Величина растяжки п образных компенсаторов. Расчет предварительного растяжения компенсатора при монтаже

Элементы декора 15.06.2019
Элементы декора

Компенсаторы тепловых сетей. В данной статье речь пойдет о выборе и расчете компенсаторов тепловых сетей.

Для чего же нужны компенсаторы. Начнем с того, что при нагревании любой материал расширяется, а, значит трубопроводы тепловых сетей, удлиняются при повышении температуры теплоносителя проходящего в них. Для безаварийной работы тепловой сети используются компенсаторы, которые компенсируют удлинение трубопроводов при их сжатии и растяжении, во избежание защемления трубопроводов и их последующей разгерметизации.

Стоит отметить, что для возможности расширения и сжатия трубопроводов проектируются не только компенсаторы, но и система опор, которые, в свою очередь, могут быть как "скользящими" так и "мертвыми". Как правило,в России регулирование тепловой нагрузки качественное - то есть, при изменении температуры окружающей среды, температура на выходе из источника теплоснабжения изменяется. За счет качественного регулирования подачи тепла - количество циклов расширения- сжатия трубопроводов увеличивается. Ресурс трубопроводов снижается, опасность защемления - возрастает. Количественное регулирование нагрузки заключается в следующем - температура на выходе из источника теплоснабжения постоянна. При необходимости изменения тепловой нагрузки - изменяется расход теплоносителя. В этом случае, металл трубопроводов тепловой сети работает в более легких условиях, циклов расширения- сжатия минимальное количество, тем самым увеличивается ресурс трубопроводов тепловой сети. Следовательно, прежде чем выбирать компенсаторы, их характеристики и количество нужно определиться с величиной расширения трубопровода.

Формула 1:

δL=L1*a*(T2-T1)где

δL - величина удлинения трубопровода,

мL1 - длина прямого участка трубопровода (расстояние между неподвижными опорами),

мa - коэффициент линейного расширения (для железа равен 0,000012), м/град.

Т1 - максимальная температура трубопровода (принимается максимальная температура теплоносителя),

Т2 - минимальная температура трубопровода (можно принять минимальная температура окружающей среды), °С

Для примера рассмотрим решение элементарной задачи по определению величины удлинения трубопровода.

Задача 1. Определить на сколько увеличится длина прямого участка трубопровода длиной 150 метров, при условии что температура теплоносителя 150 °С, а температура окружающей среды в отопительный период -40 °С.

δL=L1*a*(T2-T1)=150*0,000012*(150-(-40))=150*0,000012*190=150*0,00228=0,342 метра

Ответ: на 0,342 метра увеличится длина трубопровода.

После определения величины удлинения, следует четко понимать когда нужен а когда не нужен компенсатор. Для однозначного ответа на данный вопрос нужно иметь четкую схему трубопровода, с ее линейными размерами и нанесенными на нее опорами. Следует четко понимать, изменение направления трубопровода способно компенсировать удлинения, другими словами поворот с габаритными размерами не менее размеров компенсатора, при правильной расстановке опор, способен компенсировать тоже удлинение,что и компенсатор.

И так, после того, как мы определии величину удлинения трубопровода можно переходить к подбору компенсаторов, необходимо знать, что каждый компенсатор имеет основную характеристику - это величину компенсации. Фактически выбор количества компенсаторов сводится к выбору типа и конструктивных особенностей компенсаторов.Для выбора типа компенсатора необходимо определить диаметр трубы тепловой сети исходя из пропускной способности труби необходимой мощности потребителя тепла.

Таблица 1. Соотношение П- образных компенсаторов изготовленных из отводов.

Таблица 2. Выбор количества П- образных компенсаторов из расчета их компенсирующей способности.


Задача 2 Определение количества и размеры компенсаторов.

Для трубопровода диаметром Ду 100 с длиной прямого участка 150 метров, при условии, что температура носителя 150 °С, а температура окружающей среды в отопительный период -40 °С определить количество компенсаторов.бL=0,342 м (см. Задача 1).По Таблице 1 и Таблице 2 определяемся с размерами п образных компенсаторов (с размерами 2х2 м может компенсировать 0,134 метра удлинения трубопровода) , нам нужно компенсировать 0,342 метра, следовательно Nкомп=бL/∂х=0,342/0,134=2,55 , округляем до ближайшего целого числа в сторону увеличения и того - требуется 3 компенсатора размерами 2х4 метра.

В настоящее время все большее распространение получают линзовые компенсаторы, они значительно компактнее п - образных, однако, ряд ограничений не всегда позволяет их использование. Ресурс п- образного компенсатора значительно выше чем линзового, из-за плохого качество теплоносителя. Нижняя часть линзового компенсатора как правило "забивается" шламом, что способствует развитию стояночной коррозии металла компенсатора.

Величина смещения (компенсирующая способность) компенсаторов, как правило, выражается комбинацией положительных и отрицательных числовых значений (±). Отрицательное (-) значение обозначает допустимое сжатие компенсатора, положительное (+) - его допустимое растяжение. Сумма абсолютных величин таких значений представляет собой полное смещение компенсатора. В большинстве случаев компенсаторы работают на сжатие, компенсируя температурное расширение трубопроводов, реже (охлажденные среды и криогенные продукты) - на растяжение.

Предварительная растяжка при монтаже нужна для рационального использования полного смещения компенсатора в зависимости от характера работы трубопровода, условий монтажа и предотвращения возникновения стрессовых условий.

Пиковые значения расширения трубопровода зависят от минимальной и максимальной температур его эксплуатации. Например, минимальная температура работы трубопровода Tmin = 0°С и максимальная Т тах = 100°С. Т.е. разница температур At = 100°C. При длине трубопровода L равной 90 м, максимальное значение его удлинения трубопровода AL составит 100 мм. Представим, что для установки на таком трубопроводе используются компенсаторы со смещением ±50 мм, т.е. с полным смещением 100 мм. Также представим, что температура окружающей среды на этапе их монтажа Т у равна 20°С. Характер работы компенсатора при таких условиях будет таким:

  • при 0°С - компенсатор будет растянут на 50 мм
  • при 100°С - компенсатор будет сжат на 50 мм
  • при 50°С - компенсатор будет находится в свободном состоянии
  • при 20°С - компенсатор будет растянут на 30 мм

Следовательно, предварительная растяжка на величину 30 мм при монтаже (Т у = 20°С) обеспечит эффективную его работу. Когда температура поднимется от 20°С до 50°С при вводе в эксплуатацию трубопровода, компенсатор вернется в свободное (ненапряженное) состояние. При повышении температуры трубопровода от 50°С до 100°С, смещение компенсатора относительно свободного состояние в сторону сжатия составит расчетные 50 мм.

Определение значения предварительного растяжения

Примем длину трубопровода равную 33 метрам, максимальную/минимальную рабочую температуру +150°С /-20°С соответственно. При такой разнице температур коэффициент линейного расширения а составит 0,012 мм/м*°С.

Максимальное удлинение трубопровода может быть рассчитано следующим образом:

ΔL = α*L* Δt = 0,012 х 33 х 170 = 67 мм

Значение предварительного растяжения PS определяется по формуле:

PS = (ΔL/2) - ΔL(Ty-Tmin): (Tmax-Tmin)

Таким образом, в процессе монтажа компенсатора его необходимо установить с предварительным растяжением PS равным 18 мм.

На рис. 1 показано расстояние необходимое для монтажа компенсатора в линию трубопровода, определяемое как сумма значений длины компенсатора lq в свободном состоянии и предварительного растяжения PS.

На рис. 2 показано, что при монтаже, с одной стороны компенсатор фиксируется фланцем или приваривается.

Монтаж тепловых сетей, который должен вестись поточным методом, включает в себя зем­ляные, монтажно-сварочные, каменные, бетонные, же­лезобетонные, изоляционные, опрессовочные, плотнич­ные и прочие работы.

При правильно организованном поточном методе строительства работы выполняются в определенной тех­нологической последовательности. Поток ор­ганизуется с таким расчетом, чтобы наиболее экономич­но распорядиться силами и средствами, выполнить большой объем работ в сжатые сроки, с малыми затратами и с высоким качеством строительства.

Тепловые сети в городах и других населенных пунк­тах прокладывают в специально отведенных для строи­тельства инженерных сооружений полосах, параллельно красным линиям улиц, дорог и проездов вне проезжей части и полосы зеленых насаждений. При обосновании возможна прокладка сетей под проезжей частью и тро­туарами.

Для тепловых сетей в основном предусматривается подземная прокладка, реже - надземная (на территори­ях предприятий, вне пределов города, при высоком уров­не грунтовых вод, в районах вечной мерзлоты и других случаях, когда подземная прокладка невозможна или нецелесообразна).

При подземной прокладке трубопроводы тепловых сетей (теплопроводы) укладывают в каналах - специ­альных строительных конструкциях, ограждающих тру­бопроводы, или бесканально. Каналы могут быть про­ходными и непроходными. В зависимости от принятой конструкции подземной прокладки (в непроходных или проходных каналах, коллекторах) допускается прокладка тепловых сетей совместно с другими инженерными сетями (водопроводом, кабелями связи, сило­выми кабелями, напор­ной канализацией).

При надземной (от­крытой) прокладке теплопроводы прокла­дывают на кронштей­нах по стенам зданий, на бетонных, железобе­тонных и металличе­ских опорах . При переходе теплопроводов че­рез железнодорожные пути и водные прегра­ды используют конст­рукции мостов. Тепло­проводы, прокладывае­мые под руслом реки или канала, по склонам и дну оврага, изгибают в соответствии с рель­ефом местности. Такие сооружения называют дюкерами. При прокладке под ру­слом реки теплопрово­ды заключают в сталь­ные трубы (футля­ры). Против всплытия трубы удерживаются грузами. Таким обра­зом строят и другие ви­ды подземных сетей (водопровод, газопро­вод и канализация) при пересечении ими рек, оврагов и прочих подобных препятствий.

Сборка стальных труб больших диаметров в звенья с помощью крана-трубоукладчика . До начала работ сборке труб в звенья завозят трубы и раскладывают их по заранее размеченной оси; очищают концы труб от загрязнений и выправляют деформированные кромки.

Стальные трубы собирают в звенья в такой последо­вательности: укладывают и выверяют лежни, укладывают с помощью крана-трубоукладчика тру­бы на лежни; очищают и подготовляют кромки труб к сварке; центрируют стыки центратором, поддерживая трубы краном-трубоукладчиком во время прихватки стыка электросваркой; сваривают стыки труб с повора­чиванием звена труб; удаляют лежни и устанавливают собранное звено на инвентарные подкладки.

Укладка и выверка лежней . Трубоукладчики, натянув, рулетку вдоль оси раскладки звеньев, размечают на ней места укладки лежней. Затем под­носят лежни и раскладывают их по размет­кам, при этом середина лежней должна совпадать с осью раскладки. По концам крайних лежней забивают четыре металлических штыря и натягивают между крайними лежнями шпагат на уровне верха лежней. Ориентиру­ясь на этот уровень, устанавливают промежуточные лежни, срезая или подбивая лопатами под ними грунт.

Укладка труб на лежни . Разметив с помощью рулетки середину трубы, кран-трубоукладчик устанавливают так, чтобы его стрела находилась над центром тяжести трубы. Трубу стропят, и машинист крана приподнимает ее на 20-30 см. Убедившись в надежности и правильности строповки, машинист крана поднимат трубу на высоту 1 м и по команде трубоукладчика укладывает трубу на лежни. Трубоукладчики, стоя у обоих концов трубы, удерживают ее от разворота.

Очистка и подготовка кромок труб к сварке . При по­грузке, транспортировании или разгрузке на концах труб могут образоваться эллипсность, вмятины и пр. При не­обходимости концы труб следует выправить. Искривле­ния концов выправляют с помощью винтовых домкратов или вручную ударами кувалды с предварительным подогревом трубы в месте правки.

В том случае, если деформированные концы невоз­можно выправить, их обрезают газовой резкой с после­дующей зачисткой кромок.

Используя зубила и молотки, трубоукладчики очи­щают кромки труб от грязи и наледи. Электрошлифо­вальными машинками, напильниками, реверсивными уг­ловыми пневматическими щетками зачищают кромки до металлического блеска на длину не менее 10 мм снаружи л изнутри.

Центрирование стыка и поддерживание труб при прихватке стыка . Машинист устанавливает кран-трубо­укладчик напротив середины трубы и опускает строп- полотенце. Трубоукладчик стропит трубу и подает коман­ду приподнять ее на 0,5 м и переместить к месту стыков­ки. После перемещения трубы рабочие укладывают ее на лежни, визуально центрируют стык, рихтуют и за­крепляют трубу на лежнях деревянными кольями. Затем на стык устанавливают центратор и по­воротом рукоятки закрепляют стык.

Электросварщик, проверив универсальным шаблоном величину зазора между торцами стыкуемых труб по всей окружности и удостоверившись в том, что размер зазора соответствует норме, прихватывает сваркой стык.

Если при проверке шаблоном величина зазора между торцами труб не соответствует нормативным требовани­ям, трубоукладчики ослабляют центратор, машинист крана движением стрелы изменяет величину зазора, при этом трубоукладчики помогают ему ломами. После по­лучения необходимой величины зазора положение трубы окончательно фиксируют деревянными клиньями, рычаг центратора затягивают до отказа и затем стык прихва­тывают сваркой. После прихватки стыка трубоукладчики снимают центратор.

Поворачивание звена при сварке труб . После наложе­ния шва на четверть окружности трубы с каждой ее стороны трубоукладчики поворачивают звено, закрепляя его деревянными клиньями на лежнях у стыка.

Установка и приварка подвижных опор . Подвижные опоры воспринимают нагрузки от веса теплопровода, кроме того, обеспечивают перемещение трубопровода в осевом направлении, происходящее вследствие измене­ния его длины при изменении температуры. Подвижные опоры заводского изготовления бывают скользящие, полозковые, катковые, подвес­ные. Из перечисленных конструкций подвиж­ных опор наиболее широко применяются скользящие опоры.

Скользящие опоры могут быть низкие и высокие, нор­мальной длины и укороченные . Тип опоры выбирают в зависимости от толщины теплоизоляции и расстояния ме­жду опорами. Низкие (подкладки) и высокие опоры пре­дохраняют трубы от истирания при перемещениях тепло­проводов. Кроме того, высокие опоры защищают тепло­вую изоляцию от соприкосновения с основанием канала.

Скользящие опоры устанавливают на опорных камнях с некоторым смещением в сторону неподвижной опоры. При пуске горячей воды трубопро­вод нагреется и несколько удлинится; скользящая опора приваренная к трубопроводу, сместится в сторону ком­пенсатора и займет на опорном камне рабочее положе­ние. Если скользящую опору установить на опорном камне без монтажного смещения, то она может сойти с опорного камня в период эксплуатации тепло­провода. Скользящая опора перемещается по металли­ческой подкладке, забетонированной в опорный камень и выступающей над его верхней плоскостью.

Расстояние между скользящими опорами зависит от расстояния между опорными камнями, которое в свою очередь принимается в зависимости от условного прохо­да труб.

В местах сварных стыков приваривать скользящие опоры не допускается. Опора должна быть приварена без боковых смещений по отношению к вертикальной оси трубопровода.

Разметив места установки опор на трубах, их подго­няют по месту, прихватывают и приваривают . Привари­вают скользящие опоры до опрессовки трубопровода, так как на трубопроводе, прошедшем гидравлическое или пневматическое испытание па плотность и прочность, не разрешается производить сварочные работы.

Установка сальниковых компенсаторов . Сальниковые компенсаторы воспринимают осевые темпера­турные деформации трубопроводов тепловых сетей и тем самым предохраняют трубопровод и арматуру от разру­шающих напряжений.

Сальниковые компенсаторы изготовляют односторонние и двусторонние . Компенсирующая способность дву­стороннего компенсатора в два раза больше компенсиру­ющей способности одностороннего.

Компенсатор соединяется с основным трубопроводом на сварке.

Компенсатор устанавливается в выдвинутом положе­нии на полную длину хода, которая зависит от компенси­рующей способности, с зазором между упорным кольцом корпуса и предохранительным кольцом на стакане. Зазор компенсирует изменение длины трубопровода при понижении температуры труб после установки компенса­тора (в связи с понижением температуры наружного воздуха).

При установке компенсатора следует тщательно на­бивать сальниковые уплотнения (сальник), так как замена набивки в период эксплуатации приводит к оста­новке работы тепловых сетей. Места соединения колец сальника должны быть смещены один относительно дру­гого, швы сальниковых компенсаторов должны быть ров­ными, а кратеры заварены.

Установка фланцев . Трубопроводная арматура и ли­нейное оборудование соединяются с трубопроводом на сварке или на фланцах, стягиваемых болтами, шпилька­ми и гайками. При условном внутреннем давлении в тру­бопроводе до 40 кгс/см2 (4 МПа) используют болты, при 40 кгс/см2 и более шпильки. Плотность флайцевого соединения зависит от точности обработки поверхности фланцев, качества болтов и равномерности их затяжки. Фланцы должны быть параллельны один другому.

Фланцы приваривают перпендикулярно осям патруб­ков . Перекос не должен превышать 1 мм на 100 мм на­ружного диаметра фланца (но не более 3 мм). После пригонки фланцев по месту устанавливают два-три бол­та для выверки прокладки, затем монтируют остальные болты, навертывают на них гайки и фланцевое соедине­ние затягивают. Чтобы не было перекоса, гайки затяги­вают постепенно в крестообразном порядке.

Диаметр болтов должен соответствовать диаметру отверстий соединяемых фланцев . Головки болтов распо­лагают с одной стороны соединения. Болты фланцевого соединения могут выступать над гайкой не менее чем на три нитки резьбы и не более чем на половину диаметра болта. Необходимо, чтобы внутренний диаметр проклад­ки соответствовал внутреннему диаметру трубы с допу­ском 3 мм, а ее наружный диаметр должен быть не менее диаметра соединительного выступа и не более диаметра окружности, касательной к болтам.

Для более плотного закрепления прокладки иногда на одном из соединяемых фланцев делают выступ, на другом - впадину. Выступ входит во впадину, и таким образом прокладка надежно крепится между фланцами. Для этой же цели на зеркало фланцев наносят концент­рически расположенные углубления - риски.

При установке трубопроводной арматуры , например задвижек, нельзя допускать чрезмерного стягивания фланцев болтами, так как снижается плотность и проч­ность фланцевого соединения.

Растяжка П-образных компенсаторов . Для увеличе­ния компенсирующей способности П-образные компенса­торы растягивают. Величина растяжки, указываемая в проекте, должна быть равна половине удлинения компен­сируемого участка. Компенсатор растягивают лишь пос­ле того, как с двух его сторон будут установлены непо­движные опоры; таким образом, при растяжке компенса­тора трубопровод остается неподвижным в местах его приварки к опорам. Несваренным остается лишь один стык — в месте растяжки компенсатора.

Компенсатор растягивают с помощью уголковых стя­жек, домкратов, талей и др . На рав­ном расстоянии по окружности трубы П-образного ком­пенсатора приваривают четыре пластины, а также четыре пластины - к ранее уложенной трубе. Расстоя­ние между пластинами не должно превышать длины стяжных болтов. В отверстие пластин вставляют стяж­ные болты и, завинчивая гайки, растягивают компенса­тор, сближая кромки труб до требуемого для сварки за­зора. Стыки прихватывают электросваркой, пластины срезают газовым резаком и стык сваривают.

Монтаж узлов тепловых сетей . Трубоукладчик сталь­ной щеткой или напильником очищает концы патрубков и труб от ржавчины и грязи. Затем с помощью подъем­ного крана узел подается в камеру тепловых сетей, где его устанавливают в проектное положение. Пос­ле этого подгоняют и подрезают кромки и центрируют стыки наружным центратором. Стыки сваривают, центра­тор переносят на следующие работы.

Возможно, Вас так же заинтересует:

1.1. Изделия допускается применять в районах строительства с расчетной наружной температурой для проектирования систем отопления не ниже минус 40°С. Сейсмичность районов строительствам не более девяти баллов по шкале Рихтера.

1.2. Изделия допускается применять при содержании хлоридов в сетевой воде не более 250 мг/кг.

1.3. Изделия должны устанавливаться на прямолинейных участках трубопроводов, ограниченных неподвижными опорами. Между неподвижными опорами допускается размещать только одно изделие.

Допускается отклонение от прямолинейности в плане и профиле с обязательной установкой направляющих опор в тех же местах не менее двух перед каждым компенсирующим устройством.

1.4. Способ присоединения к трубопроводу - сварка.

1.5. При любых способах прокладки трубопроводов, кроме подземного бесканального, установку компенсирующих устройств следует предусматривать, как правило, у одной из неподвижных опор.

1.6. На бесканальных подземных тепловых сетях размещение изделия должно осуществляться в середине участка трубопровода, ограниченного неподвижными опорами.

1.7. До и после компенсирующего устройства необходимо устанавливать направляющие опоры, исключающие перемещение трубопроводов в радиальном направлении.

При бесканальной прокладке трубопровода установка направляющих опор не требуется.

Примеры схем размещения сильфонного компенсирующего устройства, направляющих и неподвижных опор приведены на рисунке:

6.8. На участках трубопроводов с сильфонными компенсирующими устройствами не допускается применение подвесных опор.

6.9. При выборе неподвижных опор должны учитываться следующие факторы:

Распорное усилие компенсатора;

Усилие жесткости компенсатора;

Трение в направляющих и скользящих опорах;

Величина центробежной силы, возникающей при перегибе трубопровода.

Расчет нагрузок на концевые и промежуточные неподвижные опоры при различных способах установки сильфонных компенсирующих устройств выполняется на этапе проектирования тепловой сети и приводится в специальной литературе.

6.10. Максимальное расстояние между неподвижными опорами трубопровода определяется по формуле:

где 0,9- коэффициент запаса, учитывающий неточности расчета и погреш-

ности монтажа;

Компенсирующая способность компенсатора, мм

a - средний коэффициент линейного расширения трубной стали при на

греве от 0°С до t°С, мм/м°С;

t - расчетная температура сетевой воды в подающем трубопроводе, °С;

t РО -расчетная температура наружного воздуха для проектирования систем

отопления, принимаемая равной средней температуре воздуха наибо-

лее холодной пятидневки по главе СНиП «Строительная климатология

и геофизика», °С.

1.8. Изделия не требуют обслуживания в процессе эксплуатации и относятся к классу неремонтируемых изделий, для них не требуется сооружения специальных камер, а при наземной прокладке - площадок для обслуживания.

Указания по монтажу.

2.1. Монтаж изделий производится в соответствии с проектом трубопровода, выполненным проектной организацией.

2.2. Перед монтажом изделия должны быть проверены на соответствие их технических характеристик проекту тепловой сети, а также на отсутствие механических повреждений.

2.3. При перемещении компенсирующих устройств в период монтажа должны быть приняты меры, предохраняющие изделие от толчков, ударов и исключающие загрязнение или затопление грунтовыми водами его внутренней полости.

2.4. При выполнении сварочных работе торцы изоляции компенсирующего устройства следует защищать жестяными разъемными экранами толщиной 0,8…1 мм для предупреждения ее возгорания.

Монтаж изделий разрешается производить при температуре воздуха не ниже минус 30°С.

2.5. Перед приваркой изделия к трубопроводу проверяются отклонения соединений изделия с трубопроводом, которые не должны превышать следующих значений: допуск соосности патрубков - 2 мм;

допуск параллельности торцов присоединительных патрубков и присоединяемых труб - 3 мм.

Максимальный сварочный зазор между патрубком и трубопроводом - 2 мм.

2.6. Изделие следует устанавливать на теплопроводах так, чтобы направление стрелки (при ее наличии) на корпусе компенсирующего устройства совпадало с направлением движения теплоносителя.

2.7. Изделия монтируются на трубопроводе с предварительной растяжкой.

Длина компенсатора при монтаже Lмонт., мм определяется по формуле:

L строит. - строительная длина компенсатора в состоянии поставки, мм;

Компенсирующая способность компенсатора, мм;

A - коэффициент линейного расширения трубной стали, приме-

няемый 0,012 мм/м °С;

t наим . - наименьшая температура воздуха при эксплуатации, °С;

L - длина участка компенсатора между неподвижными опорами,

на котором монтируется компенсатор, м.

Установку монтажной длины компенсирующего устройства производит монтажная организация.

Участки трубопровода до и после компенсирующего устройства должны быть смонтированы и закреплены в неподвижных опорах таким образом, чтобы расстояние между концами труб в месте установки изделия соответствовало монтажной длине L монт. при температуре окружающего воздуха момента закрепления трубопровода во второй неподвижной опоре; температура окружающего воздуха и расстояние между концами закрепленных труб должны быть зафиксированы актом;

Компенсирующее устройство приваривается к одному из участков трубопровода;

На свободный присоединительный патрубок изделия и свободный конец трубопровода устанавливается универсальное монтажное приспособление, с помощью которого компенсатор изделия растягивают до стыка с трубопроводом, и стык заваривают;

С изделия снимают монтажное приспособление.

При растяжении компенсатора необходимо обеспечить одинаковые перемещения присоединительных патрубков относительно торцов изделия.

При невозможности установки изделия в середине прямолинейного участка теплопровода между неподвижными опорами допускается его установка в любом месте прямолинейного участка теплопровода. Для этого при растяжении компенсатора необходимо обеспечить перемещения присоединительных патрубков относительно торцов компенсирующего устройства обратно пропорциональными длинами участков теплопровода между изделием и неподвижными опорами.

2.9. Соединение проводников-индикаторов изделия с общей сигнальной системой необходимо производить после окончания сварочных работ перед изоляцией стыков присоединительных патрубков с теплопроводом. Проводники-индикаторы нигде не должны касаться металла труб.

сильфонное компенсирующее устройство
концевая неподвижная опора

Величина смещения (компенсирующая способность) компенсаторов, как правило, выражается комбинацией положительных и отрицательных числовых значений (±). Отрицательное (-) значение обозначает допустимое сжатие компенсатора, положительное (+) — его допустимое растяжение. Сумма абсолютных величин таких значений представляет собой полное смещение компенсатора. В большинстве случаев, компенсаторы работают на сжатие, компенсируя температурное расширение трубопроводов, реже (охлажденные среды и криогенные продукты) — на растяжение.

Предварительная растяжка при монтаже нужна для рационального использования полного смещения компенсатора в зависимости от характера работы трубопровода, условий монтажа и предотвращения возникновения стрессовых условий.

Пиковые значения расширения трубопровода зависят от минимальной и максимальной температур его эксплуатации. Например, минимальная температура работы трубопровода Tmin = 0°С и максимальная Т тах = 100°С. Т.е. разница температур At = 100°C. При длине трубопровода L равной 90 м, максимальное значение его удлинения трубопровода AL составит 100 мм. Представим, что для установки на таком трубопроводе используются компенсаторы со смещением ±50 мм, т.е. с полным смещением 100 мм. Также, представим, что температура окружающей среды на этапе их монтажа Т у равна 20°С. Характер работы компенсатора при таких условиях будет такой:

  • при 0°С — компенсатор будет растянут на 50 мм
  • при 100°С — компенсатор будет сжат на 50 мм
  • при 50°С — компенсатор будет находится в свободном состоянии
  • при 20°С — компенсатор будет растянут на 30 мм

Следовательно, предварительная растяжка на величину 30 мм при монтаже (Т у = 20°С) обеспечит эффективную его работу. Когда температура поднимется от 20°С до 50°С при вводе в эксплуатацию трубопровода, компенсатор вернется в свободное (ненапряженное) состояние. При повышении температуры трубопровода от 50°С до 100°С, смещение компенсатора относительно свободного состояние в сторону сжатия составит расчетные 50 мм.

Определение значения предварительного растяжения

Примем длину трубопровода равную 33 метрам, максимальную/минимальную рабочую температуру +150°С /-20°С соответственно. При такой разнице температур, коэффициент линейного расширения а составит 0,012 мм/м*°С.

Максимальное удлинение трубопровода может быть рассчитано следующим образом:

ΔL = αxLx Δt = 0,012 х 33 х 170 = 67 мм

Значение предварительного растяжения PS определяется по формуле:

PS = (ΔL/2) — ΔL (Ty-Tmin): (Tmax-Tmin)

Таким образом, в процессе монтажа компенсатора, его необходимо установить с предварительным растяжением PS равным 18 мм.

На рис. 1 показано расстояние необходимое для монтажа компенсатора в линию трубопровода, определяемое как сумма значений длины компенсатора lq в свободном состоянии и предварительного растяжения PS.

На рис. 2 показано, что при монтаже, с одной стороны компенсатор фиксируется фланцем или приваривается.

Рекомендуем почитать

Наверх