Чем звезды отличаются от планет: подробности и интересные моменты. Такие удивительные и красивые планеты

Инженерные системы 20.09.2019
Инженерные системы

Хорошо просматриваются в ясную ночь.

Планеты

Среди бесчисленных звезд легко можно отличить по яркому блеску планеты, что в переводе с древнегреческого - блуждающие звезды . Так названы были древними греками эти небесные тела потому, что изо дня в день они перемещались относительно, казалось бы неподвижных, звезд и на ночном небе казались яркими светилами.

Планеты Вселенной

Как известно, планеты совсем не : они получают свет от и движутся вокруг него по орбитам, которые по форме близки к кругу.

Кометы

По очень удлиненным орбитам через тот или иной срок времени из межпланетных пространств залетают далекие гости нашей солнечной системы - кометы , или хвостатые звезды (в переводе с греческого). Внезапное появление кометы всегда пугало невежественного человека.


Говорили о том, что начнутся опустошительные кровопролитные войны, повсюду пойдут смуты, голод, мор и даже наступит конец света.

Значительно чаще можно наблюдать, особенно в конце лета, августовский поток звезд . В старину считали, что каждый человек имеет свою звезду на небе, и когда он умирает, то и звезда его угасает, падает.
Звезды, конечно, не падают. Это обломки небесных тел и распавшихся комет: они накаляются до нескольких тысяч градусов и начинают светиться, попав в земную атмосферу.

Метеориты

Светится и раскаленный воздух вокруг падающих тел. В том случае, если они целиком не сгорают, превращаясь в раскаленный газ, на землю падают небесные камни , как их раньше называли, или метеориты . Порой они достигают огромных размеров.


Метеорит, упавший в феврале 1947 г. в районе хребта Сихотэ-Алинь дождем осколков, весил, как полагают, до ста тонн. На месте его падения обнаружила много глубоких воронок до 30 метров в поперечнике. За два года в этом районе было собрано около 23 тонн осколков метеорита.

Знаменитый Тунгусский метеорит, упавший летом 1908 г. в глухой тайге, в районе небольшого поселка Виновара близ р. Подкаменной Тунгуски (Красноярский край), до настоящего времени не обнаружен, несмотря на многолетние поиски. Ученые полагают что он взорвался при падении и полностью распался на мельчайшие частицы металлической пыли .

Она действительно была обнаружена при анализе почвы в районе взрыва, который слышен был на 1000 километров. Столб взрыва поднялся на высоту не менее 20 километров и был виден на 750 километров в окружности. На огромной площади -до 60 километров в поперечнике-были повалены деревья, вершинами во все стороны от места взрыва.

Ученые полагают, что за сутки на Землю выпадает около 10 тонн метеоритного вещества.

Обычно среди тускло мерцающих звезд можно различить более яркие - голубовато-белые, желтые, красноватые. Больше всего звезд в широкой серебристой полосе - Млечном Пути , который наподобие гигантского обруча опоясывает небесный свод.

Своим проницательным взором человек проник в сокровенные глубины вселенной и увидел, наконец, в сильные телескопы далекие миры, подобные Млечному Пути. Нетрудно отсюда сделать вывод, какое скромное место занимает наша во вселенной - бесконечной во времени и пространстве, не имеющей ни начала, ни конца.

Звезда - раскаленный самосветящийся шар

На строгом астрономическом учете - миллионы . Звезды и планеты Вселенной, что называется, поштучно сосчитаны, занесены в специальные списки, в каталог, отмечены на специальных картах.
Каждая звезда - раскаленный самосветящийся шар подобный нашему Солнцу.


Звезда Солнце

Звезды находятся от нас очень далеко. До ближайшей звезды-она так и называется Проксима , т. е. по-латыни ближайшая,- пришлось бы добираться даже при помощи ракеты очень, очень долго. Свет от этой звезды до Земли проходит четыре года как определяют астрономы.

Скорость света весьма велика 300000 километров в секунду! Отсюда можно сделать такой вывод, если скажем, Проксима сегодня померкнет, люди будут наблюдать на небе последний ее луч целых четыре года.

Сто пятьдесят миллионов километров, отделяющие от , свет проходит в 8 минут 18 секунд. Как близко к нам Солнце по сравнению с ближайшей его соседкой!

Величина звезд весьма различна. Звезда-гигант (из созвездия Цефей) в 2300 раз больше Солнца, а звезды-малютки (звезда Койпера) почти в два раза меньше Земли.

Температура звезд

Различна и температура звезд . Голубовато-белые звезды - наиболее горячие: температура их поверхности 30 000°; на желтых звездах уже прохладнее - 6000°, и на красных 3000° и ниже. Наше Солнце довольно слабая звезда, желтый карлик , как именуют ее астрономы.

Рождение звезд

Исследуя небесные светила, ученые сделали много интересных выводов о рождении звезд , об их развитии и химическом составе. Химический состав небесных светил изучается особым прибором - спектроскопом. Он позволяет обнаруживать даже ничтожно малые количества вещества по характерным цветным линиям спектра.

Спектр

Спектр (от латинского «спектрум») -видимое, видение.
Представление о спектре можно получить по радуге после дождя. Она привлекает неуловимыми переходами от одного цвета к другому: от красного - через оранжевый, желтый, зеленый, голубой и синий - к фиолетовому.


Вы никогда не забудете места каждого цвета в спектре, если запомните такую небольшую побасенку:

Каждый охотник желает знать, где сидит фазан.

Здесь начальная буква слова обозначает цвет.

Когда луч света, пройдя через трехгранную стеклянную призму, падает на лист бумаги или белую стену, тоже получается красивая радужная полоска. Такую же цветную полоску вы увидите на потолке или стене, если луч солнца упадет на краевую грань зеркала или свет заиграет цветными переливами на граненых шариках и подвесках театральной люстры.

Раскаленные твердые и жидкие тела, а также газы под большим давлением образуют сплошные спектры в виде радужных полосок, разреженные же газы дают при накаливании не сплошной, а линейный спектр; он состоит из отдельных цветных линий, характерных для каждого вещества, разделенных темными промежутками.

Приспособление спектроскопа к телескопу позволило получить фотографии спектров весьма удаленных небесных светил и сделать отсюда тот вывод, что на них пока не обнаружено ни одного химического элемента, неизвестного на Земле. Такие же результаты дал и химический анализ метеоритов. Спектральный анализ далеких звездных миров и химический анализ метеоритов убедительно говорят о единстве вещества Вселенной .

Ни одна из большого числа различных моделей происхождения и развития Солнечной системы не удостоилась перевода в ранг общепризнанной теории.

Согласно гипотезе Канта – Лапласа система планет вокруг Солнца образовалась в результате действия сил притяжения и отталкивания между частицами рассеянной материи, находящейся во вращательном движении вокруг Солнца.

Впервые английский физик и астрофизик Дж. Х. Джинс (1877 - 1946) предположил, что когда-то Солнце столкнулось с другой звездой, в результате чего из него была вырвана струя газа, которая, сгущаясь, превратилась в планеты. Учитывая огромное расстояние между звездами, такое столкновение кажется невероятным.

Из современных гипотез происхождения Солнечной системы наиболее известна электромагнитная гипотеза шведского астрофизика Х. Альфвена (1908 - 1995) и английского Ф. Хойла (1915 - 2001). Согласно этой теории первоначальное газовое облако, из которого образовались и Солнце и планеты, состояло из ионизированного газа, подверженного влиянию электромагнитных сил. После того, как из огромного газового облака посредством концентрации образовалось Солнце, на очень большом расстоянии от него остались небольшие части этого облака. Гравитационная сила стала притягивать остатки газа к образовавшейся звезде – Солнцу, но его магнитное поле остановило движущийся газ на различных расстояниях – как раз там, где находятся планеты. Гравитационные и магнитные силы повлияли на концентрацию и сгущение этого газа. В результате образовались планеты. Когда возникли самые крупные планеты, тот же процесс повторился в меньших масштабах, создав, таким образом, системы спутников.

Известна также гипотеза образования Солнечной системы из холодного газопылевого облака, окружающего Солнце, предложенная советским ученым О.Ю. Шмидтом (1891 - 1956).

Согласно общепринятой в настоящее время гипотезе, формирование Солнечной системы началось около 4,6 млрд. лет назад с гравитационного коллапса небольшой части гигантского межзвездного газопылевого облака. Это начальное облако было, вероятно, размером в несколько световых лет и являлось прародителеи для нескольких звезд.

В процессе гравитационного сжатия размеры газопылевого облака уменьшились и, в силу закона сохранения углового момента, росла скорость вращения облака. Центр, где собралась большая часть массы, становился все более и более горячим, чем окружающий диск. Из-за вращения скорости сжатия облака параллельно и перпендикулярно оси вращения различались, что привело к уплощению облака и формированию характерного протопланетного диска с диаметром примерно 200 а.е. и горячей, плотной протозвезды в центре. Полагают, что в этой точке эволюции Солнце было звездой типа Т Тельца. Изучение таких звезд показывает, что они часто сопровождаются протопланетными дисками с массами 0,001 – 0,1 солнечной массы, с подавляющим процентом массы туманности, сосредоточенным непосредственно в звезде. Планеты сформировались аккрецией из этого диска (рис.27).


В течение 50 млн лет давление и плотность водорода в центре протозвезды стали достаточно большими для начала термоядерных реакций. Температура, скорость реакции, давление и плотность увеличились, пока не было достигнуто гидростатическое равновесие, с тепловой энергией, противостоящей силе гравитационного сжатия. На этом этапе Солнце стало полноценной звездой главной последовательности.


Рис.27 Эволюция Солнца

Солнечная система просуществует, пока Солнце не начнет развиваться вне главной последовательности диаграммы Герцшпрунга – Рассела, которая показывает зависимость между яркостью звезд и температурой их поверхности. Более горячие звезды являются более яркими.

Солнце сжигает запасы водородного топлива, при этом выделяющаяся энергия, имеет тенденцию к исчерпанию, заставляя Солнце сжиматься. Это увеличивает давление в его недрах и нагревает ядро, таким образом ускоряя сжигание топлива. В результате Солнце становится ярче на примерно десять процентов каждые 1,1 млрд лет.

Через приблизительно 5 - 6 млрд. лет, водород в ядре Солнца будет полностью преобразован в гелий, что завершит фазу главной последовательности. В это время внешние слои Солнца расширятся примерно в 260 раз – Солнце станет красным гигантом. Из-за чрезвычайно увеличивающейся площади поверхности, она будет гораздо более прохладной, чем при нахождении на главной последовательности (2600 К).

В конечном счете, внешние слои Солнца будут выброшены мощным взрывом в окружающее пространство, образовав планетарную туманность, в центре которой останется лишь небольшое звездное ядро – белый карлик, необычно плотный объект в половину первоначальной массы Солнца, но размером с Землю. Эта туманность возвратит часть материала, который сформировал Солнце, в межзвездную среду.

Теории происхождения Солнечной системы носят гипотетический характер, и однозначно решить вопрос об их достоверности на современном этапе развития науки невозможно. Во всех существующих теориях имеются противоречия и неясные места.

Отсутствие общепризнанной версии происхождения планетной системы имеет свое объяснение. Прежде всего, единственность объекта наблюдения исключает применение сравнительного анализа и заставляет решать нелегкую задачу восстановления истории на основании одних только знаний о сегодняшнем состоянии Солнечной системы. Например, представления об эволюции звезд от их рождения до гибели получены благодаря накоплению и статистической обработке наблюдаемых данных о современном состоянии множества звезд разных классов, находящихся на разных стадиях развития. Неудивительно, что о развитии далеких от нас звезд астрономия знает существенно больше, чем о происхождении и развитии места нашего обитания – Солнечной системы.

Таким образом, солнечная система – очень сложное природное образование, сочетающее разнообразие составляющих ее элементов с высочайшей устойчивостью системы как целого. При огромном числе и разнообразии составляющих систему элементов, при тех сложных взаимоотношениях, которые устанавливаются между ними, задача определения механизма ее образования, оказывается очень непростой.

В Солнечную систему входят:

· Солнце;

· 4 планеты земной группы: Меркурий, Венера, Земля, Марс и их спутники;

· пояс малых планет – астероидов, куда входит планета – карлик Церера;

· бесчисленное число метеоритных тел, движущихся как роями, так и одиночно.

· 4 планеты – гиганты: Юпитер, Сатурн, Уран, Нептун и их спутники;

· сотни комет;

· кентавры;

· транснептуновые объекты: пояс Койпера, куда входят 4 планеты – карлика: Плутон, Хаумеа, Макемаке, Эрида и рассеянный диск;

· Отдаленные области, куда входит облако Оорта и Седна;

· Пограничные области.

Солнце

Солнце относится к рядовым звездам нашей Галактики и представляет собой раскаленный газовый (плазменный) шар преимущественно гелиево- водородного состава, который разбавлен примесью (около 1%) остальных химических элементов, соотношение которых изменяется от поверхности к ядру. В верхних слоях Солнца водорода содержится около 90 %, а гелия – 10 %. В ядре содержится лишь 37 % водорода. Соотношение между водородом и гелием с течением времени изменяется в пользу гелия, поскольку уже в течение 4,5 млрд. лет на Солнце протекают термоядерные реакции, превращающие ядра водорода в ядра гелия. Ежесекундно около 600 млн. т водорода превращаются в гелий при температуре около 15 млн. 0 С. При этом 4,3 млн. т переходит в лучистую энергию (рис.28).

Все мы довольно часто слышим, что учеными на такой-то звезде или на какой-то там планете обнаружено что-то или кто-то, или просто проведены исследования и … так далее. Но, мало кто задумывается, почему планеты называются планетами, а звезды именно звездами, и какими они обладают важными отличиями, раз одних отделили от других? При этом практически каждый из нас хотя бы раз в своей жизни задавался довольно глупым вопросом: «Солнце это звезда или планета?» Также практически каждый человек сразу ответит на данный вопрос, что Солнце – это, конечно же, звезда, но вот объяснить, почему именно звезда, а не планета способен далеко не каждый.

Возникает вполне логичный вопрос: в чем же заключается различие между звездой и планетой?

Отличие между ними просто огромное, хотя на первый взгляд и не очень заметное

1. Первоочередное и самое главное – звезды способны самостоятельно излучать свет и тепло, в отличие от планет, которые способны только отражать попадающие на них лучи света от других светил, являясь по своей сути темными телами.

2. Звезды обладают гораздо более высокими температурами поверхности, чем любая из известных на данный момент планет. Средние температуры их поверхностей колеблются от 2000 до 40000 градусов, не говоря уже о слоях расположенных ближе к центру космического тела, где температуры, возможно, достигают даже миллионов градусов.


Данные SDO, аппарата изучающего Солнце, за три года работы

3. Звезды значительно превосходят даже самые крупные планеты по своей массе.

4. Все планеты движутся по орбитам относительно своих светил, которые, в свою очередь, в тот же самый момент остаются совершенно неподвижными. Это происходит аналогично тому, как наша Земля вращается вокруг Солнца. Благодаря этому имеется возможность наблюдать у планет различные фазы точно так же, как и у Луны.

5. Все планеты по своему химическому составу образованы как из твердых, так и из легких частиц, в отличие от звезд преимущественно состоящих только из легких элементов.

6. Планеты часто обладают одним или сразу несколькими спутниками, а вот звезды таковых «соседей» никогда не имеют. Но при этом отсутствие спутника это, конечно же, еще не факт, что данное космическое тело не является планетой.

7. На поверхностях абсолютно всех звезд обязательно происходят ядерные или термоядерные реакции, сопровождающиеся взрывами. В свою очередь, на поверхностях планет данные реакций не наблюдаются, ну если только в исключительных случаях, и то только на ядерных планетах и только очень-очень слабые ядерные реакции.

Можно точно утверждать…

Теперь можно абсолютно точно утверждать, что Солнце — это типичная звезда (так называемый желтый карлик G-типа). Потому что вокруг него вращаются 8 планет, образующие вместе с ним Солнечную систему; оно самостоятельно излучает свет и тепло — средняя температура поверхности 5000-6000 K; состоит преимущественно из легких элементов, таких как водород и гелий — почти 99%, и всего лишь 1% составляют твердые вещества; на его поверхности постоянно протекают термоядерные реакции; и своими размерами оно превосходит в несколько раз любую планету Солнечной системы.

Помните, как в рассказе Чехова «Каштанка» хозяин собачки говорит ей: «Супротив человека ты все равно, что плотник супротив столяра»? Вот так и звезды в отношении планет.

Звезды

Звездой в астрономии называется небесное тело, в котором идут термоядерные реакции. Это массивные светящиеся газовые (плазменные) шары. Они образуются из газово-пылевой среды (в основном из водорода и гелия) в результате гравитационного сжатия. В недрах звезд огромная температура – миллионы кельвинов, происходят термоядерные реакции превращения водорода в гелий (°С = K−273,15). На их поверхности - тысячи кельвинов. Звёзды называют главными телами Вселенной, потому что в них заключена основная масса светящегося вещества в природе. Наше Солнце - типичная звезда спектрального класса G с температурой 5000-6000 К. Спектра́льные кла́ссы - классификация звёзд по спектру излучения, в первую очередь, по температуре фотосферы. Всего классов 7: O, B, A, F,G, K, M. Внутри класса звёзды делятся на подклассы от 0 (самые горячие) до 9 (самые холодные). Солнце имеет спектральный класс G2 и эквивалентную температуру фотосферы 5780 K .
Ближайшей к Солнцу звездой является Проксима Центавра . Она расположена в 4,2 светового года (3,9 1013 км) от центра Солнечной системы.
Когда мы смотрим в звездное небо, то при ясной погоде невооружённым глазом на небе мы можем увидеть около 6000 звёзд, по 3000 в каждом полушарии. Все видимые с Земли звёзды (включая видимые в самые мощные телескопы) находятся в местной группе галактик.

Ме́стная гру́ппа гала́ктик - гравитационно-связанная группа галактик, включающая галактики Млечный Путь, галактику Андромеды (M31) и галактику Треугольника (М33) – она показана на картинке выше.
Мы не будем вдаваться в подробные характеристики классификации звезд, скажем лишь, что всё многообразие видов звёзд - это только отражение количественных характеристик звёзд (такие как масса и химический состав) и эволюционного этапа, на котором в данный момент находится звезда.

Звезды главной последовательности

Это самый многочисленный класс звезд. К нему принадлежит и наше Солнце. Это место в диаграмме, на котором звезда находится большую часть своей жизни. Потери энергии на излучения компенсируются за счёт энергии, выделяющейся в ходе ядерных реакции. Существуют и другие виды звезд.

Коричневые карлики

Это тип звёзд, в которых ядерные реакции никогда не могли компенсировать потери энергии на излучение. Их существование предсказали в середине XX в., основываясь на представлениях о процессах, происходящих во время формирования звезд, а в 2004 году впервые был обнаружен коричневый карлик. На сегодняшний день открыто достаточно много звёзд подобного типа. Их спектральный класс М - T.

Белые карлики

Белые карлики представляют собой компактные звёзды с массами, сравнимыми с массой Солнца, но с радиусами в ~100 и, соответственно, светимостями в ~10 000 раз меньшими солнечной. Они лишены собственных источников термоядерной энергии. Белые карлики начинают свою эволюцию как обнажившиеся вырожденные ядра красных гигантов, сбросивших свою оболочку - то есть в качестве центральных звёзд молодых планетарных туманностей. Температуры фотосфер ядер молодых планетарных туманностей чрезвычайно высоки. Крупные звёзды (в 7-10 раз тяжелее Солнца) в какой-то момент «сжигают» водород, гелий и углерод и превращаются в белые карлики с богатым кислородом ядром. Температура поверхности молодых белых карликов - изотропных ядер звёзд после сброса оболочек, очень высока - более 2 105 К, однако достаточно быстро падает за счёт нейтринного охлаждения и излучения с поверхности.

Красные гиганты

Кра́сные гига́нты и сверхгига́нты - звёзды поздних спектральных классов с высокой светимостью и протяжёнными оболочками. Звёзды в процессе своей эволюции могут достигать поздних спектральных классов и высоких светимостей на двух этапах своего развития: на стадии звёздообразования и поздних стадиях эволюции. Стадия, на которой молодые звёзды наблюдаются как красные гиганты, зависит от их массы - этот этап длится от ~ 103 до ~ 108 лет. В это время излучение звезды происходит за счёт гравитационной энергии, выделяющейся при сжатии. По мере сжатия температура поверхности таких звёзд растёт, но, вследствие уменьшения размеров и площади излучающей поверхности, падает светимость. В конечном итоге в их ядрах начинается реакция термоядерного синтеза гелия из водорода, и молодая звезда выходит на главную последовательность. На поздних стадиях эволюции звёзд, после выгорания водорода в их недрах, звёзды сходят с главной последовательности и перемещаются в область красных гигантов и сверхгигантов. И «молодые», и «старые» красные гиганты имеют схожие характеристики, объясняющиеся сходством их внутреннего строения - все они имеют горячее плотное ядро и очень разреженную и протяжённую оболочку.

Солнце как красный гигант

В настоящее время Солнце является звездой среднего возраста, возраст его оценивается приблизительно в 4,57 миллиарда лет. Солнце будет оставаться на Главной последовательности ещё приблизительно 5 миллиардов лет, постепенно увеличивая свою яркость на 10% каждый миллиард лет, после чего водород в ядре будет исчерпан. После этого температура и плотность в солнечном ядре повысятся настолько, что начнётся горение гелия, и гелий начнёт превращаться в углерод. Размеры Солнца вырастут примерно в 200 раз, то есть почти до современной земной орбиты. Меркурий и Венера будут им поглощены и полностью испарятся. Земля, если не разделит их судьбу, будет разогрета настолько, что шансов на сохранение жизни не будет никаких. Океаны же испарятся задолго до перехода Солнца на стадию красного гиганта, приблизительно через 1,1 миллиарда лет.
На стадии красного гиганта Солнце будет находиться приблизительно 100 миллионов лет, после чего превратится в планетарную туманность, и далее станет белым карликом.

Переменные звезды

Переме́нная звезда́ - звезда, блеск которой изменяется со временем в результате происходящих в её районе физических процессов. Строго говоря, блеск любой звезды меняется со временем в той или иной степени. Для отнесения звезды к разряду переменных достаточно, чтобы блеск звезды хотя бы однажды претерпел изменение.
Переменные звёзды сильно отличаются друг от друга. Изменения блеска могут носить периодический характер. Основными наблюдательными характеристиками являются период, амплитуда изменений блеска, форма кривой блеска и кривой лучевых скоростей.
Примечание: не путать переменность звёзд с их мерцанием, которое происходит из-за колебаний воздуха земной атмосферы. При наблюдении из космоса звёзды не мерцают.

Звезды Вольфа-Райе

Звёзды Вольфа-Райе - класс звёзд, для которых характерны очень высокая температура и светимость; звёзды Вольфа-Райе отличаются от других горячих звёзд наличием в спектре широких полос излучения водорода, гелия, а также кислорода, углерода, азота.

Звёзды типа T Тельца (T Tauri, T Tauri stars, TTS) - класс переменных звёзд, названный по имени своего прототипа Т Тельца. Обычно их можно обнаружить рядом с молекулярными облаками и идентифицировать по их переменности. Основным источником их энергии является гравитационное сжатие. В спектре звёзд типа T Тельца присутствует литий, который отсутствует в спектрах Солнца и других звёзд главной последовательности, так как он разрушается при температуре выше 2,500,000 K.

Новые звезды

Новыми называются звезды, светимость которых внезапно увеличивается в ~103-106 раз. Все новые звёзды являются тесными двойными системами, состоящими из белого карлика и звезды-компаньона, находящейся на главной последовательности, либо достигшей в ходе эволюции стадии красного гиганта. В таких системах происходит перетекание вещества внешних слоев звезды-компаньона на белый карлик. Состав падающего на белый карлик газа типичен для внешних слоёв красных гигантов и звёзд главной последовательности - более 90 % водорода. По мере накопления в поверхностном слое водорода и повышения температуры в обогащённом водородом слое начинают идти термоядерные реакции, этому способствует и проникновение в вырожденный поверхностный слой углерода из нижележащих слоёв белого карлика. Вскоре после вспышки начинается новый цикл и накопления водородного слоя, и через некоторое время вспышка повторяется. Интервал между вспышками составляет от десятков лет у повторных новых до тысяч лет у классических новых звёзд.
Новые звезды используют как индикаторы расстояния. Определение расстояний галактик и скоплений галактик при помощи новых дают такую же точность, как и при использовании цефеид.

Сверхновые звезды

Сверхно́вые звёзды – это звёзды, блеск которых при вспышке увеличивается на десятки звёздных величин в течение нескольких суток. В максимуме блеска сверхновая сравнима по яркости со всей галактикой, в которой она вспыхнула, и даже может превосходить её. Термином «сверхновые» были названы звёзды, которые вспыхивали гораздо сильнее так называемых «новых звёзд». На самом деле ни те, ни другие физически новыми не являются: вспыхивают уже существующие звёзды. Но в нескольких исторических случаях вспыхивали те звёзды, которые ранее были на небе практически или полностью не видны, это явление и создавало эффект появления новой звезды.

Другие разновидности звезд

Гиперновая – это очень большая сверхновая. Яркие голубые переменные - очень яркие голубые пульсирующие гипергиганты. Ультраяркие рентгеновские источники – небесное тело с сильным излучением в рентгеновском диапазоне. Нейтронные звезды - астрономический объект, являющийся одним из конечных продуктов эволюции звёзд, состоящий из нейтронной сердцевины и сравнительно тонкой (∼1 км) коры вырожденного вещества, содержащей тяжёлые атомные ядра. Масса нейтронной звезды практически такая же, как и у Солнца, но радиус составляет около 10 км. Поэтому средняя плотность вещества такой звезды в несколько раз превышает плотность атомного ядра. Считается, что нейтронные звезды рождаются во время вспышек сверхновых.

Звездные системы

Звёздные системы могут быть одиночными и кратными: двойными, тройными и тд. В случае, если в систему входит более десяти звёзд, то принято её называть звёздным скоплением . Двойные (кратные) звёзды очень распространены. По некоторым оценкам, более 70 % звёзд в галактике кратные.

Двойные звезды

, или двойная система - две гравитационно-связанные звезды, обращающиеся по замкнутым орбитам вокруг общего центра масс. C помощью двойных звёзд существует возможность узнать массы звёзд и построить различные зависимости. Все кандидаты в черные дыры находятся в двойных системах.

Звездные скопления

Звёздное скопление - группа звёзд, имеющих общее происхождение, положение в пространстве и направление движения. Члены таких групп связаны между собой взаимным тяготением. Большинство из известных скоплений находится в нашей Галактике.

Шаровые скопления

Шаровое скопление - скопление звёзд, имеющее сферическую или слегка сплюснутую форму. Их диаметр колеблется от 20 до 100 парсек. Это одни из старейших объектов во Вселенной. Типичный возраст шаровых скоплений - более 10 млрд. лет. Шаровые скопления отличаются высокой концентрацией звезд. В Млечном Пути насчитывают более 150 шаровых скоплений, большинство из которых концентрируются к центру галактики.

Рассеянные скопления

Рассеянное скопление - второй класс звёздных скоплений. Это звёздная система, компоненты которой располагаются на достаточно большом расстоянии друг от друга. Этим она отличается от шаровых скоплений, где концентрация звёзд сравнительно велика. По этой причине рассеянные скопления очень трудно обнаруживать и изучать. Если звёзды, находящиеся от наблюдателя на одинаковом расстоянии, движутся в одном и том же направлении, есть основания предполагать, что они входят в рассеянное скопление.
Наиболее известные представители этого класса скоплений - Плеяды и Гиады , находящиеся в созвездии Тельца .

Звездные ассоциации

Звёздные ассоциации - разреженное скопление молодых звёзд высокой светимости, отличающееся от других типов скоплений своим размером. Ассоциации, также как и рассеянные скопления, неустойчивы. Они медленно расширяются и их компоненты отдаляются друг от друга.

Галактики

Галактика - это крупное скопление звёзд, межзвездного газа и пыли, тёмной материи (форма материи, которая не испускает электромагнитного излучения и не взаимодействует с ним. Это свойство данной формы вещества делает невозможным её прямое наблюдение. Однако возможно обнаружить присутствие тёмной материи по создаваемым ею гравитационным эффектам).

Как рождаются звезды?

Сначала это холодное разреженное облако межзвёздного газа, сжимающееся под действием собственного тяготения. При этом энергия гравитации переходит в тепло. Когда температура в ядре достигает нескольких миллионов Кельвинов, начинаются реакции нуклеосинтеза (процесс образования ядер химических элементов тяжелее водорода), и сжатие прекращается. В таком состоянии звезда пребывает большую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга - Рассела, пока не закончатся запасы топлива в её ядре. Когда в центре звезды весь водород превратится в гелий, термоядерное горение водорода продолжается на периферии гелиевого ядра.
В этот период структура звезды начинает заметно меняться. Её светимость растёт, внешние слои расширяются, а внутренние, наоборот, сжимаются. И до поры до времени яркость звезды тоже понижается. Температура поверхности снижается - звезда становится красным гигантом. В таком состоянии звезда проводит значительно меньше времени, чем на главной последовательности. Когда масса её изотермического гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; возрастающая при этом температура стимулирует термоядерное превращение гелия в более тяжёлые элементы.
Наиболее массивные звёзды живут сравнительно недолго - несколько миллионов лет. Факт существования таких звёзд означает, что процессы звёздообразования не завершились миллиарды лет назад, а имеют место и в настоящую эпоху.
Звёзды, масса которых многократно превышает массу Солнца, большую часть жизни обладают огромными размерами, высокой светимостью и температурой. Из-за высокой температуры они имеют голубоватый цвет, и поэтому их называют голубыми сверхгигантами. Больше всего голубых сверхгигантов наблюдается в области Млечного Пути, т. е. вблизи плоскости Галактики, там, где концентрация газопылевого межзвёздного вещества особенно высока.
вблизи плоскости Галактики молодые звёзды распределены неравномерно. Они почти никогда не встречаются поодиночке. Чаще всего эти звёзды образуют рассеянные скопления и более разреженные звёздные группировки больших размеров, названные звёздными ассоциациями, которые насчитывают десятки, а иногда и сотни голубых сверхгигантов. Самые молодые из звёздных скоплений и ассоциаций имеют возраст менее 10 млн лет. Почти во всех случаях эти молодые образования наблюдаются в областях повышенной плотности межзвёздного газа. Это указывает на то, что процесс звёздообразования связан с межзвёздным газом.
Примером области звёздообразования является гигантский газовый комплекс в созвездии Ориона. Он занимает на небе практически всю площадь этого созвездия и включает в себя большую массу нейтрального и молекулярного газа, пыли и целый ряд светлых газовых туманностей. Образование звёзд в нем продолжается и в настоящее время.

Планеты

Планета (в переводе с древнегреческого «странник») - это небесное тело, вращающееся по орбите вокруг звезды или её остатков, достаточно массивное, чтобы стать округлым под действием собственной гравитации, но недостаточно массивное для начала термоядерной реакции, и сумевшее очистить окрестности своей орбиты от планетезималей (небесное тело на орбите вокруг протозвезды, образующееся в результате постепенного приращения более мелких тел, состоящих из частиц пыли протопланетного диска. Непрерывно притягивая к себе новый материал и накапливая массу, планетезимали формируют более крупное тело, пока под действием силы тяжести отдельные слагающие его фрагменты начинают уплотняться). О планетах нашей Солнечной системы на нашем сайте достаточно статей в разделе «О планетах Солнечной системы»: http://сайт/index.php/earth/glubini-vselennoy/15-o-planetah.

Но и вне Солнечной системы существуют планеты, их называют экзопланетами. Экзоплане́та, или внесолнечная планета - планета, обращающаяся вокруг звезды за пределами Солнечной системы. Планеты чрезвычайно малы и тусклы по сравнению со звёздами, а сами звёзды находятся далеко от Солнца (ближайшая - на расстоянии 4,22 световых года). Поэтому долгое время задача обнаружения планет возле других звёзд была неразрешимой, первые экзопланеты были обнаружены в конце 1980-х годов. Сейчас такие планеты стали открывать благодаря усовершенствованным научным методам. В настоящее время достоверно подтверждено существование 843 экзопланет в 665 планетных системах, из которых в 126 имеется более одной планеты. Общее количество экзопланет в галактике Млечный Путь по новым данным от 100 миллиардов, из которых ~ от 5 до 20 миллиардов возможно являются «землеподобными». Около 34 процентов солнцеподобных звёзд имеют в обитаемой зоне планеты, сравнимые с Землёй.
Планемо - это небесное тело, чья масса позволяет ему попадать в диапазон определения планеты, то есть его масса больше, чем у малых тел, но недостаточна для начала термоядерной реакции по образу и подобию коричневого карлика или звезды.

Итак , все планеты вращаются вокруг звёзд. В Солнечной системе все планеты обращаются по своим орбитам в том направлении, в каком вращается Солнце (против часовой стрелки, если смотреть со стороны северного полюса Солнца).
Помимо того, что планеты обращаются по своей орбите вокруг звезды, они ещё и вращаются вокруг своей оси. Период вращения планеты вокруг оси известен как сутки. Большинство планет Солнечной системы вращаются вокруг своей оси в том же направлении, в каком обращаются вокруг Солнца, против часовой стрелки, если смотреть со стороны северного полюса Солнца, кроме Венеры, которая вращается по часовой стрелке, и Урана, экстремальный осевой наклон которого порождает споры, какой полюс считать южным и какой северным, и вращается ли он против часовой или по часовой стрелке. Однако, какого бы мнения ни придерживались стороны, вращение Урана ретроградное относительно его орбиты.
Один из критериев, который позволяет определить небесное тело как классическую планету, - чистые от иных объектов орбитальные окрестности. Планета, которая очистила свои окрестности, накопила достаточную массу, чтобы собрать или, наоборот, разогнать все планетезимали на своей орбите. То есть, планета обращается по орбите вокруг своего светила в изоляции (если не считать её спутников и троянцев), в противоположность тому, чтобы делить свою орбиту с множеством объектов подобных размеров. Этот критерий статуса планеты был предложен МАС в августе 2006 года. Этот критерий лишает такие тела Солнечной системы, как Плутон, Эрида и Церера статуса классической планеты, относя их к карликовым планетам. Несмотря на то, что этот критерий относится пока только к планетам Солнечной системы, некоторое количество молодых звёздных систем, находящихся на стадии протопланетарного диска, имеют признаки «чистых орбит» у протопланет.

Рекомендуем почитать

Наверх