




изотермический процесс

1-й закон термодинамики:


(12)

3. Адиабатный процесс.



процесс изоэнтропный (13)

4. Изохорный процесс.

Второй закон термодинамики устанавливаетнаправление протекания тепловых процессов.

Формулировка немецкого физика Р. Клаузиус а : невозможен процесс, единственным результатом которого была бы передача энергии путем теплообмена от тела с низкой температурой к телу с более высокой температурой.

Формулировка английского физика У. Кельвин а : в циклически действующей тепловой машине невозможен процесс, единственным результатом которого было бы преобразование в механическую работу всего количества теплоты, полученного от единственного теплового резервуара.

Вероятностная формулировка австрийского физика Л.Больцмана : Он предложил рассматривать энтропию как меру статистического беспорядка замкнутой термодинамической системе. Всякое состояние системы c большим беспорядком характеризуется большим беспорядком. Термодинамическая вероятность W состояния системы – это число способов , которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний , осуществляющих данное макросостояние. По определению термодинамическая вероятность W >> 1.

S = k ln W , (14)

где k = 1,38·10 –23 Дж/К – постоянная Больцмана.

Таким образом, энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамической системы.

Все самопроизвольно протекающие процессы в замкнутой системе, приближающие систему к состоянию равновесия и сопровождающиеся ростом энтропии, направлены в сторону увеличения вероятности состояния.

(15)

т.е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов), либо оставаться постоянной (в случае обратимых процессов).

Так как энтропия возрастает только в неравновесном процессе, то ее увеличение происходит до тех пор, пока система не достигнет равновесного состояния. Следовательно, равновесное состояние соответ­ству­ет максимуму энтропии. С этой точки зрения энтропия является мерой близости системы к состоянию равновесия, т.е. к состоянию с мини­маль­ной потенциальной энергией.

3. Реальные газы. Уравнение Ван-дер-Ваальса. Изотермы реальных газов. Фазовая диаграмма

Поведение реального газа отличается от поведения идеального газа. Так, радиус молекул большинства газов порядка 10 -10 м (1Ǻ), следовательно, объем молекул порядка 410  30 м 3 . В 1 м 3 газа при нормальных условиях содержится 2,710 25 молекул. Таким образом, собственный объем молекул в 1 м 3 при нормальных условиях будет порядка 1,210  4 м 3 , т.е. около 0,0001 от объема, занятого газом.

Любое вещество в зависимости от параметров состояния может находиться в различных агрегатных состояниях :твердом, жидком, газообразном, плазменном .

Нидерландский физик Ван-дер-Ваальс ввел две поправки в уравнение Менделеева-Клапейрона:

1. Учет собственного объема молекулы

Объем одной молекулы: ;

Недоступный объем пары молекул (в расчете на одну молекулу):

учетверенный объем молекулы.

Недоступный объем на все N A молекул одного киломоля:


внутреннее давление; а – постоянная Ван-дер-Ваальса, характери­зую­щая силы межмолекулярного притяжения.

Уравнение Ван-дер-Ваальса для одного моля газа (уравнение состояния реальных газов):

. (16)

Уравнение Ван-дер-Ваальса для произвольной массы газа



. (17)

При фиксированных значениях давления и температуры уравнение (16) имеет три корня относительно V (V 1 , V 2 , V 3)

(V V 1 )(V V 2)(V V 3 ) = 0.

Рекомендуем почитать

Наверх