Какую форму имеет Вселенная? Экзотические вселенные.

Ландшафтный дизайн и планировка 25.09.2019
Ландшафтный дизайн и планировка

Многие краем уха слышали, что Вселенная имеет форму бублика. Большинство не придает этому значения, потому что слишком странно: почему именно бублик? В каком именно месте тогда дырка? И прочие неизбежные вопросы в том же духе. А то вот еще есть поговорка, что мир имеет форму чемодана… Ну, про чемодан – просто идиотская поговорка, а вот насчет бублика в какой-то мере правда.

Другие читали, что Вселенная представляет собой кристалл. Этот образ популярен в ненаучной фантастике, он позволяет порассуждать о "переходах с грани на грань" при путешествиях в параллельные миры. Попытка совместить оба эти образа – кристалла и бублика – порой приводят к появлению в фановой голове химерических картин типа "граненого карандаша, замкнутого в кольцо" и других подобных ужасов, не имеющих ничего общего с реальностью. Меж тем образ Великого Кристалла – тоже к какой-то мере правдв.


Картинки и подписи к ним не имеют отношения к основной теме поста и скорее отвлекают от сути, хотя и не призваны делать это. Так что рекомендую, чтобы не запутаться, сначала прочитать одно, а затем другое. Изображенная же здесь галактика NGC 2683 очень похожа на нашу родную галактику Млечный Путь. Она находится на расстоянии в среднем 20 миллионов световых лет от нас в направлении на северное созвездие Кошки (Рыси). На заднем фоне разбросаны ещё более удалённые галактики, а яркие звезды – гораздо ближе к нам, это звезды нашего рукава Млечного пути. Ядро NGC 2683 составляют огромное число старых жёлтых звёзд. Темные облака – космическая пыль в спиральных рукавах, сквозь которую проглядывают голубые точки скоплений молодых звёзд.

Начнем с бублика. Нет никакого бублика. Ноги же у этого образа растут из того факта, что наша Вселенная имеет хоть и очень большой, но все же конечный объем, но при этом не имеет границ. Представить это довольно просто на двухмерном примере: в некоторых простых компьютерных играх объект, уходящий за правую границу игрового поля, появляется слева, а ушедший вниз – сверху. Еще более наглядный пример – трехмерный – можно узреть, если на любом из уровней игры "Quake" (во всяком случае, первой или второй игры серии; может, и других подобных 3D-шутеров, я просто не пробовал) воспользоваться одновременно читами, позволяющими проходить сквозь стены и летать, и прямиком двинуться в любую сторону: камера быстро выйдет за пределы локации, ваш виртуальный герой какое-то время будет лететь в черной пустоте, а потом перед ним появится оставшееся вроде бы сзади скопление коридоров и комнат, и герой вернется в ту же точку, откуда начал, но с противоположной стороны, как будто обошел вокруг земного шара – хотя летел-то он по прямой. Двигаться можно в любую сторону бесконечно долго – границ нет, но за пределы уровня не выйти, и ни в какое "другое пространство" не прилетишь – объем конечен и замкнут. Вот такова же и реальная Вселенная, только попросторнее.

Шаровые звёздные скопления – спутники галактик – путешествуют по гало Млечного Пути. Эти древние сферические образования из нескольких сотен тысяч звёзд связанных взаимным притяжением. Все они гораздо старше звёзд диска галактики. На самом деле, измерения возраста шаровых скоплений накладывают ограничения на возраст самой Вселенная (она должна быть старше, чем звёзды в ней!). Точные измерения расстояний до шаровых скоплений помогли создать одну из астрономических шкал расстояний во Вселенной. Шаровое звёздное скопление NGC 6934 находится на расстоянии около 50 000 световых лет от нас в направлении на созвездие Дельфина. Звезды скопления теснятся в области диаметром 150 световых лет, а вблизи ядра скопления в кубе со стороной в 3 световых года могут помещаться до ста звезд. Для сравнения – ближайшая к Солнцу звезда удалена от нас на 4 световых года.

Но это сейчас мне хорошо – есть компьютерные игры, поэтому можно быстро объяснить "конечность и безграничность в одном флаконе" на простом готовом примере, а раньше пришлось бы воспользоваться старым добрым способом – растолковывать особенности строения трехмерного пространства на примере двухмерного, например, листа бумаги. А пространство листа бумаги, обладающего конечной площадью, можно в нашем трехмерном мире сделать безграничным, не нарушая евклидовости геометрии (стобы нарисованные на нем параллельные прямые оставались параллельными), только одним способом: сначала свернуть лист в трубочку, соединив противоположные края по оси X, а потом склеить концы трубочки, сделав то же самое по оси Y. Вот вам и бублик!

Большая красивая спиральная галактика M66 находится на расстоянии всего лишь 35 млн. световых лет и простирается в ширину на 100 000 световых лет. Вдоль спиральных рукавов галактики расположились тёмные пылевые прожилки и ярко-голубые скопления молодых звёзд, а красные точки на рукавах - это свет от областей интенсивного звездообразования. Все яркие отдельные звёзды, что вы видите на этом космическом пейзаже, разумеется, принадлежат нашей Галактике. Однако на тёмном фоне неба можно разглядеть многочисленные другие далёкие галактики.

С трехмерным ограниченным пространством то же самое можно проделать, если в четвертом измерении попарно склеить противоположные грани кубика. Не ломайте мозг, пытаясь это представить наглядно – наши мозги предназначены для обработки информации о трехмерном пространстве и под такие фокусы не заточены в принципе, даже и пытаться не стоит. Но в любом случае это будет никакой не бублик, а некая хитровывернутая в четырех пространственных измерениях гиперфигура.

На этой не самой зрелищной с виду фотографии запечатлен грандиознейший катаклизм – на самом деле галактика NGC 7252 – это две галактики в процессе столкновения. Процесс длится сотни миллионов лет, так что на картинке он как бы застыл во времени. Получившееся звёздное столпотворение получило название галактика Мирный Атом. NGC 7252 имеет размер около 600 000 световых лет и находится на расстоянии почти 220 миллионов световых лет от нас в направлении на созвездие Водолея. Возможно, то же самое ждёт наш Млечный Путь – если через несколько миллиардов лет наша Галактика столкнётся с Туманностью Андромеды. Так как мы до сих пор не знаем, с какой скоростью Туманность Андромеды (М31) движется в бок (учёные могут измерить лишь ту составляющую часть скорости, которая направлена вдоль луча зрения) никто точно не знает, произойдет ли это.

Так что в действительности никакого "бублика" нет, и он в-общем-то не нужен и для примера с двухмерным пространством – правильней будет представить себе бесконечную плоскость, сплошь устланную одинаковыми листами – в точности повторяющими один другого, потому что на самом деле это один и тот же лист… это впрочем тоже слишком абстрактно (а некоторых, кто до сих пор не врубился, может потянуть поговорить об "отражениях" нашего мира), давайте лучше вернемся к примеру с "Quake" и на нем остановимся – это наиболее наглядная модель из здесь описанных, остальные только с панталыку сбивают. Тем более что геометрия такой модели остается евклидовой: параллельные линии не пересекаются, сумма углов треугольника равна 180o и т.д., а согласно наиболее авторитетной современной космологической модели Вселенной, наш мир не имеет глобальных пространственных искривлений.

Самая перва из открытых компактных групп галактик - Квинтет Стефана. Эта группа лежит на расстоянии около 300 миллионов световых лет от нас. Но только четыре из пяти галактики на самом деле находятся вместе в пространстве. Лишнюю галактику не трудно заметить: четыре взаимодействующие галактики (NGC 7319, 7318A, 7318B и 7317) выглядят более жёлтыми и имеют более искажённые структуры: петли и хвосты, появившиеся вследствие взаимных разрушительных гравитационных приливов. Галактика поголубее и побольше размером, NGC 7320, находится гораздо ближе к нам. От Земли её отделяют около 40 миллионов световых лет, так что она не является частью группы. На этом изображении можно даже увидеть отдельные звезды в NGC 7320, это как бы подтверждает, что она действительно гораздо ближе остальных галактик.

Теперь что касается кристалла. Каждый уровень той же 3D-игры прописывается программистами в виде параллелепипеда – то есть всё-таки имеет определенные границы, не существующие с точки зрения героя "внутри" уровня. Так вот можно сказать, что не имеющая границ вселенная игры тем не менее имеет форму параллелепипеда. При этом границы его можно будет произвольно провести через любую точку игрового пространства – они никак не будут ощущаться "обитателями" виртуального мирка. Однако если высота параллелепипеда будет меньше его длины – то, "летя" постоянно вверх, читер достигнет исходной точки быстрее, чем "летя" вперед. Даже если все грани будут одинаковы – куб – то и в этом случае путь по диагонали окажется длиннее, чем путь вдоль одной из сторон. Вот и получается, что виртуальная микровселенная, не имея границ, тем не менее имеет некую форму – в случае с игрой параллелепипед.

Спиральная галактика NGC 4216, которую мы видим с ребра, удалена от нас на 40 млн. световых лет, а ее диаметр – почти 100 тысяч световых лет, примерно такой же, как у нашего Млечного Пути. NGC 4216 окружена другими членами этого скопления – NGC 4206 (справа) и NGC 4222. Как и другие большие спиральные галактики, включая наш Млечный Путь, NGC 4216 растет, поглощая маленькие галактики-спутники. На фото эти галактики-спутники видны, и от них отходят слабые звездные потоки, растянувшиеся на тысячи световых лет к гало NGC 4216.

Какую же форму имеет наша Вселенная? Самый примитивный способ определить – пролететь ее всю из конца в конец в разных направлениях и замерить время, необходимое для возвращения с разных сторон в исходную точку. Лично я бы за этот эксперимент не взялся – лететь долгонько, а исходная точка за это время изменилась бы до неузнаваемости, да и сама Вселенная бы расширилась – всё насмарку. Хорошо бы было, если бы существовало нечто, уже проделавшее этот путь. И такая штука есть – это так называемое реликтовое излучение, пронизывающее весь космос и являющееся, грубо говоря, никуда не девающимся из Вселенной (потому что некуда) электромагнитным "эхом" Большого Взрыва.

Так вот при интерпретации параметров распределения этого излучения в 2003 были сделаны выводы (еще впрочем, окончательно не подтвержденные и подвергаемые сомнению), что "форма" нашей Вселенной может представлять собой додэкаэдр –правильный многогранник с 12 пятиугольными гранями – бесконечно (см выше) отраженный сам в себе. Ну или, опять же пользуясь предыдущими аналогиями, Вселенная – это бесконечное пространство, заполненное "виртуальными" додэкаэдрами, которые суть один и тот же додэкаэдр. Если еще вам встретится понятие "зеркальная Вселенная", "Вселенная как система заркал" – то как раз имеется в виду вот эта самозамкнутость, востпринимаемая внутренним наблюдателем как отражения (точнее, воспринимаемая БЫ, если бы диаметр Вселенной был гораздо меньше и свет возвращался бы в исходную точку не спустя десятки миллиардов лет).

Группа галактик NGC 7771 находится почти в 200 миллионов световых лет от Земли за созвездием Пегаса. Собствено NGC 7771 – самая большая, повернута несколько ребром – 75 000 световых лет в поперечнике. Красивая круглая галактика левее – NGC 7769.

Еще можно ставнить с мыльной пеной – множество сфер, вплотную прилегая друг к другу, образуют в местах смыкания плоскости. Только в случае с Мирозданием пена стстоит из одного и того же пузырька. И – еще раз – в отличие от мыльной пены, граней, границ этих как таковых нет: точнее, их можно провести в любом месте, а точкой отсчета, центром "пузыря"-многогранника является точка, где находится наблюдатель.

Вот как-то так оно. Понятно?

Звезды во вселенной сгруппированы в галактиках (в среднем в галактике 10 000 000 000 звезд).
Галактики собраны в скопления галактик (в среднем 100-1000 галактик).
Скопления - в сверхскопления (в среднем 100 скоплений)

Подобные высказывания сродни тем великим идеям, которые кардинально меняют взгляд на наше место в этом мире. Один из таких переворотов в сознании произошел в 1543-м году, когда Николай Коперник показал, что Земля - не центр Вселенной. В 20-е годы XX века Эдвин Хаббл, заметив, что галактики во Вселенной отдаляются друг от друга, дал жизнь идее о том, что наша Вселенная не существовала вечно, а образовалась в результате определенного события – Большого взрыва. Теперь мы на пороге нового открытия. Если пределы Вселенной найдутся, мы столкнемся с новым еще более трудным вопросом: а что там – по ту сторону границ?

Ориентируемся по звездам

Бесконечность Вселенной подразумевает, что она должна быть бесконечна не только в пространстве, но и во времени, а значит, иметь бесчисленное количество звезд. В этом случае наше небо было бы сплошь усеянным светилами и ослепительно ярким круглые сутки. Однако небесная тьма свидетельствует о том, что космос не существовал вечно. По распространенной теории, все началось с Большого взрыва, который дал возможность самому существованию и расширению материи. Уже сама эта концепция опровергает идею вечности Вселенной, а значит, подрывает и веру в ее беспредельность. В то же время теория Большого взрыва создает определенные трудности для астрономов, ищущих границы нашего космического пространства.

«Дело в том, что путешествия на огромные расстояния занимают световые годы, а, стало быть, ученые всегда получают устаревшие данные. Пространство, проходимое светом в ранней Вселенной, выросло благодаря ее последующему расширению. Ближайшие к нам звезды относительно юны, с отдаленными объектами счет идет уже на тысячи лет, а если посмотреть на другие галактики, то на миллиарды. При этом мы видим далеко не все галактики. 13,7 млрд лет – вот доступный нам максимум», - поясняет Нил Корниш, астрофизик из Монтанского Государственного Университета. Своеобразный барьер для нашего зрения представляет собой реликтовое излучение, образовавшееся примерно через 380 тысяч лет после Большого взрыва, когда Вселенная расширилась и остыла настолько, что появились атомы. Это излучение- что-то вроде детской фотографии космоса, на которой он запечатлен еще до того, как появились звезды. За ним могут существовать как границы, так и бесконечно продолжающаяся Вселенная. Но, невзирая на мощность телескопов, эта область остается невидимой.

Космическая музыка

Реликтовое излучение мешает ученым вглядеться в самые дальние дали космоса, но в то же время оно несет в себе весьма ценную информацию, заключающуюся в микроволновом фоне. Ученые предполагают: будь Вселенная неограниченных размеров, в ней можно было бы найти волны всех вероятных длин. Однако фактически волновой спектр космоса очень узок: по-настоящему крупных волн аппарат NASA WMAP, предназначенный для изучения реликтового излучения, ни разу не обнаружил. «Вселенная обладает свойствами музыкального инструмента, внутри которого длина волн не может превосходить его длину. Мы поняли, что Вселенная не вибрирует на длинных волнах, что стало подтверждением ее конечности», - говорит Жан Пьер Люмине из Парижской обсерватории во Франции.

Дело за малым – определить ее границы и форму. Глен Старкманн, физик из Канады, работающий в Кливлендском университете Кейс Вестерн, полагает, что нашел способ определить границы Вселенной, даже если они дальше зоны нашей видимости. Это можно сделать опять-таки с помощью волн. «Звуковые волны, распространившиеся по Вселенной во времена ее молодости, могут поведать многое. От формы Вселенной, как, например, от формы барабана, зависит, какого типа вибрации в ней возникнут», - говорит Глен. Его команда планирует применить спектральный анализ к нашей Вселенной, чтобы на основе издаваемых ею звуков определить ее форму. Правда, эти исследования долгосрочные, и на поиски ответа могут уйти годы.

Мы живем в бублике...

Впрочем, выяснить, есть ли у Вселенной границы, можно и другим способом. Им сейчас как раз занимается Жанна Левин, теоретик из Кэмбриджского университета. Она объясняет принцип построения Вселенной на примере старой доброй компьютерной игры «Астероиды». Если управляемый игроком космический корабль уйдет вверх, за пределы экрана, он тут же появится снизу. Такой странный маневр становится понятным, если мысленно свернуть экран в трубу, как журнал: получится, что аппарат просто движется по окружности.
«Так же и мы, живя внутри Вселенной, не можем выбраться наружу. Нам недоступно измерение, с которого мы могли бы взглянуть на нашу трехмерную Вселенную со стороны. Взять, к примеру, бублик – это, кстати, вполне подходящая в данном случае форма для Вселенной – хотя его поверхность четко очерчена, никто из живущих внутри не наткнется на его пределы: им кажется, что никаких границ не существует», - рассказывает Жанна.

Впрочем, шанс распознать эти пределы все же есть, хоть и мизерный – нужно следить за тем, как ведет себя свет. Представим себе, что Вселенная – это комната, а вы, вооружившись фонарем, стоите в ее центре. Свет от фонаря достигнет стены за вашей спиной, а затем отразится от стены напротив. и вы увидите в ней отражение собственной спины. Те же правила могут работать и в ограниченном космосе. «Световые портреты» могут отражаться от предполагаемых космических стен и таким образом многократно дублироваться, но с некоторыми изменениями. И будь Вселенная чуть больше Земли, свет мгновенно облетел бы ее, и искривленные образы планеты появились бы по всему небосводу. Но космос настолько огромен, что свету понадобятся миллиарды лет, чтобы его облететь и выдать отражение.

Но вернемся к нашим «баранкам». Жанна Левин со своей теорией о Вселенной в виде бублика нашла поддержку в лице Френка Штайнера из университета Ульма в Германии. Проанализировав данные, полученные с помощью WMAP, этот ученый сделал вывод, что наибольшее совпадение с наблюдающимся реликтовым излучением дает именно Вселенная-пончик. Его команда также попыталась угадать вероятный размер Вселенной – согласно исследованиям, он может достичь 56 миллиардов световых лет в поперечнике.

…или в футбольном мяче?

Жан Пьер Люминэ при всем своем уважении к бублику г-жи Левин все же уверен, что Вселенная представляет собой сферический додекаэдр или, проще говоря, футбольный мяч: двенадцать пятиугольных округлых поверхностей, расположенных симметрично. По сути, теория французского ученого не особо противоречит научным изысканиям Жанны Левин с ее игрой в «Астероиды». Тут работает та же схема - покидая одну из сторон, Вы оказываетесь на противоположной. Например, полетев на какой-нибудь «сверхскоростной» ракете по прямой, можно, в конце концов, вернуться к точке старта. Не отрицает Жан-Пьер и принципа зеркальных отражений. Он уверен, что если бы существовал супермощный телескоп, можно было бы увидеть в разных сторонах космоса одни и те же объекты, только на разных стадиях жизни. Но когда края додекаэдра находятся на расстоянии миллиардов световых лет, слабые отражения на них не могут заметить даже самые наблюдательные астрономы.

Отметим, и у Люмине с его концепцией футбольного мяча нашелся союзник – математик Джеффри Уикс. Этот ученый утверждает, что волны в космическом микроволновом фоне выглядят точно так же, как они должны выглядеть, возникнув внутри правильной геометрической фигуры с двенадцатью пятиугольными гранями.

Инфляция вселенских масштабов

Первое мгновение жизни Вселенной сыграло огромную роль в ее дальнейшей эволюции. Ученые до сих пор строят сложные гипотезы относительно инфляции – очень короткого промежутка времени, намного меньше секунды, за который размер Вселенной увеличился в сотню триллионов раз. Большинство ученых склоняется к тому, что расширение Вселенной продолжается до сих пор. И, казалось бы, теория бесконечности космоса является логичным продолжением идеи инфляции.

" alt="Компьютерная модель Вселенной " src="/sites/default/files/images/millenium-bare.jpg">

Компьютерная модель Вселенной

Однако у Энди Олбрахта, физика-теоретика Калифорнийского университета в Девисе, на этот счет другое мнение: хоть расширение Вселенной продолжается и по сей день, у этого процесса все же есть пределы. Чтобы пояснить свою теорию, Энди подобрал Вселенной метафору мыльного пузыря. Традиционная теория инфляции допускает бесконечное увеличение этого пузыря, но даже детсадовцы знают, что рано или поздно мыльный шар должен лопнуть. Энди считает, что, достигнув своего максимума, инфляция должна остановиться. И этот максимум не так уж велик, как нам кажется. По мнению Олбрахта, Вселенная лишь на 20% больше видимого нами пространства. «Конечно, неимоверно сложно от бесконечности прийти к такому крошечному размеру – всего на каких-то 20% больше! У меня даже началась клаустрофобия», - шутит ученый. Безусловно, умозаключения Олбрахта весьма спорны и требуют фактического подтверждения, а пока большинство астрономов полагает, что инфляция затухнет еще очень нескоро.

Темный поток и другие Вселенные

Расширение Вселенной, кстати, является лучшим объяснением движения галактик на видимой нами территории. Правда, некоторые особенности этого галактического перемещения вызывают недоумение. Группа специалистов NASA под руководством астрофизика Александра Кашлинского, изучая микроволновое и рентгеновское излучение, обнаружила, что около восьмисот отдаленных галактических скоплений дружно направляются в одну сторону со скоростью в тысячу километров в секунду, словно их притягивает некий магнит. Это вселенское перемещение было названо «темным потоком». По последним данным, он охватывает уже 1400 галактик. Они устремлены в район, расположенный более чем в трех миллиардах световых лет от Земли. Ученые предполагают, что как раз где-то там, за пределами, недоступными наблюдениям, располагается огромная масса, которая и притягивает материю. Однако по существующей теории, вещество после Большого взрыва, породившего нашу Вселенную, распределилось более-менее равномерно, а значит, и концентраций масс, обладающих столь фантастической силой, быть не может. Тогда что там?

Ответ на этот вопрос дала физик-теоретик Лаура Мерсини-Хофтан, руководитель группы из университета Северной Каролины. Она всерьез рассматривает существование другой Вселенной, расположенной по соседству с нашей. Ее умозаключения, кажущиеся на первый взгляд невероятными, вполне сочетаются с озвученной Энди Олбрахтом теорией инфляции и «мыльного пузыря», а также с «темным потоком» Александра Кашлинского. Теперь изыскания этих ученых сложись в единую картину как пазлы. Темный поток, наблюдающийся в нашем космическом пространстве, может быть спровоцирован одним из соседних «пузырей» - другой Вселенной.

Множественность вселенных Хофтан объясняет теорией вероятности. Она считает зарождение нашего мира чудом, он мог запросто и не появиться: шансы на его возникновение ничтожно малы и составляют 1 к 10133.

«Задавать вопрос о происхождении Вселенной можно тогда, когда у нас есть множественная структура, в которой она сформировалась, - такие места, условия в которых благоприятны для ее зарождения. Другими словами, можно предположить множество Больших взрывов и множество вселенных», - отмечает Хофтан. Для наглядности она сравнивает эти благоприятные места с комнатами в отеле. Вселенная может зародиться лишь в свободном «номере» и существовать там в одиночестве. Однако это не значит, что в «номер» через стенку не сможет вселиться еще один такой космомир. Но если наша Вселенная – комната в отеле, должны ли мы слышать своих соседей? В 2007-м году аппарат WMAP зафиксировал необычную область существенно пониженного фона реликтового излучения, что говорит об отсутствии в ней материи. По словам ученой дамы, единственным объяснением для такой холодной и абсолютной пустоты является то, что там действуют какие-то другие силы, возможно, наличие другой Вселенной, огромная масса которой притягивает соседнюю материю. И хотя эти «чужие» объекты неподвластны нашему зрению, наша соседка все же дает о себе знать посланиями в виде холодного пятна и потока галактических кластеров.

Конечно, в научном сообществе реакция на выводы о множественных вселенных неоднозначна. Однако ученые, пытающиеся дать характеристику космическому пространству, готовы к свершению новых революций в науке. Наша Вселенная, ранее считавшаяся бесконечной, может перестать быть таковой и занять должное место в пространстве, среди такого количества вселенных, которое невозможно даже представить.

В древности люди считали, что Земля плоская, однако время показало, что они ошибались. Сейчас мы можем также обманываться насчет формы Вселенной. Общая теория относительности имеет дело с четырехмерным пространством, где в качестве четвертой координаты представлено время, и, согласно этой теории, любое массивное тело искривляет это пространство, а вся масса Вселенной превращает его плоскость в сферу. Но это плоскость в четырехмерном пространстве, а какую форму примет само это пространство, было до сих пор неизвестно. Большинство склонялось к тому, что оно имеет форму тора.

Григор Асланян (Grigor Aslanyan), космолог из Калифорнийского университета, считает, что это не совсем тор. Форма Вселенной, говорит он, зависит от протяженности ее координат. Она может быть конечна по всем трем пространственным измерениям; может иметь два конечных измерения и одно бесконечное; также может иметь два бесконечных измерения и одно конечное - три бесконечных измерения Асланян воспринимать не хотел. И в каждом из этих трех вариантов пространство будет иметь свою особую четырехмерную форму. И, что самое главное, Асланян знает, как проверить, какой вариант принят в нашей Вселенной. Он попытался это узнать, сравнивая свои расчеты с данными, полученными космическим зондом WMAP, исследующим распределение реликтового излучения в небосводе.

Правда, тут возникла проблема - Асланян быстро понял, что расчеты такой сложности обычному компьютеру не под силу. Тогда он обратился к помощи ГРИД - системы распределенных вычислений, охватывающей через подобие интернета множество компьютеров. Сами расчеты было легко распараллелить и 500 тысяч часов, необходимых для получения результата, превратились во вполне приемлемое время.

Результат подтвердил ожидания - вариант трех бесконечных измерений он отверг. Получилось интересное - пространство имеет форму вытянутого тора, грубо говоря, баранки, вытянутой в том самом направлении, в котором направлена недавно обнаруженная астрофизиками "ось зла" - направление в небе, где значения реликтового излучения отличаются от значений в других направлениях. Более точно узнать форму Вселенной Асланян надеется, получив в этом году данные от другого спутника под названием "Планк".

Комментарии (10):

"Общая теория относительности имеет дело с четырехмерным пространством, где в качестве четвертой координаты представлено время"

Речь идёт про 4-е пространственные координаты.

Время же координата не пространственная, а эволюционная.

В этом то и заключёны основные некорректности в выводах теории относительности.

Они (эти выводы) поразумевают обращение с направлением времени, как с обычным вектором.

Но время не есть пространственный вектор... Время мера эволюции процессов, скаляр.

И именно поэтому оно необратимо!

Начнем с бублика. Нет никакого бублика. Ноги же у этого образа растут из того факта, что наша Вселенная имеет хоть и очень большой, но все же конечный объем, но при этом не имеет границ. Представить это довольно просто на двухмерном примере: в некоторых простых компьютерных играх объект, уходящий за правую границу игрового поля, появляется слева, а ушедший вниз – сверху. Еще более наглядный пример – трехмерный – можно узреть, если на любом из уровней игры "Quake" (во всяком случае, первой или второй игры серии; может, и других подобных 3D-шутеров, я просто не пробовал) воспользоваться одновременно читами, позволяющими проходить сквозь стены и летать, и прямиком двинуться в любую сторону: камера быстро выйдет за пределы локации, ваш виртуальный герой какое-то время будет лететь в черной пустоте, а потом перед ним появится оставшееся вроде бы сзади скопление коридоров и комнат, и герой вернется в ту же точку, откуда начал, но с противоположной стороны, как будто обошел вокруг земного шара – хотя летел-то он по прямой. Двигаться можно в любую сторону бесконечно долго – границ нет, но за пределы уровня не выйти, и ни в какое "другое пространство" не прилетишь – объем конечен и замкнут. Вот такова же и реальная Вселенная, только попросторнее.

В общей теории относительности принимается, что физическое пространство является неевклидовым, наличие материи искривляет его; кривизна зависит от плотности и движения вещества.

Оказывается, что то критическое значение плотности, от которого зависит будущее Вселенной (неограниченный разлет или остановка и сжатие), является критическим и для пространственной структуры Вселенной как целого.

Наши представления о пространстве зависят от соотношения между $\rho$ и $\rho_{cr}$

Суть подхода следующая.
Мы видим красное смещение от далеких галактик и делаем вывод, что свет от них идет из пространства большей кривизны чем у нас, это заставляет задуматься над топологией Вселенной, то есть мы ищем топологию, наблюдая картинку красного смещения и напрочь отказываясь от идеи расширения пространства Вселенной, как заведомо избыточной, нарушающей принцип Оккама
Итак, возможный вариант пространства Вселенной - гиперТор
1. Представим себе сферу (А) внутри сферы большего радиуса (B) и склеим обе сферы.
Свет, двигаясь от малой сферы, достигает поверхности большой и тут же оказывается выходящим из поверхности малой. Малая сфера внутри большой, а большая внутри малой.
2. Это же можно представить еще вот так (с некоторой натяжкой, для единственного луча света)
Пусть есть две сферы равного диаметра, свет идет от одной сферы доходит до другой и тут же выходит из первой, пока свет шел до середины сфер он краснел, а потом начал синеть, для света кажется, что это разные сферы, но это одна и таже сфера. Сферы как бы гравитируют (это подпорка, чтобы представить гиперТор с переменной кривизной)

Большинство моделей исходят из того, что (3+1) пространство это данность с момента БВ. На этом постулате и строятся модели. Шар, заполненный пузырями-зародышами будущих вселенных (Александр Кашинский), тонкостенный пузырь в виде додекаэдра (Джеффи Уиксоном), тор на подобии пончика или бублика (Франк Шнайдер). Я думаю, что размерность надо рассматривать как переменную величину, при этом каждой размерности соответствует своя вселенная.. Эволюция на мой взгляд прошла следующие этапы: (0+1), (1+1), (2+1), (3+1) и возможно более. Они вложены друг в друга. Например, вселенная (2+1) существует и развивается на той же временной координате, что и (3+1). Проверить такое предположение сложно - так как попасть из вселенной одной размерности в другую маловероятно или даже более категорично- невозможно.

Для вывода формул можно пользоваться окружением "$$" и \TeX разметкой.

Космологи давно предполагали, что Вселенная – бесконечна, но не беспредельна. Это означает, что у нее есть ограниченные размеры, но добраться «до конца мира» - невозможно. Если бы даже нашелся кто-то, кто попытался пересечь Вселенную, он вернулся бы к той точке, с которой начал – подобному тем, кто совершил кругосветное путешествие вокруг Земли.

Давняя гипотеза о конечности Вселенной стала особенно популярна в результате исследования космического микроволнового фона или реликтового излучения, оставшегося во Вселенной после Большого взрыва. Ученые предполагают, что в случае, если Вселенная имела бы неограниченные размеры, в ней можно было бы найти волны всех вероятных длин. Однако все мы знаем, что спектр микроволнового фона очень ограничен – и именно поэтому он так называется.

«Вселенная обладает свойствами музыкального инструмента, – объясняет Френк Штайнер из университета Ульма в Германии. – И длина волн внутри нее не может превосходить длину самого инструмента.

К настоящему времени космологи выдвинули несколько предполагаемых вариантов формы Вселенной. Самыми популярными стали тыква (либо мяч для американского футбола) и бублик, а также три бублика, причудливым образом соединенные друг с другом. Некоторые физики даже предложили красивую модель, по-видимому, позаимствованную из восточной философии – о Вселенной,представляющий собой коридор зеркал с изображениями различных объектов, которые повторяются в небе много раз. Эти «световые портреты» могут отражаться от предполагаемых стенок Вселенной и таким образом многократно дублироваться. Глен Старкман из Университета Кейз Вестерн Резерв в Кливленде (Огайо, США) и его коллеги начали пытаться как-то совместить предложенные модели с экспериментальными данными, но пока еще не выбрали, какая форма подходит нашей Вселенной больше всего.

В то же время, Штайнер и его коллеги начали повторно анализировать данные, полученные в 2003 году с помощью космического аппарата NASA , известного как Микроволновой анизотропный зонд Уилкинсона и попытались использовать и для обоснования их гипотезы о том, что Вселенная имеет форму бублика и трех бубликов. Ученые также хотели проверить распространенную гипотезу о беспредельной и "безразмерной" Вселенной.

Выяснилось, что лучше всего данные космического аппарата обосновывают теорию Вселенной в виде бублика. Ученые также попытались угадать вероятный размер Вселенной – согласно сведениям, полученным с помощью Зонда, он может достичь 56 миллиардов световых лет.

Жан-Пьер Люмине из Парижской обсерватории во Франции придерживается гипотезы о том, что Вселенная имеет форму мяча для американского футбола либо тыквы. Однако ему очень понравилась работа Штайнера.По его мнению, анализ коллеги из Германии показывает, что бублик – вполне вероятная форма Вселенной, но идею о тыкве (футбольном мяче) все-таки не отвергает. «Думаю, что мой футбольный мяч все еще жив и здоров», - шутит Люмине.

Сам Штайнер считает, что более точно определить форму Вселенной позволит исследование реликтового излучения, которые сейчас проводит европейский спутник Planck . Глен Старкман также считает, что данных еще недостаточно. «С философской точки зрения мне нравится идея о том, что Вселенная конечна, - рассуждает он. – Однако физику нельзя поверять философией, и поэтому я остерегусь делать выводы, пока не появятся новые экспериментальные данные».

> Какая форма у Вселенной?

В какой форме существует Вселенная : исследование бесконечного пространства, карта реликтового излучения WMAP, геометрия Вселенной и предполагаемые формы с фото.

Стоит ли вообще размышлять над тем, какой формы Вселенная? С чем мы имеем дело? Сфера? Конус? Плоская? И как это определить?

Вселенная - это единственное место, в котором мы существуем и за пределы которого не вырваться (потому что их нет). Благодаря физическим законам, природным постоянным и извергающимся тяжелым металлам, нам удалось создать жизнь на небольшом скалистом шаре, затерянном в одной из множества галактик.

Но разве вам не хочется узнать, где вы живете? Просто получить возможность посмотреть на все со стороны, как мы сделали это с родной планетой Землей. Чтобы вы увидели? Бесконечная темнота? Множество пузырьков? Снежный шар? Крысиный лабиринт в руках инопланетян или что-то еще? Какая форма у Вселенной?

Что же, ответ намного проще, но также и страннее. О форме Вселенной начали задумываться еще в древние времена. И люди, в силу нехватки информации, предлагали довольно чудные вещи. В индуистских текстах это было яйцо в форме человека. Греки видели остров, плавающий в пустоте. Аристотель говорит, что Вселенная имеет форму бесконечной сферы или же просто черепахи.

Интересно, что вклад Альберта Эйнштейна помогает проверить каждую из этих моделей. Ученые выдвинули три любимейших формы: положительно-изогнутая, отрицательно-изогнутая и плоская. Мы понимаем, что Вселенная существует в 4-х измерениях и любая из фигур граничит с безумной геометрией Лавкрафта. Поэтому включите максимальное воображение и поехали!

При положительно-изогнутом варианте мы получаем четырехмерную сферу. У этой разновидности есть конец, но не выделяется четкая граница. Если точнее, то две частицы пересекли бы ее, прежде чем вернуться на старт. Вы можете даже протестировать это в домашних условиях. Возьмите воздушный шар и проведите прямую линию, пока она не вернется в начальную точку.

Этот вид вписывается в три измерения и появляется, если в космосе есть огромное количество энергии. Чтобы полностью изогнуться или замкнуться, пространству пришлось бы остановить расширение. Это произойдет, если появится масштабный энергетический запас, способный создать край. Современные данные показывают, что расширение – бесконечный процесс. Так что этот сценарий отпадает.

Отрицательно-изогнутая форма Вселенной – четырехмерное седло. Она открыта, лишена границ в пространстве и времени. Здесь мало энергии, поэтому Вселенная не перестанет расширяться. Если пустить две частицы по ровным линиям, то они никогда не встретятся, а просто будут расходиться, пока не уйдут в разные стороны.

Если критическое количество энергии будет колебаться между крайностями, то спустя бесконечность расширение прекратится. Это плоская Вселенная. Здесь две частицы будут путешествовать параллельно, но никогда не разойдутся и не встретятся.

Легко представить эти три формы, но есть еще множество вариантов. Футбольный мяч напоминает идею со сферической Вселенной. Пончик – технически плоская, но связанная в определенных точках. Некоторые считают, что в пользу этого варианта говорят огромные теплые и прохладные пятна. Можете рассмотреть предполагаемые формы Вселенной на фото.

И вот мы подошли к трубе. Это еще один вид отрицательного искривления. Один ее конец будет зауженный, а второй – широкий. В первой половине все казалось бы узким и существовало в двух измерениях. А в широком можно было бы путешествовать на максимальные расстояния, но возвращаться приходилось бы в обратную сторону (в изгибе меняется направление).

Тогда что? С чем мы имеем дело? Рогалик? Духовой инструмент? Гигантская сырная голова? Ученые все еще не исключили варианты с трубой и седлом.

Ворчуны будут утверждать, что все это бессмысленно и нам никогда не узнать правду. Но давайте не будем столь категоричны. Последние данные Планка показывают, что наша Вселенная… плоская! Бесконечно конечная, совершенно не изогнутая и с точным критическим количеством энергии.

Немыслимо, что мы можем не только узнать, как Вселенная выглядит, но есть и люди, которые постоянно пытаются найти еще больше информации. Если «плоская» кажется вам скучной, то не забывайте, что у нас еще нет достаточной информации. Поэтому вполне вероятно, что все мы можем существовать в гигантском пончике.

Рекомендуем почитать

Наверх