Хромосома и хроматин. Упаковка генетического материала в хромосоме

Водоёмы 20.09.2019
Водоёмы

Типы метафазных хромосом, их строение. Различают четыре типа строения хромосом:телоцентрические (палочковидные хромосомы с центромерой, расположенной на проксимальном конце); акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом);

субметацентрические (с плечами неравной длины, напоминающие по форме букву L); метацентрические (V-образные хромосомы, обладающие плечами равной длины). Тип хромосом является постоянным для каждой гомологичной хромосомы и может быть постоянным у всех представителей одного вида или рода

Хромосомы синтетически неактивны. Строение хромосом лучше всего изучать

в момент их наибольшей конденсации, т.е. в метафазе и начале анафазы митоза.

Каждая хромосома в метафазе митоза состоит из двух хроматид,

образовавшихся в результате редупликации, и соединенных центромерой

(первичной перетяжкой). В центральной части центромеры находятся кинетохоры, к которым во время митоза прикрепляются микротрубочки нитей веретена. В анафазе хроматиды отделены друг от друга. Из них образуются дочерние хромосомы, содержащие одинаковую генетическую информацию. Центромера делит хромосому на два плеча. Хромосомы с равными плечами называют равноплечими или метацентрическими, с плечами неодинаковой длины - неравноплечими - субметацентрическими, с одним коротким и вторым почти незаметным - палочковидными или акроцентрическими (рис. 48).

Некоторые хромосомы имеют вторичную перетяжку, отделяющую спутник.

Вторичные перетяжки называют ядрышковыми организаторами. В них в интерфазе

происходит образование ядрышка. В ядрышковых организаторах находится ДНК,отвечающая за синтез р-РНК. Плечи хромосом оканчиваются участками,

называемыми теломерами, не способными соединяться с другими хромосомами.

Число, размер и форма хромосом в наборе у разных видов могут варьировать.

Совокупность признаков хромосомного набора называют кариотипом

Хромосомный набор специфичен и постоянен для особей каждого вида. У

человека 46 хромосом, у мыши - 40 хромосом и т.д.В соматических клетках, имеющих диплоидный набор хромосом, хромосомы парные. Их называют гомологичными. Одна хромосома в паре происходит от материнского организма, другая - от отцовского. Изменения в структуре хромосом или в их числе возникают в результате мутаций. Каждая пара хромосом в наборе индивидуальна. Хромосомы из разных пар называют негомологичными.

глотку.В цитоплазме есть многочисленные пищеварительные вакуоли, на заднем конце тела находится порошица. Есть две сократительные вакуоли. К крупному макронуклеусу вплотную прилегает микронуклеус. Инфузории способны инцистироваться. Сами инфузории и их цисты могут длительное время сохранять жизнеспособность вне организма хозяина. В водопроводной воде инфузории выживают до 7 суток. Цисты остаются живыми во влажной среде (при комнатной температуре) до двух месяцев. Балантидий локализуется в толстом (иногда в тонком) кишечнике у человека, вызывая изъязвления его стенок. Клинически это тяжелое заболевание выражается в кровавом поносе, коликах, лихорадке и мышечной слабости. Основным источником распространения балантидиаза служат свиньи, зараженные балантидиями. Балантидий в кишечнике свиней образуют цисты, которые с фекалиями попадают во внешнюю среду и там сохраняются длительное время. Заражение человека происходит при занесении цист в пищеварительный тракт с грязными руками или пищей.

Часто балантидиазом болеют люди, связанные с работой по уходу за

свиньями или с обработкой свинины. Диагноз ставят при нахождении балантидиев в фекалиях.

Билет 11 Реализация генетической информации в клетке. Регуляция активности генов про- и эукариот. 2. Онтогенез, его периодизация. Морфо-функциональные и генетические особенности половых клеток.

Реализа́ция генети́ческой информа́ции - процесс, происходящий внутри каждой живой клетки , во время которого генетическая информация , записанная в ДНК , воплощается в биологически активных веществах - РНК и белках . Переход генетической инфо рмации от ДНК к РНК и от РНК к белку является универс альным для всех без исключения клеточных организмов. Представление об этом информационном потоке называетсяцентральной догмой молекулярной биологии.Принципиальная схема реализации генетической информации у про- и эукариот.
ПРОКАРИОТЫ. У
прокариот синтез белка рибосомой (трансляция ) пространственно не отделен от транскрипции и может происходить еще до завершения синтеза мРНК РНК-полимеразой . Прокариотические мРНК часто поли цистронные , то есть содержат несколько независимых генов .
ЭУКАРИОТЫ. мРНК
эукариот синтезируется в виде предшественника, пре-мРНК, претерпевающего затем сложное стадийное созревание - процессинг , включающий присоединение кэп -структуры к 5" -концу молекулы, присоединение нескольких десятков остатков аденина к ее 3" -концу (полиаденилирование ), выщепление незначащих участков - интронов и соединение друг с другом значащих участков - экзонов (сплайсинг ). При этом соединение экзонов одной и той же пре-мРНК может проходить разными способами, приводя к образованию разных зрелых мРНК, и в конечном итоге разных вариантов белка (альтернативный сплайсинг). Только мРНК, успешно прошедшая процессинг, экспортируется из ядра в цитоплазму и вовлекается в трансляцию.

2. Онтогенез - индивидуальное развитие особи - начинается с момента слияния

сперматозоида с яйцеклеткой и образования зиготы, заканчивается смертью.

Внутриутробная форма характерна для млекопитающих и человека. Все

функции зародыша осуществляются за счет организма матери, с помощью

специального органа – плаценты.

Яйцеклетка – крупная неподвижная клетка, обладающая за-па-сом питательных веществ. Размеры женской яйцеклетки составляют 150–170 мкм (гораздо больше мужских сперматозоидов, размер которых 50–70 мкм). Функции питательных веществ различны. Их выполняют:

1) компоненты, нужные для процессов биосинтеза белка (ферменты, рибосомы, м-РНК, т-РНК и их предшественники);

2) специфические регуляторные вещества, которые контролируют все процессы, происходящие с яйцеклеткой, например, фактор дезинтеграции ядерной оболочки

3) желток, в состав которого входят белки, фосфолипиды, различные жиры, минеральные соли. Яйцеклетка обычно имеет шарообразную или слегка вытянутую форму, содержит набор тех типичных органелл, что и любая клетка. Как и другие клетки, яйцеклетка отграничена плазматической мембраной, но снаружи она окружена блестящей оболочкой, состоящей из мукополисахаридов (получила свое название за оптические свойства). Блестящая оболочка покрыта лучистым венцом, или фолликулярной оболочкой, которая представляет собой микроворсинки фолликулярных клеток. Она играет защитную роль, питает яйцеклетку.Яйцеклетка лишена аппарата активного движения. За 4–7 суток она проходит по яйцеводу до полости матки расстояние, которое примерно составляет 10 см. Для яйцеклетки характерна плазматическая сегрегация. Это означает, что после оплодотворения в еще не дробящемся яйце происходит такое равномерное распределение цитоплазмы, что в дальнейшем клетки зачатков будущих тканей получают ее в определенном закономерном количестве.


Похожая информация.


Введение

Молекулы ДНК в эукариотических клетках очень велики. Так, длина молекул ДНК, выделенных из клеток человека, достигает нескольких сантиметров. Принято считать, что каждая эукариотическая хромосома содержит одну -- единственную непрерывную молекулу ДНК. Учитывая видовое количество хромосом у млекопитающих, можно сказать, что в среднем у них на интерфазное ядро приходится около 2 м ДНК, находящейся в сферическом ядре диаметром менее 10 мкм. При этом в ядре должен сохраняться определенный порядок расположения молекул ДНК, чтобы обеспечить ее упорядоченное функционирование.

Именно поэтому молекулы ДНК в ядрах эукариотических клеток всегда находятся в комплексе с белками в составе хроматина, который образуется из хромосом после окончания деления ядер в результате сложного процесса раскручивания (деспирализации) хромосом.

Исследуя структурную организацию хроматина и хромосом, можно определенно говорить о нескольких уровнях компактизации ДНК. Первый -- нуклеосомный, дающий семикратное уплотнение ДНК и составе фибрилл ДНП, второй -- фибрилла диаметром 30 нм, или нуклеомерный уровень, с 40-70-кратной степенью упаковки, третий -- доменно-петлевой, или хромомерный, приводящий к 600-700-кратному уплотнению ДНК в составе этих структур. Для поддержания первых двух уровней компактизации было достаточно участия только гистоновых белков, тогда как петлевые и розеткоподобные доменные структуры уже требовали участия негистоновых белков и перехода от спирального, или соленоидного, типа укладки ДНК к образованию компактных глобулярных структур, состоящих из петель хроматиновых фибрилл диаметром 30 нм, к структурам типа хромомеров, имеющих уже размеры 0,1-0,2 мкм.

Упаковка ДНК в хромосомах

Компактность - принципиальное отличие генома эукариот от прокариотического генома. При средней разнице размеров геномов на 3 порядка, линейные размеры эукариотических хромосом соизмеримы с длиной ДНК прокариот.

Выделяют, по крайней мере, 4 уровня компактизации ДНК. При этом нить ДНК "укорачивается" в 10 000 раз. Это подобно тому, если нить, длиной с Останкинскую башню (500 м), уложить в спичечный коробок (5см).

Хромосомы эукариотических клеток состоят в основном из хроматина -- комплекса двухцепочечной ДНК и пяти гистоновых белков, обозначаемых H1, Н2А, Н2В, Н3 и Н4

Именно гистонами обеспечиваются два первых уровня компактизации эукариотического генома- нуклеосомный и нуклеомерный.

Общая характеристика гистонов

Гистоны - основные белки. Все они обогащены лизином и аргинином - положительно заряженными аминокислотами. В зависимости от соотношения в структуре гистонов аминокислот обычно выделяют 5 фракций гистонов. Нарабатывается их очень много - 60 млн. молекул каждой фракции на клетку.

Модификации гистонов очень сильно влияют на компактизацию ДНК. Гистоны могут метилироваться, фосфорилироваться (по серину, треонину, тирозину), т.е. аминокислотные остатки легко модифицируются. Кроме того, возможно алкилирование и ацетилирование гистонов.

Основные фракции гистонов:

Все гистоны, кроме Н1, чрезвычайно консервативны в эволюционном отношении (у коровы и клевера разница в Н2А всего в одну аминокислоту!). Следовательно, эти белки выполняют принципиальную функцию, которая у всех эукариот обеспечивается одинаково. Любая мутация в гистоновых генах летальна.

Н1 - очень вариабельная фракция. Этот гистон различен не только у видов, но даже у одного организма, в зависимости от стадий онтогенеза.

В гистонах лизин и аргинин кластированы. Средняя часть гистона содержит гидрофобные аминокислоты. Положительно заряженные аминокислоты гистонов обеспечивают электростатические взаимодействия с ДНК. Центральная часть необходима для взаимодействия гистонов между собой.

Роль гистонов в свертывании ДНК важна по следующим причинам:

1) Если бы хромосомы состояли только из вытянутой ДНК, трудно вообразить, как они могли бы реплицироваться и разделяться по дочерним клеткам, не запутываясь или не ломаясь при этом.

2) В вытянутом состоянии двойная спираль ДНК каждой человеческой хромосомы пересекла бы клеточное ядро тысячи раз; таким образом, гистоны упорядоченным образом упаковывают очень длинную молекулу ДНК в ядро, имеющее несколько микрометров в диаметре;

3) Не вся ДНК свернута одинаковым образом, и характер упаковки района генома в хроматин, вероятно, влияет на активность генов, содержащихся в данном районе.

Уровни упаковки генетического материала.

Первый уровень упаковки ДНК – нуклеосомный. Нуклеосомная нить хроматина (см. выше) имеет диаметр около 13 нм. После упаковки длина молекулы ДНК уменьшается в 5-7 раз. Нуклеосомный уровень обнаруживается в электронном микроскопе в интерфазе и при митозе.

Второй уровень упаковки – соленоидный (супернуклеосомный). Нуклеосомная нить конденсируется, её нуклеосомы «сшиваются» гистоном Н1 и образуется спираль диаметром около 25 нм. Один виток спирали содержит 6-10 нуклеосом. Нить укорачивается еще в 6 раз. Супернуклеосомный уровень упаковки обнаруживается в электронном микроскопе как в интерфазных, так и в митотических хромосомах.

Третий уровень упаковки – хроматидный (петлевой). Супернуклеосомная нить спирализуется с образованием петель и изгибов. Она составляет основу хроматиды и обеспечивает хроматидный уровень упаковки. Он обнаруживается в профазе. Диаметр петель около 50 нм. Нить ДНП укорачивается в 10-20 раз.

Четвертый уровень упаковки – уровень метафазной хромосомы . Хроматиды в заканчивают спирализацию: происходит укорочение в 20 раз. Метафазные хромосомы имеют длину от 0,2 до 150 мкм и диаметр от 0,2 до 5,0 мкм. Общий итог конденсации – укорочение нити ДНП в 10 000 раз!!!

Хромосомы плотные, интенсивно окрашивающиеся структуры, единицы морфологической организации генетического материала и обеспечивают его точное распределение при делении клетки. Хромосомы лучше всего различимы (и изучаются) на стадии метафазы митоза.

Метафазные хромосомы имеют вид коротких нитевидных фигур, или изогнутых палочек, состоящих из двух продольных нитей ДНП – хроматид . Хроматиды в точке перегиба (первичная перетяжка ) соединены центромерой, к которой прикрепляются нити веретена деления . Центромера делит тело хромосомы на два плеча. Участок каждого плеча вблизи центромеры называется проксимальным , удаленный от неё – дистальным . Концевые отделы дистальных участков называются теломерами . Теломеры препятствуют соединению концевых участков хромосом. Потеря этих участков может сопровождаться хромосомными перестройками. Кроме первичной перетяжки, отдельные хромосомы имеют вторичные, не вызывающие перегиба хро

мосомы. Положение вторичной перетяжки, ее длина постоянны для каждого вида хромосом. Некоторые хромосомы имеют еще спутник – округлое или

палочковидное тело той же природы. С основным телом хромосомы спутник соединяется тонкой хроматиновой нитью. Иногда спутником считают часть хромосомы, отделенную вторичной перетяжкой. Хромосомы со спутниками характерны для растительных клеток.

Типы хромосом . В зависимости от положения центромеры различают следующие типы хромосом:

- метацентрические (равноплечие) , центромера расположена посередине и плечи примерно одинаковой длины (3);

- субметацентрические (неравноплечие), центромера умеренно смещена от середины хромосомы, плечи имеют разную длину (2);

- акроцентрические (палочковидные) , центромера значительно смещена к одному концу хромосомы, или располагается в ее теломерном участке, в результате одно плечо очень короткое или отсутствует (1).

Рис. Типы хромосом.

Изучение хромосом позволило установить:

Во всех соматических клетках любого организма число хромосом одинаково;

В половых клетках содержится всегда вдвое меньше хромосом, чем в соматических клетках данного вида организмов;

У всех организмов, относящихся к данному виду, число хромосом в клетках одинаково.

В качестве примера ниже приведены диплоидные числа хромосом в ядрах соматических клеток некоторых видов организмов.


Малярийный плазмодий – 2; Лошадиная аскарида – 2; Дрозофила – 8: Вошь головная – 12; Шпинат – 12; Муха домашняя – 12; Окунь – 28; Человек – 46; Ясень – 46; Шимпанзе – 48; Таракан – 48; Перец – 48; Овца – 54; Собака – 78; Голубь – 80; Сазан – 104.

Как видно, число хромосом не зависит от уровня организации и не всегда указывает на филогенетическое родство, поскольку одно и то же число хромосом может встречаться у видов очень далеких в систематическом отношении и сильно отличаться у близких по происхождению организмов. Таким образом, число хромосом не является видоспецифичным признаком. Однако, характеристика хромосомного набора в целом видоспецифична, т.е. свойственна только одному какому-то виду организмов. Совокупность количественных (число) и качественных (форма) признаков хромосомного набора соматической клетки называется кариотипом .

Число хромосом в кариотипе всегда четное. Это объясняется тем, что в соматических клетках всегда находятся две одинаковые по форме и размерам хромосомы: одна происходит от отцовского организма, другая – от материнского. Парные хромосомы, одинаковые по форме и размерам и несущие одинаковые гены, называются гомологичными . Хромосомы из разных пар – называют негомологичными . Хромосомный набор соматической клетки, в котором каждая хромосома имеет себе пару, называют двойным, или диплоидным набором(2n) . В половые клетки из каждой пары гомологичных хромосом попадает только одна, поэтому хромосомный набор гамет называют одинарным, или гаплоидным набором . Количество ДНК, содержащееся в одинарном наборе хромосом – 1с, соответственно в двойном наборе количество ДНК – 2с. Хромосомы в составе кариотипа делят также на аутосомы, или неполовые, одинаковые у особей мужского и женского пола, и гетерохромосомы, или половые, участвующие в определении пола и различающиеся у самцов и самок. Кариотип человека представлен 46 хромосомами (23 пары): 44 аутосомы и 2 половые хромосомы (у женщины две одинаковые Х-хромосомы, у мужчины Х- и Y-хромосомы).

Рис. Кариотип человека.

Правила хромосом.

Правило постоянства числа хромосом: соматические клетки организма каждого вида имеют строго определенное количество хромосом (у человека – 46, у дрозофилы – 8).

Правило парности хромосом: каждая хромосома в диплоидном наборе имеет гомологичную – сходную по размерам, расположению центромеры и содержанию генов.

Правило индивидуальности хромосом : каждая пара хромосом отличается от другой пары размерами, расположением центромеры и содержанием генов.

Правило непрерывности хромосом: в процессе удвоения генетического материала новая молекула ДНК синтезируется на основе информации старой молекулы ДНК (реакция матричного синтеза – каждая хромосома от хромосомы).

Таблица 1

Сравнительная характеристика прокариотической и эукариотической клеток



ПРОКАРИОТИЧЕСКАЯ КЛЕТКА ЭУКАРИОТИЧЕСКАЯ КЛЕТКА
Цитоплазматическая мембрана Цитоплазматическая мембрана
Клеточная стенка из муреина Клеточная стенка из целлюлозы (растения) или хитина (грибы)
Цитоплазма Цитоплазма
Оформленное ядро отсутствует Ядро, отграниченное от цитоплазмы ядерной оболочкой
Отсутствуют органоиды: митохондрии, комплекс Гольджи, ЭПС, лизосомы, пластиды Имеются митохондрии, комплекс Гольджи, ЭПС, лизосомы, пластиды.
Мезосомы выполняют функции ряда органоидов. Мезосомы отсутствуют
Рибосомы Рибосомы
Генетический аппарат представлен одной кольцевой молекулой ДНК ДНК линейной структуры в комплексе с гистоновыми белками
Набор хромосом гаплоидный Набор хромосом диплоидный, или у некоторых фаз жизни гаплоидный.
Простое бинарное деление Митоз, мейоз, амитоз, эндомитоз, политения.

Таблица 2.

Сравнительная характеристика клеток растений и животных

Ключевые слова и понятия :


Активный транспорт

Аппарат Гольджи

Аутосомы

Биологическая мембрана

Включения

Гаплоидный набор хромосом

Гетерохромосомы

Гомологичные хромосомы

Диплоидный набор хромосом

Диффузия

Кариоплазма

Кариотип

Лейкопласты

Микротрубочки

Микрофиламенты

Митохондрия

Негомологичные хромосомы

Органоиды

Пассивный транспорт

Пиноцитоз

Пропластида

Реснички

Рибосома

Тилакоид

Фагоцитоз

Хлоропласт

Хроматин

Хромопласт

Хромосома

Центриоль

Центросома

Цитоплазматическая мембрана

Экзоцитоз

Эндоплазматическая сеть агранулярная

Эндоплазматическая сеть гранулярная

Молекулы ДНК в эукариотических клетках очень велики. Так, длина мо­лекул ДНК, выделенных из клеток че­ловека, достигает нескольких сантиме­тров. Принято считать, что каждая эукариотическая хромосома содержит одну - единственную непрерывную молекулу ДНК. Учитывая видовое ко­личество хромосом у млекопитающих, можно сказать, что в среднем у них на интерфазное ядро приходится около 2 м ДНК, находящейся в сферическом ядре диаметром менее 10 мкм. При этом в ядре должен сохраняться опре­деленный порядок расположения мо­лекул ДНК, чтобы обеспечить ее упо­рядоченное функционирование.

Молекулы ДНК в ядрах эукариоти­ческих клеток всегда находятся в ком­плексе с белками в составе хроматина, который образуется из хромосом по­сле окончания деления ядер в резуль­тате сложного процесса раскручива­ния (деспирализации) хромосом.

На долю белков приходится около 60% сухого веса хроматина. Белки в его составе очень разнообразны. Обычно их разделяют на две группы: гистоны и негистоновые белки. Имен­но гистоны, характерные только для эукариотических клеток, осуществля­ют первые этапы упаковки ДНК, очень схожие у большинства изученных объектов

На долю гистонов приходится до 80% всех белков хроматина. Их вза­имодействие с ДНК происходит за счет ионных связей и не зависит от по­следовательности нуклеотидов в со­ставе молекулы ДНК. Гистоны не от­личаются большим разнообразием. Это глобулярные белки, представлен­ные 5-7 типами молекул. Наиболее из­вестны следующие классы гистонов: HI, Н2А, Н2В, НЗ и Н4. Их основные свойства определяются относительно высоким содержанием основных ами­нокислот: лизина и аргинина (рис. 3.7). Положительные заряды на аминогруп­пах указанных аминокислот обеспечи­вают электростатическую связь гисто­нов с отрицательными зарядами на фосфатных группах ДНК. Из всех ядерных белков гистоны изучены наи­более хорошо. Их молекулярная масса относительно невелика (максималь­ная - у гистона НЗ - 153 тыс. дальтон). Практически у всех эукариот они обладают сходными свойствами и под­разделяются на одни и те же классы. Из исследованных эти белки наиболее консервативны: их аминокислотные последовательности близки даже у от­даленных видов. Исключение состав­ляют гистоны HI, для которых харак­терны значительные межвидовые и межтканевые вариации

В процессе жизнедеятельности клеток гистоны могут подвергаться посттрансляцион­ным модификациям, что изменяет их свойства и способность связываться с ДНК. Гистоны синтезируются в цитоплазме, переносятся в ядро и связыва­ются с ДНК во время ее репликации в S-периоде клеточного цикла. Вклю­чившиеся в хроматин гистоны очень стабильны и имеют низкую скорость обмена.

Присутствие гистонов во всех эукариотических клетках, их сходство да­же у очень отдаленных видов, обяза­тельность в составе хромосом и хрома­тина - все это говорит о чрезвычайно важной роли этих белков в жизнедея­тельности клеток. Этапным событием в изучении упаковки ДНК в составе хроматина стало открытие нуклеосом частиц, в которых происходит первый этап упаковки ДНК в хроматине. Сердцевина нуклеосомы всегда кон­сервативна, содержит восемь молекул: по две молекулы гистонов Н4, НЗ, Н2А, Н2В. По поверхности сердцеви­ны располагается участок ДНК из 146 нуклеотидных пар, образующий 1,75 оборота вокруг сердцевины. Неболь­шой участок ДНК остается несвязан­ным с сердцевиной, он называется линкером (рис. 3.8). В разных объек­тах линкерный участок может варьи­ровать от 8 до 114 нуклеотидных пар на нуклеосому

Рассчитано, что на весь гаплоидный геном человека (3 х 109 пар оснований) приходится 1,5 х 107 нуклеосом. Общий вид хроматина, представленного молекулой ДНК, упакованной с помощью нуклеосомных структур, можно сравнить с буса­ми на нитке (рис. 3.9). Нуклеосомы способны к самосборке при наличии в пробирке ДНК и гистонов в опреде­ленном соотношении. Первый нуклеосомный уровень компактизации ДНК увеличивает плотность упаковки ДНК в 6-7раз.

В следующий этап упаковки нуклеосомная структура хроматина вовле­кается с помощью гистона HI, который связывается с линкернои частью ДНК и поверхностью нуклеосомы. Благодаря сложному взаимодействию всех компонентов возникает упорядо­ченная структура спирального типа, которую часто называют соленоидом (рис. 3.10). Она повышает компакт­ность ДНК еще в 40 раз. Поскольку со­леноидная структура имеет сниженную способность связываться с белка­ми, обеспечивающими транскрипцию, то считается, что этот уровень компактизации ДНК может играть роль фак­тора, инактивирующего гены. Некото­рые авторы рассматривают соленоид­ную структуру как один из возможных вариантов упаковки хроматина

с по­мощью гистона HI и полагают вероятным существование и других морфо­логических вариантов, например, нуклеомер, или сверхбусин (рис. 3.11).

Более высокие уровни компактизации ДНК в хроматине связаны с негистоновыми белками. На их долю при­ходится около 20% всех белков хрома­тина. Эту сборную группу белков от­личает широкий спектр свойств и функций. Всего фракция негистоновых белков объединяет около 450 ин­дивидуальных белков, свойства и кон­кретные функции которых еще не до­статочно изучены. Выяснено, что не­которые из них специфично связыва­ются с определенными участками ДНК, в результате чего фибриллы хро­матина в местах связывания ДНК с не­ гистоновыми белками образуют петли. Таким образом, более высокие уровни упаковки ДНК в составе хроматина обеспечиваются не спирализацией ни­тей хроматина, а образованием попе­речной петлистой структуры вдоль хромосомы (рис. 3.12). На всех указан­ных этапах компактизации ДНК хро­матин представлен в активной форме, в нем происходит транскрипция, син­тез всех типов молекул РНК. Такой хроматин называют эухроматином. Дальнейшая упаковка хроматина ве­дет к переходу его в неактивное состо­яние с образованием гетерохроматина

Этот процесс связан со спирализацией групп петель и образованием из фиб­рилл хроматина розеткоподобных структур, которые обладают оптичес­кой и электронной плотностью и назы­ваются хромомерами (рис. 3.12). Пред­полагается, что вдоль хромосомы рас­положено большое количество хромомер, соединенных между собой в еди­ную структуру участками хроматина с пуклеосомной или соленоидной упа­ковкой ДНК. Каждая пара гомологич­ных хромосом имеет свой хромомерный рисунок, который можно выявить с помощью специальных методов ок­рашивания при условии сиирализации хроматина и перехода его в состояние хромосом.

Петельно-розеточная структура хроматина обеспечивает не только упаковку ДНК, но и организует функ­циональные хромосом, поскольку в своих основаниях петли ДНК связаны с негистоновыми белками, в состав ко­торых могут входить ферменты репли­кации, обеспечивающие удвоение ДНК, и ферменты транскрипции, бла­годаря которым происходит синтез всех типов РНК.

Участки ДНК, упакованные в виде гетерохроматина, могут иметь двоя­кую природу. Различают два типа гетерохроматина: факультативный и кон­ститутивный (структурный). Факуль­тативный гетерохроматин представля­ет собой участки генома, временно инактивированные в тех или иных клетках. Примером такого хроматина служит половой гетерохроматин инактивированной Х-хромосомы в сомати­ческих клетках женщин. Структурный гетерохроматин во всех клетках посто­янно находится в неактивном состоя­нии и, вероятно, выполняет структур­ные или регуляторные функции.

Конец работы -

Эта тема принадлежит разделу:

Тема хромосомная теория

Тема хромосомная теория.. занятие генные мутации.. занятие хромосомные и геномные мутации..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Хххххххх
хххххххх хххххх МЕТОДИЧЕСКИЕ УКАЗАНИЯ по курсу “Медицинск

Хромосомная теория наследственности
Занятие 6. Наследование признаков, сцепленных с полом ………………………………………. Занятие7. Особенности наследования генов, локализованных в одной хромосоме …………… Занятие8. Картирова

Генетика популяции
Занятие. Генетическая структура популяции (перекрестников и самоопылителей) 1. Дайте определение популяции. Охарактеризуйте популяции по типу размножения организмов.

Материальные основы наследственности
Понятие о генетической информации. Доказательства роли ядра и хромосом в явлениях наследственности. Локализация генов в хромосо­мах. Роль цитоплазматических факторов в передаче наследственной инфор

Генетический анализ
Основные закономерности наследования. Цели и принципы гене­тического анализа. Методы: гибридологический, мутационный, цитогенетический, популяционный, близнецовый, биохимический, статистического. Г

Внеядерное наследование
Закономерности нехромосомного наследования, отличие от хромо­сомного наследования. Методы изучения: реципрокные, возвратные и поглощающие скрещивания, метод трансплантации, биохимические методы.

Генетическая изменчивость
Понятие о наследственной и ненаследственной (модификационной) изменчивости. Формирование признаков как результат взаимо­действия генотипа и факторов среды. Норма реакции генотипа. Адап­тивный харак

Основы молекулярной генетики
Представление школы Моргана о строении и функции гена. Исследование тонкой структуры гена на примере фага Т4 (Бензер). Ген как единица функции (цистрон). Перекрывание генов в одном участке ДНК. Инт

Популяционная генетика
Понятие о виде и популяции. Популяция как естественно-истори­ческая структура. Понятие о частотах генов и генотипов. Математиче­ские модели в популяционной генетике. Закон Харди - Вайнберга, воз­мо

Генетика человека
Особенности человека как объекта генетических исследований. Методы изучения генетики человека: генеалогический, близнецовый, цитогенетический, биохимический, онтогенетический, популяционный. Исполь

История генетики человека
Успехи генетики человека, ее исто­рия, тесно связаны с развитием всех разделов генетики. Задолго до откры­тия Г. Менделя различными авторами были описаны патологические наслед­ственные признаки у ч

Генеалогический метод
Основные закономерности наслед­ственности, установленные для живых организмов, универсальны и в полной мере справедливы и для человека. Вместе с тем как объект генетических исследований человек име

Близнецовый метод
Это метод изучения генетических закономерностей на близнецах. Впер­вые он был предложен Ф. Гальтоном в 1875 г. Близнецовый метод дает воз­можность определить вклад генетиче­ских (наследственных) и

Популяционно-статистический метод
Одним из важных направлений в современной генетике является популяционная генетика. Она изучает ге­нетическую структуру популяций, их генофонд, взаимодействие факторов, обусловливающих постоянство

Цитогенетический метод
Основа метода - микроскопическое изучение хромосом человека. Цитогенетические исследования стали широко использоваться с начала 20-х гг. XX в. для изучения морфологии хромосом человека, подсчета хр

Метод генетики соматических клеток
Тот факт, что соматические клетки несут в себе весь объем генетической информации, дает возможность изучать на них генетические закономер­ности всего организма.

Биохимический метод
Причиной многих врожденных на­рушений метаболизма являются различные дефекты ферментов, возника­ющие вследствие изменяющих их структуру мутаций. Биохимичские по­казатели (первичный продукт гена, на

Молекулярно-генетические методы
Конечный итог молекулярно-генетических методов - выявление изме­нений в определенных участках ДНК, гена или хромосомы. В их основе ле­жат современные методики работы с ДНК или РНК. В 70-80 гг. в св

Химический состав и строение молекулы ДНК
Основоположник генетики Грегор Мендель в 1865 г. впервые доказал, что каждый признак организма определя­ется парой наследственных факторов. В начале XX в. парные наследствен­ные факторы получили на

Организация генетического материала в хромосомах человека
Общая организация хромосом чело­века традиционна: в метафазе хромо­сома состоит из двух сестринских хроматид, соединенных между собой в районе первичной перетяжки (центромеры). Центромера делит хро

Хромосомы человека
История развития цитогенетики человека Впервые митотические хромосомы человека были описаны в работах Дж. Арнольда (1879) и В. Флемминга (1882). В последующие годы различ­ные оценки их кол

Современные методы картирования хромосом
На рубеже 70-х гг. XX в. молекуляр­ная генетика достигла определенной завершенности в своем развитии: бы­ли установлены структура и механизм репликации ДНК, провозглашена "центральная догма&q

Изучение геномов человека
Последние десятилетия на рубеже двух эпох отображены стремительным ростом в сфере высшей биологии человека. Это связано, первоначально, с трудами по расшифровке генома людей, осуществлёнными в пред

1) Нуклеосомный – на этом уровне двойная спираль ДНК наматывается на белковый комплекс, содержащий 8 молекул гистонов – белков с повышенным содержанием положительно заряженных аминокислотных остатков лизина и аргинина. Это гистоны Н2В, Н2А, Н4 и Н3. Образуется структура диаметром 11 нм, напоминающая бусы на нитке. Каждая «бусина» – нуклеосома содержит около 150 пар нуклеотидов. Нуклеосомный уровень даёт укорочение молекулы ДНК в 7 раз. При репликации этот уровень упаковки снимается, а при транскрипции нуклеосомы сохраняются.

2) На втором уровне нуклеосомы сближаются с помощью гистона Н1, в результате чего образуется фибрилла диаметром 30 нм. Сокращение линейного размера ДНК происходит в 6-10 раз. Этот уровень упаковки, как и первый, не зависит от первичной структуры ДНК.

3) Петлевой уровень. Обеспечивается негистоновыми белками. Они узнают определённые последовательности ДНК и связываются с ними и друг с другом, образуя петли по 20-80 тыс. п.н. Укорочение за счет петель проходит в 20-30 раз. Типичная хромосома млекопитающих может содержать до 250 петель.

4) Метафазная хромосома. Перед делением клетки молекулы ДНК удваиваются, петли укладываются в стопки, хромосома утолщается и видна в световой микроскоп. На этом уровне упаковки каждая хромосома состоит из двух хроматид. Каждая из хроматид содержит по одной молекуле ДНК.

Функции ДНК.

1. ДНК является носителем генетической информации . Функция обеспечивается фактом существования генетического кода.

2. Воспроизведение и передача генетической информации в поколениях клеток и организмов . Функция обеспечивается процессом репликации .

3. Реализация генетической информации в виде белков, а также любых других соединений, образующихся с помощью белков-ферментов. Функция обеспечивается процессами транскрипции и трансляции .

Непосредственно из структуры ДНК вытекает механизм её точного воспроизведения (репликации). В основе репликации структуры ДНК лежит принцип комплементарности : в двойной спирали две полимерные цепи ДНК связаны друг с другом за счёт образования пар Г – Ц, Ц – Г, А – Т, Т – А. Если две цепи двойной спирали расходятся, то на каждой из них может строиться новая комплементарная цепь – напротив Г исходной цепи установится Ц новой цепи, напротив Ц старой цепи – Г новой цепи, напротив А – Т, а напротив Т – А. В результате получатся две дочерние двойные спирали, полностью идентичные исходной – материнской.

Рибонуклеиновые кислоты повсеместно распространены в живой природе. Биологическая функция РНК обусловлена тем, что они обеспечивают реализацию в клетке наследственной информации, которая передаётся с помощью ДНК.

В клетке существует три главных типа РНК: информационная РНК (иРНК), рибосомная РНК (рРНК) и транспортная РНК (тРНК).

РНК – полинуклеотид, похожий на ДНК, но имеющий свои особенности.

1) Углевод в РНК представлен рибозой, имеющей во втором положении углеродного атома гидроксильную группу.

2) В отличие от ДНК молекулы всех трех типов РНК одноцепочечные, что является одной из важных особенностей РНК. Кроме того, отличительной особенностью РНК является то, что для неё не характерно устойчивое спиральное строение.

3) В РНК содержатся 4 азотистых основания – аденин, цитозин, гуанин и урацил.

Выделяют следующие общие принципы строения всех видов РНК:

1) РНК – одноцепочечный полинуклеотид.

2) РНК формирует вторичную структуру – набор коротких спиральных участков, которые образуются за счёт антипараллельного комплементарного спаривания смежных отрезков цепи.

3) РНК способна образовывать третичную структуру за счёт дальних комплементарных взаимодействий внутри цепи и межспиральных взаимодействий.

4) Высокополимерная РНК способна сворачиваться в компактные частицы.

5) РНК обладает значительной конформационной подвижностью.

Рекомендуем почитать

Наверх