Классификация сил инерции. §7

Инженерные системы 20.09.2019
Инженерные системы

Пусть на материальную точку М действует некоторая система сил .

Среди сил могут быть активные силы и реакции связей.

На основании аксиомы независимости действия сил точка М под действием этих сил получит такое же ускорение, как если бы на нее действовала, лишь одна сила, равная геометрической сумме заданных сил,

где а - ускорение точки М ; m - масса точки М F Σ ; - равнодействующая системы сил.

Перенесем вектор, стоящий в левой части уравнения, в правую часть. После этого получим сумму векторов, равную нулю,

Введем обозначение, тогда приведенное уравнение можно представить в виде:

Таким образом, все силы, включая силу , должны уравновешиваться, так как силы и F Σ равны между собой и направлены по одной прямой в противоположные стороны. Сила , равная произведению массы точки на ее ускорение, но направленная в сторону, противоположную ускорению, называется силой инерции.

Из последнего уравнения следует, что в каждый данный момент времени силы, приложенные к материальной точке, уравновешиваются силами инерции. Приведенный вывод называют началом Д"Аламбера. Он может быть применен не только к материальной точке, но и к твердому телу или к системе тел. В последнем случае он формулируется следующим образом: если ко всем действующим силам, приложенным к движущемуся телу или системе тел, приложить силы инерции, то полученную систему сил можно рассматривать как находящуюся в равновесии.

Следует подчеркнуть, что силы инерции действительно существуют, но приложены не к движущемуся телу, а к тем телам, которые вызывают ускоренное движение.

Применение начала Д"Аламбера позволяет при решении динамических задач использовать уравнения равновесия. Такой прием решения задач динамики носит название метода кинетостатики .

Рассмотрим, как определяется сила инерции материальной точки в различных случаях ее движения.

1. Точка М массой m движется прямолинейно с ускорением (рис. а, б).

При прямолинейном движении направление ускорения совпадает с траекторией. Сила инерции направлена в сторону, противоположную ускорению, и численное значение ее определяется по формуле:

При ускоренном движении (рис. а) направления ускорения и скорости совпадают и сила инерции направлена в сторону, противоположную движению. При замедленном движении (рис. б), когда ускорение направлено в сторону, обратную скорости, сила инерции действует по направлению движения.

2. Точка М движется криволинейно и неравномерно (рис. в).

При этом, как известно из предыдущего, ее ускорение может быть разложено на нормальную а n и касательную a t составляющие. Аналогично сила инерции точки также складывается из двух составляющих: нормальной и касательной.

Нормальная составляющая силы инерции равна произведению массы точки на нормальное ускорение и направлена противоположно этому ускорению:

Касательная составляющая силы инерции равна произведению массы точки на касательное ускорение и направлена противоположно этому ускорению:

Очевидно, что полная сила инерции точки М равна геометрической сумме нормальной и касательной составляющих, т. е.

Учитывая, что касательная и нормальная составляющие взаимно перпендикулярны, полная сила инерции:

3.3 Работа постоянной силы на прямолинейном перемещении

Определим работу для случая, когда действующая сила постоянна по величине и направлению, а точка ее приложения перемещается по прямолинейной траектории. Рассмотрим материальную точку С, к которой приложена постоянная по значению и направлению сила F.

За некоторый промежуток времени t точка С переместилась в положение С 1 по прямолинейной траектории на расстояние s .

Работа A постоянной силы F при прямолинейном движении точки ее приложения равна произведению модуля силы F на расстояние s и на косинус угла между направлением силы и направлением перемещения, т. е.

Угол α между направлением силы и направлением движения может меняться в пределах от 0 до 180°. При α < 90° работа положительна, при α> 90° - отрицательна, при α = 90° A = 0 (работа равна нулю).

Если cила составляет с направлением движения острый угол, она называется движущей силой, ее работа всегда положительна. Если угол между направлениями силы и перемещения тупой, сила оказывает сопротивление движению, совершает отрицательную работу и носит название силы сопротивления. Примерами сил сопротивления могут служить силы резания, трения, сопротивления воздуха и другие, которые всегда направлены в сторону, противоположную движению.

Когдаα = 0, т. е. когда направление силы совпадает с направлением скорости, A = Fs , так как cos α = 1. Произведение F cos α есть проекция силы F на направление движения материальной точки. Следовательно, работу силы можно определить как произведение перемещения s и проекции силы F на направление движения точки.

За единицу работы в Международной системе единиц (СИ) принят джоуль (Дж), равный работе силы в один ньютон (Н) на совпадающем с ней по направлению движения длиной в один метр (м): . Применяется также более крупная единица работы - килоджоуль (кДж), 1 кДж = 1000 Дж = 10 3 Дж. В технической системе (МКГСС) за единицу работы принят килограмм-сила метр (кгс м).

Установив, что индивидуальные точки в ньютоновском абсолютном пространстве не являются физической реальностью, мы должны теперь задаться вопросом: что же остается в рамках

этого понятия вообще? Остается следующее: сопротивление всех тел ускорению должно интерпретироваться в ньютоновском смысле как действие абсолютного пространства. Паровоз, который приводит в движение поезд, преодолевает сопротивление инерции. Снаряд, сносящий стену, черпает свою разрушающую силу в инерции. Действие инерции проявляется всякий раз, когда имеют место ускорения, а последние представляют собой не более чем изменения скорости в абсолютном пространстве (мы можем использовать последнее выражение, так как изменение скорости имеет одну и ту же величину во всех инерциальных системах). Таким образом, системы координат, которые сами по себе движутся с ускорением относительно инерциальных систем, не эквивалентны последним или друг другу. Можно, конечно, определять законы механики и в таких системах, но они будут приобретать более сложную форму. Даже траектория свободного тела оказывается уже не равномерной и не прямолинейной в ускоренной системе (см. гл. стр. 59). Последнее можно выразить в форме утверждения, что в ускоренной системе, кроме действительных сил, существуют кажущиеся, или инерциальные, силы. Тело, на которое не действуют действительные силы, все-таки подвержено действию этих инерциальных сил, поэтому его движение в общем случае оказывается неравномерным и непрямолинейным. Например, автомобиль, который начинает двигаться или тормозит, представляет собой такую ускоренную систему. Каждому знаком толчок трогающегося или останавливающегося поезда; это не что иное, как действие инерциальной силы, о которой мы говорим.

Рассмотрим это явление подробно на примере системы движущейся прямолинейно с ускорением Если измерять ускорение тела относительно такой движущейся системы то его ускорение относительно абсолютного пространства, очевидно, будет больше на Следовательно, фундаментальный закон механики в этом пространстве имеет вид

Если записать его в виде

то можно сказать, что в ускоренной системе выполняется закон движения в ньютоновской форме, именно

за исключением того, что теперь в качестве силы нужно поставить К, которая равна

где К - действительная сила, а - кажущаяся сила, или сила инерции.

Итак, эта сила действует на свободное тело. Ее действие можно проиллюстрировать следующим рассуждением: мы знаем, что гравитация на Земле - сила тяжести - определяется формулой G = mg, где постоянное ускорение, обусловленное гравитацией. Сила инерции действует в этом случае подобно гравитации; знак минус означает, что сила инерции направлена противоположно ускорению системы отсчета которая используется как базис. Величина видимого гравитационного ускорения у совпадает с ускорением системы отсчета Таким образом, движение свободного тела в системе есть просто движение того типа, который мы знаем как падение или движение брошенного тела.

Эта взаимосвязь между инерциальными силами в ускоренных системах и силой гравитации здесь все еще кажется несколько искусственной. Фактически она оставалась незамеченной в течение двухсот лет. Однако уже на этой стадии мы должны указать, что она образует основу эйнштейновской общей теории относительности.

force d"inertie . В других языках название силы более явно указывает на её фиктивность: в немецком нем. Scheinkräfte («мнимая», «кажущаяся», «видимая», «ложная», «фиктивная» сила), в английском англ. pseudo force («псевдо-сила») или англ. fictitious force («фиктивная сила»). Реже в английском используются названия «сила д’Аламбера » (англ. d’Alembert force ) и «инерционная сила» (англ. inertial force ).

Многообразие названий объясняется тем, что в русском языке термин «сила инерции» применяется для описания трёх различных сил:

В результате многозначности термина «возникла путаница, которая продолжается и по сей день, и ведутся непрекращаюшиеся споры о том, реальны или нереальны (фиктивны) силы инерции и имеют ли они противодействие» .

Кроме названия, все значения термина объединяет также векторная величина. Она равна произведению массы тела на его ускорение и направлена противоположно ускорению. Краткие определения силы инерции иногда отражают это общее свойство всех значений термина:

Векторная величина, равная произведению массы материальной точки на её ускорение и направленная противоположно ускорению, называется силой инерции .

Реальные и фиктивные силы

В литературе также употребляются термины «фиктивные» и «реальные» силы (последний термин в русскоязычной литературе употребляется редко). Разные авторы вкладывают в эти слова разный смысл:

В зависимости от избранного определения, силы инерции оказываются реальными или фиктивными, поэтому употребление такой терминологии некоторые авторы считают неудачным и рекомендуют просто избегать её в учебном процессе .

Силы

Си́ла - векторная физическая величина, являющаяся мерой интенсивности воздействия на данное тело других тел или полей. Приложенная к массивному телу сила является причиной изменения его скорости или возникновения в нём деформаций. Сила, как векторная величина, характеризуется модулем, направлением и «точкой» приложения силы.

Первый закон Ньютона

Первый закон Ньютона вводит понятие инерциальных систем отсчёта, и даёт повод говорить о неинерциальных:

Существуют такие системы отсчёта, относительно которых материальная точка при отсутствии внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения.

Второй закон Ньютона

Заключается в утверждении, что между силой и вызываемым ею ускорением существует прямая пропорциональность, что записывается в виде:

Здесь входящий в коэффициент пропорциональности скаляр есть инертная масса .

Экспериментально доказано, что для любого тела масса, входящая в выражение Второго закона Ньютона и в его закон Всемирного тяготения, полностью эквивалентны:

Равенство инерционной и инертной масс является, как это рассматривается в Специальной теории относительности , фундаментальным свойством пространства-времени. Его рассмотрение выходит за рамки классической механики.

Поэтому ниже масса тела будет обозначаться без индексов как .

Рассматриваемое тело с массой (точнее - инертной массой) приобретает отличающееся от нуля ускорение в тот же момент , когда начинает действовать на него сила (Второй закон Ньютона : ). Однако справедливо и то, что для достижения отличающейся от нуля скорости требуется некоторое время в соответствии с определением импульса силы : . Или, иначе, скорость тела не изменяется сама по себе, без причины, но она начинает изменяться тотчас , как на него начинает действовать сила. Таким образом, нет никаких оснований для введения представлений о каком-либо сопротивлении воздействию или же о некоем «свойстве инертности» .

Повсеместно принято считать, что Второй закон справедлив только в инерциальных СО и не выполняется в системах неинерциальных. С учётом того, что инерциальные системы принципиально не реализуемы, Второй закон логично бы считать также никогда не выполняемым. Однако положенная в его основу идея пропорциональности получаемого телом ускорения всем , действующих на него силам, независимо от их происхождения , позволяет путём учёта «фиктивных» сил инерции распространить действие ньютонианской аксиоматики и на механику реальных движений реальных тел .

Как и другие утверждения, подлежащие экспериментальной проверке, Второй закон может быть справедлив только в том случае, когда входящие в него величины могут быть измерены независимо каждая по-отдельности. Современная экспериментальная техника обеспечивает достаточно высокую точность измерений как силы, так и массы и ускорения. Эти измерения неизменно экспериментально подтверждают (в рамках классической механики) справедливость упомянутой экстраполяции Второго закона .

Третий закон Ньютона

Утверждает, что силы, действующие со стороны одних тел на другие, всегда имеют характер взаимодействия, т.е если первое тело изменяет скорость второго, то и второе изменяет скорость первого. При этом, в любом виде силового взаимодействия и независимо от того, меняется ли расстояние между телами и вообще движутся ли они, всегда выполняется условие:

То есть ускорения, сообщаемые телами друг другу, при взаимодействии двух тел направлены навстречу друг другу, и обратно пропорциональны массам тел.

Вводя в выражение (4) определение для инертной массы тел из Второго закона, приходим к общепринятой записи третьего закона Ньютона в его собственной формулировке:

Действию всегда есть равное и противоположное противодействие, иначе: взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны

Механика Ньютона инвариантна по отношению к стреле времени - она допускает ход движения тел как в прямой, так и обратной по отношению ко времени последовательности. Это находит своё выражение и в Третьем законе, подразумевающем одновременное возникновение силы действия и силы противодействия, независимо от предыстории описываемого физического процесса.

Однако в природе существует причинно-следственный порядок между происходящими событиями, в силу которого они располагаются в определённой последовательности во времени (в космических масштабах причинно-следственной связи может и не быть ввиду конечной скорости распространения любого силового взаимодействия, что является исходным положением специальной теории относительности). И поэтому при взаимодействии двух тел представляется логичным, что то из них, которое испытало ускорение, порождённое действием другого, считать пассивным, то есть ускоряемым , а другое - активным, то есть ускоряющим . .

С точки зрения анализа динамики движения важно знать, в какой системе из рассматриваемых ниже двух систем находится наблюдатель (регистрирующее устройство) и, что самое важное, знать (в случае, если наблюдатель находится во второй, движущейся системе), является ли эта система инерциальной, или нет.

Ньютоновы силы инерции

Некоторые авторы используют термин «сила инерции» для обозначения силы-противодействия из третьего закона Ньютона . Понятие было введено Ньютоном в его «Математических началах натуральной философии» : «Врождённая сила материи есть присущая ей способность сопротивления, по которой всякое отдельно взятое тело, поскольку оно предоставлено самому себе, удерживает свое состояние покоя или равномерного прямолинейного движения», а собственно термин «сила инерции» был, по словам Эйлера , впервые употреблён в этом значении Кеплером ( , со ссылкой на Е. Л. Николаи).

Для обозначения этой силы-противодействия некоторые авторы предлагают использовать термин «ньютонова сила инерции» во избежание путаницы с фиктивными силами, применяемыми при вычислениях в неинерциальных системах отсчёта и при использовании принципа д’Аламбера.

Отголоском ньютоновского выбора слова «сопротивление» для описания инерции является также представление о некоей силе, якобы реализующей это свойство в форме сопротивления изменениям параметров движения. В связи с этим Максвелл заметил, что с таким же успехом можно было бы сказать, что кофе сопротивляется тому, чтобы стать сладким, так как сладким оно становится не само по себе, а лишь после того, что в него положен сахар .

Существование инерциальных систем отсчёта

Ньютон исходил из предположения, что инерциальные системы отсчёта существуют и среди этих систем существует наиболее предпочтительная (сам Ньютон связывал её с эфиром, заполняющим всё пространство). Дальнейшее развитие физики показало, что такой системы нет, но это привело к необходимости выйти за пределы классической физики. Более того, наличие вездесущего гравитационного поля, от которого нет защиты, исключает в принципе возможность реализации указанных в Первом законе систем отсчёта, которые остаются лишь абстракцией, принятие которой связано с сознательным допущением ошибок в получаемом результате.

Движение в инерциальной СО

Выполнив тривиальную математическую операцию в выражении третьего закона Ньютона (5) и перенеся член из правой части в левую, получаем безупречную математически запись:

С физической точки зрения, сложение векторов сил имеет своим результатом получение равнодействующей силы.

В таком случае, прочтённое с точки зрения второго закона Ньютона выражение (6) означает, с одной стороны, что равнодействующая сил равна нулю и, следовательно, система из этих двух тел не двигается ускоренно. С другой стороны здесь не высказаны никакие запреты на ускоренное движение самих тел.

Дело в том, что понятие о равнодействующей возникает лишь в случае оценки совместного действия нескольких сил на одно и то же тело. В данном же случае, хотя силы равны по модулю и противоположны по направлению, но приложены к разным телам и потому, касательно каждого их рассматриваемых тел по отдельности, не уравновешивают друг друга, поскольку на каждое из взаимодействующих тел действует лишь одна из них. Равенство (6) не указывает на взаимную нейтрализацию их действия для каждого из тел, оно говорит о системе в целом.

Материальная точка в двух декартовых системах координат: неподвижной O, считающейся инерциальной, и подвижной O"

Повсеместно используется запись уравнения, выражающего второй закон Ньютона в инерциальной системе отсчёта:

Если есть результирующая всех реальных сил, действующих на тело, то это выражение, представляющее собой каноническую запись Второго закона, является просто утверждением, что получаемое телом ускорение пропорционально этой силе и массе тела. Оба выражения, стоящие в каждой части этого равенства относятся к одному и тому же телу.

Но выражение (7) может быть, подобно (6), переписано в виде:

Для постороннего наблюдателя, находящегося в инерциальной системе и анализирующего ускорение тела, на основании сказанного выше такая запись имеет физический смысл только в том случае, если члены в левой части равенства относятся к силам, возникающим одновременно, но относящимся к разным телам. И в (8) второй член слева представляет собой такую же по величине силу, но направленную в противоположную сторону и приложенную к другому телу, а именно силу , то есть

В случае, когда оказывается целесообразным разделение взаимодействующих тел на ускоряемое и ускоряющее и, чтобы отличить действующие тогда на основании Третьего закона силы, те из них, которые действуют со стороны ускоряемого тела на ускоряющее называют силами инерции или «ньютоновыми силами инерции» , что соответствует записи выражения (5) для Третьего закона в новых обозначениях:

Существенно, что сила действия ускоряющего тела на ускоряемое и сила инерции имеют одно и то же происхождение и, если массы взаимодействующих тел близки друг другу настолько, что и получаемые ими ускорения сравнимы по величине, то введение особого наименования «сила инерции» является лишь следствием достигнутой договорённости. Оно так же условно, как и само деление сил на действие и противодействие.

Иначе обстоит дело, когда массы взаимодействующих тел несравнимы между собой (человек и твёрдый пол, отталкиваясь от которого он идёт). В этом случае деление тел на ускоряющие и ускоряемые становится вполне отчётливым, а ускоряющее тело может рассматриваться как механическая связь , ускоряющая тело, но не ускоряемая сама по себе.

В инерциальной системе отсчёта сила инерции приложена не к ускоряемому телу, а к связи.

Эйлеровы силы инерции

Движение в неинерциальной СО

Дважды продифференцировав по времени обе части равенства , получаем:

есть ускорение тела в инерциальной СО, далее называемое абсолютным ускорением. есть ускорение неинерциальной СО в инерциальной СО, далее называемое переносным ускорением. есть ускорение тела в неинерциальной СО, далее называемое относительным ускорением.

Существенно, что это ускорение зависит не только от действующей на тело силы, но и от ускорения системы отсчёта, в которой это тело движется, и потому при произвольном выборе этой СО может иметь соответственно произвольное значение.

Относительное ускорение вполне реально в неинерциальной СО, поскольку разница двух реальных величин по (11) не может быть не реальной.

Умножим обе части уравнения (11) на массу тела и получим:

В соответствии со вторым законом Ньютона, сформулированным для инерциальных систем, член слева является результатам умножения массы на вектор, определяемый в инерциальной системе, и потому с ним можно связать реальную силу:

Это сила, действующая на тело в первой (инерциальной) СО, которая будет здесь названа «абсолютной силой». Она продолжает действовать на тело с неизменными направлением и величиной в любой системе координат.

Следующая сила, определяемая как:

по принятым для наименования происходящих движений правилам , должна быть названа «переносной».

Важно, что ускорение в общем случае никакого отношения к изучаемому телу не имеет, поскольку вызвано теми силами, которые действуют лишь на тело, выбранное в качестве неинерциальной системы отсчёта. Но масса, входящая в выражение, есть масса изучаемого тела. Ввиду искусственности введения такой силы, её нужно считать фиктивной силой.

Перенося выражения для абсолютной и переносной силы в левую часть равенства:

и применяя введённые обозначения, получаем:

Отсюда видно, что вследствие ускорения в новой системе отсчёта на тело действует не полная сила , но лишь её часть , оставшаяся после вычитания из неё переносной силы так, что:

тогда из (15) получаем:

по принятым для наименования происходящих движений , эта сила должна быть названа «относительной». Именно эта сила вызывает движение тела в неинерциальной системе координат.

Полученный результат в разнице между «абсолютной» и «относительной» силами объясняется тем, что в неинерциальной системе, кроме силы , на тело дополнительно подействовала некая сила таким образом, что:

Эта сила представляет собой силу инерции, применительно к движению тел в неинерциальных СО. Она никак не связана с действием реальных сил на тело.

Тогда из (17) и (18) получаем:

То есть, сила инерции в неинерциальной СО равна по величине и противоположна по направлению силе, вызывающей ускоренное движение этой системы. Она приложена к ускоряемому телу.

Сила эта не является по своему происхождению результатом действия окружающих тел и полей, и возникает исключительно за счёт ускоренного движения второй системы отсчёта относительно первой.

Все входящие в выражение (18) величины могут быть независимым друг от друга образом измерены, и поэтому поставленный здесь знак равенства означает не что иное, как признание возможности распространения ньютоновской аксиоматики при учёте таких «фиктивных сил» (сил инерции) и на движение в неинерциальных системах отсчёта, и потому требует экспериментального подтверждения. В рамках классической физики это действительно и подтверждается.

Различие между силами и состоит лишь в том, что вторая наблюдается при ускоренном движении тела в неинерциальной системе координат, а первая соответствует его неподвижности в этой системе. Поскольку неподвижность есть лишь предельный случай движения с малой скоростью, принципиальной разницы между этими фиктивными силами инерции нет.

Пример 2

Пусть вторая СО движется с постоянной скоростью или просто неподвижна в инерциальной СО. Тогда и сила инерции отсутствует. Движущееся тело испытывает ускорение, вызываемое действующими на него реальными силами.

Пример 3

Пусть вторая СО движется с ускорением то есть эта СО фактически совмещена с движущимся телом. Тогда в этой, неинерциальной, СО тело неподвижно вследствие того, что действующая на него сила полностью скомпенсирована силой инерции:

Пример 4

Пассажир едет в авто с постоянной скоростью. Пассажир - тело, авто - его система отсчёта (пока инерциальная), то есть .

Авто начинает тормозить, и превращается для пассажира во вторую рассмотренную выше неинерциальную систему, к которой навстречу её движения приложена сила торможения . Тут же возникает сила инерции, приложенная к пассажиру, направленная в противоположном направлении (то есть по движению): . Эта сила вызывает непроизвольное движение тела пассажира к ветровому стеклу .

В неинерциальной системе (для наблюдателя, стоящего на поверхности Земли) на тело действуют следущие силы: центробежная сила инерции (синий вектор), сила гравитации (красный), в сумме дающие реальную силу тяжести , которая уравновешивается реакцией опоры (чёрный).

Пример

При движении тела по окружности под действием центростремительной силы , являющейся результатом наложенной на движение тела связи, действующая на эту связь сила будет одновременно и силой противодействия, и «центробежной силой инерции»

Общий подход к нахождению сил инерции

Сравнивая движение тела в инерциальной и неинерциальной СО можно прийти к следующему выводу :

Пусть есть сумма всех сил, действующих на тело в неподвижной (первой) системе координат, которая вызывает его ускорение . Эта сумма находится путём измерения ускорения тела в этой системе, если известна его масса.

Аналогично, есть сумма сил, измеренная в неинерциальной системе координат (второй), вызывающая ускорение , в общем случае отличающееся от вследствие ускоренного движения второй СО относительно первой.

Тогда сила инерции в неинерциальной системе координат будет определяться разницей:

В частности, если тело покоится в неинерциальной системе, то есть , то

Если в выражении (20) считать, что ускорение измерено не в абсолютной, но в другой неинерциальной системе координат, то найденная сила инерции будет представлять собой силу, соответствующую относительному движению двух неинерциальных СО. Если учесть, что все тела во Вселенной взаимодействуют друг с другом в силу всепроникающей гравитации, и потому инерциальных СО в принципе не существует, то именно этот случай является действительно реализуемым на практике.

Движение тела по произвольной траектории в неинерциальной СО

Положение материального тела в условно неподвижной и инерциальной системе задаётся здесь вектором , а в неинерциальной системе - вектором . Расстояние между началами координат определяется вектором . Угловая скорость вращения системы задаётся вектором , направление которого устанавливается по оси вращения по правилу правого винта . Линейная скорость тела по отношению к вращающейся СО задаётся вектором .

В данном случае инерционное ускорение, в соответствии с (11), будет равно сумме:

Первый член - переносное ускорение второй системы относительно первой; второй член - ускорение, возникающее из-за неравномерности вращения системы вокруг своей оси; третий член - Кориолисово ускорение , вызванное той составляющей вектора скорости, которая не параллельна оси вращения неинерциальной системы; последний член, взятый без знака, представляет собой вектор, направленный в противоположную сторону от вектора , что можно получить, раскрывая двойное векторное произведение, когда получаем, что этот член равен () и потому представляет собой центростремительное ускорение тела в системе отсчёта неподвижного наблюдателя, принимаемой за ИСО, в которой сил инерции быть не может по определению. Однако формула (22) относится к ускорениям, наблюдаемым в неинерциальной (поворачивающей) системе отсчёта, и последние три члена в (11) представляют собой относительное ускорение, то есть ускорение, испытываемое телом в неинерциальной системе отсчёта под действием центробежной силы инерции (см. синюю стрелку на рисунке). Последний член должен представлять (вместе со знаком) центробежное ускорение, и потому перед ним должен стоять знак минус.

Работа фиктивных сил инерции

В классической физике силы инерции встречаются в трёх различных ситуациях в зависимости от системы отсчёта, в которой производится наблюдение . Это сила, приложенная к связи при наблюдении в инерциальной СО или к движущемуся телу при наблюдении в неинерциальной системе. Обе эти силы реальны и могут совершать работу. Так, примером работы, совершаемой Кориолисовой силой в планетарном масштабе является эффект Бэра

При решении задач на бумаге, когда искусственно сводят динамическую задачу движения к задаче статики, вводят третий вид сил называемый силами Даламбера, работы не совершающих, поскольку работа и неподвижность тел, несмотря на действие на него сил в физике есть понятия несовместимые.

Эквивалентность сил инерции и гравитации

Приложения

  1. В. Самолётов. Физика. Словарь-справочник . Издательский дом «Питер», 2005. С. 315.
  2. Сила инерции - статья из Большой советской энциклопедии
  3. Пример: В истории, как и в природе велика сила инерции , из П. Гвоздев. Образованность и литературные нравы в римском обществе времен Плиния младшего . // Журнал Министерства народного просвещения. Т. 169. Министерство народнаго просвещения, 1873. С. 119.
  4. Walter Greiner Klassische Mehanik II.Wissenschaftlicher VerlagHarri Deutsch GmbH. Frankfurt am Main.2008 ISBN 978-3-8171-1828-1
  5. ^Richard Phillips Feynman, Leighton R. B. & Sands M. L. (2006). The Feynman Lectures on Physics. San Francisco: Pearson/Addison-Wesley. Vol. I, section 12-5.

Из повседневного опыта мы можем подтвердить следующее умозаключение: скорость и направление движения тела могут меняться лишь во время его взаимодействия с другим телом. Это порождает явление инерции, о котором мы и поговорим в этой статье.

Что такое инерция? Пример жизненных наблюдений

Рассмотрим случаи, когда какое-нибудь тело на начальном этапе эксперимента уже пребывает в движении. Позже мы увидим, что уменьшение скорости и остановка тела не могут происходить самовольно, ведь причиной тому является действие на него другого тела.

Вы, наверное, не единожды наблюдали, как пассажиры, которые едут в транспорте, вдруг наклоняются вперед во время торможения или прижимаются на бок на крутом повороте. Почему? Объясним далее. Когда, к примеру, спортсмены пробегают определенную дистанцию, они пытаются развить максимальную скорость. Пробежав финишную черту, уже можно и не бежать, однако нельзя резко остановиться, а поэтому спортсмен пробегает еще несколько метров, то есть совершает движение по инерции.

Из вышеперечисленных примеров можно сделать вывод, что все тела имеют особенность сохранять скорость и направление движения, не будучи в состоянии при этом мгновенно их изменить впоследствии действия иного тела. Можно предположить, что при отсутствии внешнего действия тело сохранит и скорость, и направление движения как угодно долго. Итак, что такое инерция? Это явление сохранения скорости движения тела при отсутствии воздействия на него других тел.

Открытие инерции

Такое свойство тел открыл итальянский ученый Галилео Галилей. На основе своих экспериментов и рассуждений он утверждал: ежели тело не взаимодействует с иными телами, то оно либо пребывает в состоянии спокойствия, либо движется прямолинейно и равномерно. Его открытия вошли в науку как Закон инерции, однако более детально сформулировал его Рене Декарт, а уж Исаак Ньютон внедрил в свою систему законов.

Интересный факт: инерция, определение которой привел нам Галилей, рассматривалась еще в Древней Греции Аристотелем, но из-за недостаточного развития науки, точной формулировки приведено не было. гласит: существуют такие
системы отсчета, относительно которых тело, которое движется поступательно, сохраняет свою скорость постоянной, если на него не действуют иные тела. Формула инерции в едином и обобщенном виде отсутствует, но ниже мы приведем множество иных формул, раскрывающих ее особенности.

Инертность тел

Все мы знаем, что автомобиля, поезда, корабля или других тел увеличивается постепенно, когда они начинают двигаться. Все вы видели запуск ракет по телевизору или взлет самолетов в аэропорту - они увеличивают скорость не рывками, а постепенно. Наблюдения, а также повседневная практика говорят о том, что все тела имеют общую особенность: скорость движения тел в процессе их взаимодействия меняется постепенно, а поэтому для их изменения необходимо некоторое время. Эта особенность тел получила название инертности.

Все тела инертны, но не у всех инертность одинакова. Из двух взаимодействующих тел она будет выше у того, которое обретет меньшее ускорение. Так, к примеру, при выстреле ружье приобретает меньшее ускорение, чем патрон. При взаимном отталкивании взрослого конькобежца и ребенка взрослый получает меньшее ускорение, чем ребенок. Это свидетельствует о том, что инертность взрослого человека больше.

Для характеристики инертности тел ввели особенную величину - массу тела, ее принято обозначать буквой m . Дабы иметь возможность сравнивать массы различных тел, массу кого-нибудь из них необходимо учесть за единицу. Ее выбор может быть произвольным, однако она должна быть удобной для практического употребления. В системе СИ за единицу взяли массу специального эталона, изготовленного из твердого сплава платины и иридия. Она носит всем нам известное название - килограмм. Следует отметить, что инерция твердого тела бывает 2-х видов: поступательная и вращательная. В первом случае мерой инерции является масса, во втором - момент инерции, о котором мы поговорим позже.

Момент инерции

Так называют скалярную физическую величину. В системе СИ единицей измерения момента инерции является кг*м 2 . Обобщенная формула следующая:

Здесь m i - это масса точек тела, r i - это расстояние от точек тела до оси z в пространственной системе координат. В словесной интерпретации можно сказать так: момент инерции определяется суммой произведений элементарных масс, умноженных на квадрат расстояния до базового множества.

Есть и другая формула, характеризующая определение момента инерции:

Здесь dm - масса элемента, r - расстояние от элемента dm до оси z . Словесно можно сформулировать так: момент инерции системы материальных точек или тела относительно полюса (точки) - это алгебраическая сумма произведения масс материальных точек, составляющих тело, на квадрат расстояния их до полюса 0.

Стоит упомянуть, что существует 2 вида моментов инерции - осевые и центробежные. Есть также такое понятие, как главные моменты инерции (ГМИ) (относительно главных осей). Как правило, они всегда различны между собой. Ныне можно рассчитать моменты инерции для многих тел (цилиндра, диска, шара, конуса, сферы и проч.), однако не будем углубляться в уточнение всех формул.

Системы отсчета

В 1-ом законе Ньютона шла речь о равномерном прямолинейном движении, которое можно рассматривать только в определенной системе отсчета. Даже приближенный анализ механических явлений показывает, что закон инерции выполняется далеко не во всех системах отсчета.

Рассмотрим простой эксперимент: положим мяч на горизонтальный столик в вагоне и понаблюдаем за его движением. Если поезд будет находиться в состоянии спокойствия относительно Земли, то и мяч сохранит спокойствие до тех пор, пока мы не подействуем на него иным телом (например, рукой). Следовательно, в системе отсчета, что связана с Землей, закон инерции выполняется.

Представим, что поезд будет ехать относительно Земли равномерно и прямолинейно. Тогда в системе отсчета, что связана с поездом, мяч сохранит состояние спокойствия, а в той, что связана с Землей, - состояние равномерного и прямолинейного движения. Следовательно, закон инерции выполняется не только в системе отсчета, связанной с Землей, но и во всех других, движущихся относительно Земли равномерно и прямолинейно.

Теперь представим, что поезд быстро набирает скорость либо круто поворачивает (во всех случаях он движется с ускорением относительно Земли). Тогда, как и раньше, мяч сохраняет равномерное и которое он имел до начала ускорения поезда. Однако относительно поезда мяч сам по себе выходит из состояния спокойствия, хотя и нет тел, которые бы выводили его из него. Это значит, что в системе отсчета, связанной с ускорением движения поезда относительно Земли, закон инерции нарушается.

Итак, системы отсчета, в которых выполняется закон инерции, получили название инерциальных. А те, в которых не выполняется, - неинерциальных. Определить их просто: если тело движется равномерно и прямолинейно (в отдельных случаях - это спокойствие), то система инерциальная; если движение неравномерное - неинерциальная.

Сила инерции

Это довольно многозначное понятие, а поэтому попытаемся как можно более детально его рассмотреть. Приведем пример. Вы спокойно стоите в автобусе. Внезапно он начинает двигаться, а значит, набирает ускорение. Вы мимо воли отклонитесь назад. Но почему? Кто вас потянул? С точки зрения наблюдателя на Земле вы остаетесь на месте, при этом выполняется 1-ый закон Ньютона. С точки зрения наблюдателя в самом автобусе, вы начинаете двигаться назад, будто под какой-либо силой. На самом деле ваши ноги, которые связаны силами трения с полом автобуса, поехали вперед вместе с ним, а вам,
теряя равновесие, пришлось падать назад. Таким образом, для описания движения тела в неинерциальной системе отсчета необходимо вводить и учитывать дополнительные силы, что действуют со стороны связей тела с такой системой. Эти силы и есть силы инерции.

Необходимо учесть, что они фиктивны, ибо нет ни единого тела либо поля, под действием которого вы начали двигаться в автобусе. Законы Ньютона на силы инерции не распространяются, однако их использование наряду с "настоящими" силами позволяет описывать движение у произвольных неинерциальных систем отсчета при помощи различных инструментов. В этом состоит весь смысл ввода сил инерции.

Итак, теперь вы знаете, что такое инерция, момент инерции и инерциальные системы, силы инерции. Двигаемся далее.

Поступательное движение систем

Пусть на некое тело, находящееся в неинерциальной системе отсчета, движущееся с ускорением а 0 относительно инерциальной, действует сила F. Для такой неинерциальной системы уравнение-аналог второго закона Ньютона имеет вид:

Где а 0 - это ускорение тела с массой m , что вызвано действием силы F относительно неинерциальной системы отсчета; F ін - сила инерции. Сила F в правой части является «настоящей» в том понимании, что это результирующая взаимодействия тел, зависящая только от разности координат и скоростей взаимодействующих материальных точек, которые не меняются при переходе от одной системы отсчета к другой, движущейся поступательно. Поэтому не меняется и сила F. Она инвариантна относительно такого перехода. А вот F ін возникает не по причине а из-за ускоренного движения системы отсчета, из-за чего она меняется при переходе к другой ускоренной системе, поэтому не является инвариантной.

Центробежная сила инерции

Рассмотрим поведение тел в неинерциальной системе отсчета. XOY вращается относительно инерциальной системы, коей будем считать Землю, с постоянной угловой скоростью ω. Примером может послужить система на рисунке ниже.

Выше изображен диск, где закреплен радиально направленный стержень, а также надет синий шарик, "привязанный" к оси диска эластичной веревкой. Пока диск не вращается, веревка не деформируется. Однако при раскручивании диска шарик понемногу растягивает веревку до тех пор, пока сила упругости F ср не станет такой, что равна произведению массы шарика m на ее нормальное ускорение a п = -ω 2 R, то есть F ср = -mω 2 R , где R - это радиус круга, который описывает шарик при вращении вокруг системы.

Ежели угловая скорость ω диска останется постоянной, то и шарик прекратит движение относительно оси OX. В этом случае относительно системы отсчета XOY, которая связана с диском, шарик будет находиться в состоянии спокойствия. Это объяснится тем, что в этой системе, помимо силы F ср, на шарик действует сила инерции F cf , которая направлена вдоль радиуса от оси вращения диска. Сила, имеющая вид, как в формуле, представленной ниже, называется инерции. Возникать она может только во вращающихся системах отсчета.

Сила Кориолиса

Оказывается, когда тела двигаются относительно вращающихся систем отсчета, на них, помимо центробежной силы инерции, действует еще одна сила - Кориолиса. Она всегда перпендикулярна к вектору скорости тела V, а это означает, что она не выполняет никакой работы над этим телом. Подчеркнем, что сила Кориолиса проявляет себя лишь тогда, когда тело движется относительно неинерциальной системы отсчета, которая осуществляет вращение. Ее формула выглядит следующим образом:

Поскольку выражение (v*ω) является векторным произведением приведенных в скобках векторов, то можно прийти к выводу, что направление силы Кориолиса определяется правилом буравчика по отношению к ним. Ее модуль равен:

Здесь Ө - это угол между векторами v и ω .

В заключение

Инерция - это удивительное явление, которое ежедневно преследует каждого человека сотни раз, пусть мы и сами не замечаем этого. Думаем, что статья дала вам важные ответы на вопросы о том, что такое инерция, что такое сила и моменты инерции, кто открыл явление инерции. Уверены, вам было интересно.

Инерциальные и неинерциальные системы отсчета

Законы Ньютона выполняются только в инерциальных системах отсчета. Относительно всех инерциальных систем данное тело движется с одинаковым ускорением $w$. Любая неинерциальная система отсчета движется относительно инерциальных систем с некоторым ускорением, поэтому ускорение тела в неинерциальной системе отсчета $w"$ будет отлично от $w$. Обозначим разность ускорений тела и инерциальной и неинерциальной системах символом $a$:

Для поступательно движущейся неинерциальной системы $a$ одинаково для всех точек пространства $a=const$ и представляет собой ускорение неинерциальной системы отсчета.

Для вращающейся неинерциальной системы $a$ в разных точках пространства будет различным ($a=a(r")$, где $r"$ - радиус-вектор, определяющий положение точки относительно неинерциальной системы отсчета).

Пусть результирующая всех сил, обусловленных действием на данное тело со стороны других тел, равна $F$. Тогда согласно второму закону Ньютона ускорение тела относительно любой инерциальной системы отсчета равно:

Ускорение же тела относительно некоторой неинерциальной системы можно представить в виде:

Отсюда следует, что даже при $F=0$ тело будет двигаться по отношению к неинерциальной системе отсчета с ускорением $-a$, т. е. так, как если бы на него действовала сила, равная $-ma$.

Сказанное означает, что при описании движения в неинерциальных системах отсчета можно пользоваться уравнениями Ньютона, если наряду с силами, обусловленными воздействием тел друг на друга, учитывать так называемые силы инерции $F_{in} $, которые следует полагать равными произведению массы тела на взятую с обратным знаком разность его ускорений по отношению к инерциальной и неинерциальной системам отсчета:

Соответственно уравнение второго закона Ньютона в неинерциальной системе отсчета будет иметь вид:

Поясним наше утверждение следующим примером. Рассмотрим тележку с укрепленным на ней кронштейном, к которому подвешен на нити шарик.

Рисунок 1.

Пока тележка покоится или движется без ускорения, нить расположена вертикально и сила тяжести $P$ уравновешивается реакцией нити $F_{r} $. Теперь приведем тележку в поступательное движение и ускорением $a$. Нить отклонится от вертикали на такой угол, чтобы результирующая сил $P$ и $F_{r} $, сообщала шарику ускорение, равное $a$. Относительно системы отсчета, связанной с тележкой, шарик покоится, несмотря на то, что результирующая сил $P$ и $F_{r} $ отлична от нуля. Отсутствие ускорения шарика по отношению к этой системе отсчета можно формально объяснить тем, что, кроме сил $P$ и $F_{r} $, равных, в сумме $ma$, на шарик действует еще и сила инерции $F_{in} =-ma$.

Силы инерции и их свойства

Введение сил инерции дает возможность описывать движение тел в любых (как инерциальных, так и неинерциальных) системах отсчета с помощью одних я тех же уравнений движения.

Замечание 1

Следует отчетливо понимать, что силы инерции нельзя ставить в один ряд с такими силами, как упругие, гравитационные силы и силы трения, т. е. силами, обусловленными воздействием на тело со стороны других, тел. Силы инерции обусловлены свойствами той системы отсчета, в которой рассматриваются механические явления. В этом смысле их можно назвать фиктивными силами.

Введение в рассмотрение сил инерции не является принципиально необходимым. В принципе любое движение можно всегда рассмотреть по отношению к инерциальной системе отсчета. Однако, практически часто представляет интерес как раз движение тел по отношению к неинерциальным системам отсчета, например, по отношению к земной поверхности.

Использование сил инерции даёт возможность решить соответствующую задачу непосредственно по отношению к такой системе отсчета, что часто оказывается значительно проще, чем рассмотрение движения в инерциальной системе.

Характерным свойством сил инерции является их пропорциональность массе тела. Благодаря этому свойству силы инерции оказываются аналогичными силам тяготения. Представим себе, что мы находимся в удаленной от всех внешних тел закрытой кабине, которая движется с ускорением g в направлении, которое мы назовем «верхом».

Рисунок 2.

Тогда все тела, находящиеся внутри кабины, будут вести себя так, как если бы на них действовала сила инерции $F_{in} =-ma$. В частности, пружина, к концу которой подвешено тело массы $m$, растянется так, чтобы упругая сила уравновесила силу инерции $-mg$. Однако такие же явлений наблюдались бы и в том случае, если бы кабина была неподвижной и находилась вблизи поверхности Земли. Не имея возможности «выглянуть» за пределы кабины, никакими опытами, проводимыми внутри кабины, мы не смогли бы установить чем обусловлена сила $-mg$ - ускоренным движением кабины или действием гравитационного поля Земли. На этом основании говорят об эквивалентности сил инерции и тяготения. Эта эквивалентность лежит в основе общей теории относительности Эйнштейна.

Пример 1

Тело свободно падает с высоты $200$ м на Землю. Определить отклонение тела к востоку под влиянием кориолисовой силы инерции, вызванной вращением Земли. Широта места падения $60^\circ$.

Дано: $h=200$м, $\varphi =60$?.

Найти: $l-$?

Решение: В земной системе отсчета на свободно падающее тело действует кориолисова сила инерции:

\, \]

где $\omega =\frac{2\pi }{T} =7,29\cdot 10^{-6} $рад/с -- угловая скорость вращения Земли, а $v_{r} $- скорость движения тела относительно Земли.

Кориолисова сила инерции во много раз меньше силы тяготения тела к Земле. Поэтому в первом приближении при определении $F_{k} $можно считать, что скорость $v_{r} $ направлена вдоль радиуса Земли и численно равна:

где $t$$ $- продолжительность падения.

Рисунок 3.

Из рисунка видно направление действия силы, тогда:

Так как $a_{k} =\frac{dv}{dt} =\frac{d^{2} l}{dt^{2} } $,

где $v$ - численное значение составляющей скорости тела, касательной к поверхности Земли, $l$ - смещение свободно падающего тела к востоку, то:

$v=\omega gt^{2} \cos \varphi +C_{1} $ и $l=\frac{1}{3} \omega gt^{3} \cos \varphi +C_{1} t+C_{2} $.

В начале падения тела $t=0,v=0,l=0$, поэтому постоянные интегрирования равны нулю и тогда имеем:

Продолжительность свободного падения тела с высоты $h$:

так что искомое отклонение тела к востоку:

$l=\frac{2}{3} \omega h\sqrt{\frac{2h}{g} } \cos \varphi =0,3\cdot 10^{-2} $м.

Ответ: $l=0,3\cdot 10^{-2} $м.

Рекомендуем почитать

Наверх