Загрязнение почв тяжелыми металлами зарубежная статья. Загрязнение земель тяжелыми металлами

Постройки 26.09.2019

Тяжелые металлы (ТМ) уже сейчас занимают второе место по степени опасности, уступая пестицидам и значительно опережая такие широко известные загрязнители, как двуокись углерода и серы. В перспективе они могут стать более опасными, чем отходы атомных электростанций и твердые отходы. Загрязнение ТМ связано с их широким использованием в промышленном производстве. В связи с несовершенными системами очистки ТМ попадают в окружающую среду, в том числе и в почву, загрязняя и отравляя ее. ТМ относятся к особым загрязняющим веществам, наблюдения за которыми обязательны во всех средах .

Почва является основной средой, в которую попадают ТМ, в том числе из атмосферы и водной среды. Она же служит источником вторичного загрязнения приземного воздуха и вод, попадающих из нее в Мировой океан.

Из почвы ТМ усваиваются растениями, которые затем попадают в пищу.

Термин «тяжелые металлы», характеризующий широкую группу загрязняющих веществ, получил в последнее время значительное распространение. В различных научных и прикладных работах авторы по-разному трактуют значение этого понятия. В связи с этим количество элементов, относимых к группе тяжелых металлов, изменяется в широких пределах. В качестве критериев принадлежности используются многочисленные характеристики: атомная масса, плотность, токсичность, распространенность в природной среде, степень вовлеченности в природные и техногенные циклы.

В работах, посвященных проблемам загрязнения окружающей природной среды и экологического мониторинга, на сегодняшний день к тяжелым металлам относят более 40 элементов периодической системы Д.И. Менделеева с атомной массой свыше 40 атомных единиц: V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, Sn, Hg, Pb, Bi и др. По классификации Н. Реймерса, тяжелыми следует считать металлы с плотностью более 8 г/см3. При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации. Практически все металлы, попадающие под это определение (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов .

Самыми мощными поставщиками отходов, обогащенных металлами, являются предприятия по выплавке цветных металлов (алюминиевые, глиноземные, медно-цинковые, свинцово-плавильные, никелевые, титаномагниевые, ртутные и др.), а также по переработке цветных металлов (радиотехнические, электротехнические, приборостроительные, гальванические и пр.).

В пыли металлургических производств, заводов по переработке руд концентрация Pb, Zn, Bi, Sn может быть повышена по сравнению с литосферой на несколько порядков (до 10-12), концентрация Cd, V, Sb - в десятки тысяч раз, Cd, Mo, Pb, Sn, Zn, Bi, Ag - в сотни раз. Отходы предприятий цветной металлургии, заводов лакокрасочной промышленности и железобетонных конструкций обогащены ртутью. В пыли машиностроительных заводов повышена концентрация W, Cd, Pb (табл. 1).

Таблица 1. Основные техногенные источники тяжелых металлов

Под влиянием обогащенных металлами выбросов формируются ареалы загрязнения ландшафта преимущественно на региональном и локальном уровнях. Влияние предприятий энергетики на загрязнение окружающей среды обусловлено не концентрацией металлов в отходах, а их огромным количеством. Масса отходов, например, в промышленных центрах, превышает их суммарное количество, поступающее от всех других источников загрязнения. С выхлопными газами автомобилей в окружающую среду выбрасывается значительное количество Pb, которое превышает его поступление с отходами металлургических предприятий.

Пахотные почвы загрязняются такими элементами как Hg, As, Pb, Cu, Sn, Bi, которые попадают в почву в составе ядохимикатов, биоцидов, стимуляторов роста растений, структурообразователей. Нетрадиционные удобрения, изготовляемые из различных отходов, часто содержат большой набор загрязняющих веществ с высокими концентрациями. Из традиционных минеральных удобрений фосфорные удобрения содержат примеси Mn, Zn, Ni, Cr, Pb, Cu, Cd .

Распределение в ландшафте металлов, поступивших в атмосферу из техногенных источников, определяется расстоянием от источника загрязнения, климатическими условиями (сила и направление ветров), рельефом местности, технологическими факторами (состояние отходов, способ поступления отходов в окружающую среду, высота труб предприятий).

Рассеивание ТМ зависит от высоты источника выбросов в атмосферу. Согласно расчетам М.Е. Берлянда, при высоких дымовых трубах значительная концентрация выбросов создается в приземном слое атмосферы на расстоянии 10-40 высот трубы. Вокруг таких источников загрязнения выделяются 6 зон (табл. 2). Площадь воздействия отдельных промышленных предприятий на прилегающую территорию может достигать 1000 км2 .

Таблица 2. Зоны загрязнения почв вокруг точечных источников загрязнения

Расстояние от источника загрязнения в км

Превышение содержания ТМ по отношению к фоновому

Охранная зона предприятия

Зоны загрязнения почв и их размер тесно связаны с векторами господствующих ветров. Рельеф, растительность, городские постройки могут изменять направление и скорость движения приземного слоя воздуха. Аналогично зонам загрязнения почв можно выделить и зоны загрязнения растительного покрова.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ЗАГРЯЗНЕНИЕ ПОЧВ ТЯЖЕЛЫМИ МЕТАЛЛАМИ. СПОСОБЫ КОНТРОЛЯ И НОРМИРОВАНИЯ ЗАГРЯЗНЕННЫХ ПОЧВ

Учебно-методическое пособие для вузов

Составители: Х.А. Джувеликян, Д.И. Щеглов, Н.С. Горбунова

Издательско-полиграфический центр Воронежского государственного университета

Утверждено научно-методическим советом биолого-почвенного факультета 4 июля 2009 г., протокол № 10

Рецензент д-р биол. наук, проф. Л.А. Яблонских

Учебно-методическое пособие подготовлено на кафедре почвоведения и управления земельными ресурсами биолого-почвенного факультета Воронежского государственного университета.

Для специальности 020701 – Почвоведение

Общие сведения о загрязнении............................................................................

Понятие о техногенных аномалиях.....................................................................

Загрязнение почв тяжелыми металлами.............................................................

Миграция тяжелых металлов в почвенном профиле.........................................

Понятие о почвенном экологическом мониторинге........................................

Показатели состояния почв, определяемые при их контроле........................

Экологическое нормирование качества загрязненных почв..........................

Общие требования к классификации почв подверженных загрязнению......

Литература...........................................................................................................

ОБЩИЕ СВЕДЕНИЯ О ЗАГРЯЗНЕНИИ

Загрязняющие вещества – это вещества антропогенного происхождения, поступающие в окружающую среду в количествах, превышающих природный уровень их поступления.Загрязнение почв – вид антропогенной деградации, при которой содержание химических веществ в почвах, подверженных антропогенному воздействию, превышает природный региональный фоновый уровень. Превышение содержания определенных химических веществ в окружающей человека среде (по сравнению с природными уровнями) за счет их поступления из антропогенных источников представляет экологическую опасность.

Использование человеком химических веществ в хозяйственной деятельности и вовлечение их в цикл антропогенных превращений в окружающей среде постоянно растет. Характеристикой интенсивности извлечения и использования химических элементов является технофильность – отношение ежегодной добычи или производства элемента в тоннах к его кларку в литосфере (А.И. Перельман, 1999). Высокая технофильность характерна для элементов, наиболее активно используемых человеком, особенно для тех, естественный уровень которых в литосфере невысок. Высокие уровни технофильности характерны для таких металлов, как Bi, Hg, Sb, Pb, Cu, Se, Ag, As, Mo, Sn, Cr, Zn, потребность в которых различных видов производств велика. При низком содержании этих элементов в породах (10–2 –10–6 %) добыча их значительна. Это ведет к извлечению из недр земли колоссальных количеств руд, содержащих эти элементы, и к последующему глобальному рассеиванию их в окружающей среде.

Помимо технофильности предложены и другие количественные характеристики техногенеза. Так, отношение технофильности элемента к его биофильности (биофильность – кларки концентрации химических элементов в живом веществе) М.А. Глазовская назваладеструктивной активностью элементов техногенеза . Деструктивная активность элементов техногенеза характеризует степень опасности элементов для живых организмов. Другой количественной характеристикой антропогенного вовлечения химических элементов в их глобальные циклы на планете являетсяфактор мобилизации илифактор техногенного обогащения , который рассчитывают как отношение техногенного потока химического элемента к его природному потоку. Уровень фактора техногенного обогащения, как и технофильность элементов, является не только показателем мобилизации их из литосферы в наземные природные среды, но и отражением уровня выбросов химических элементов с отходами производств в окружающую среду.

ПОНЯТИЕ О ТЕХНОГЕННЫХ АНОМАЛИЯХ

Геохимическая аномалия – участок земной коры (или поверхности земли), отличающийся существенно повышенными концентрациями какихлибо химических элементов или их соединений по сравнению с фоновыми значениями и закономерно расположенный относительно скоплений полезных ископаемых. Выявление техногенных аномалий является одной из важнейших эколого-геохимических задач при оценки состояния окружающей среды. Аномалии образуются в компонентах ландшафта в результате поступления различных веществ от техногенных источников и представляют собой некоторый объем, в пределах которого значения аномальных концентраций элементов больше фоновых значений. По распространенности А.И. Перельман и Н.С. Касимов (1999) выделяют следующие техногенные аномалии:

1) глобальные – охватывающие весь земной шар (например, повышен-

2) региональные – формирующиеся в отдельных частях континентов, природных зонах и областях в результате применения ядохимикатов, минеральных удобрений, подкисления атмосферных осадков выбросами соединений серы и др.;

3) локальные – образующиеся в атмосфере, почвах, водах, растениях вокруг местных техногенных источников: заводов, рудников и т.д.

По среде образования техногенные аномалии делятся:

1) на литохимические (в почвах, породах);

2) гидрогеохимические (в водах);

3) атмогеохимические (в атмосфере, снеге);

4) биохимические (в организмах).

По длительности действия источника загрязнения они делятся:

на кратковременные (аварийные выбросы и т.д.);

средневременные (с прекращением воздействия, например, прекращение разработки месторождений полезных ископаемых);

долговременные стационарные (аномалии заводов, городов, агроландшафтов, например КМА, Норильский никель).

При оценке техногенных аномалий фоновые территории выбираются вдали от техногенных источников загрязняющих веществ, как правило, более чем в 30–50 км. Одним из критериев аномальности служит коэффициент техногенной концентрации или аномальности Кс, представляющий собой отношение содержания элемента в рассматриваемом аномальном объекте к его фоновому содержанию в компонентах ландшафта.

Для оценки воздействия количества поллютантов, поступающих в организм, используются также гигиенические нормативы загрязнения – пре-

дельно допустимые концентрации. Это максимальное содержание вредного вещества в природном объекте или продукции (воде, воздухе, почве, пище), которое не влияет на здоровье человека или других организмов.

Загрязняющие вещества по опасности делятся на классы (ГОСТ

17.4.1.0283): I класс (высоко опасные) – As, Cd, Hg, Se, Pb, F, бенз(а)пирен, Zn; II класс (умеренно опасные) – B, Co, Ni, Mo, Cu, Sb, Cr; III класс (мало опасные) – Ba, V, W, Mn, Sr, ацетофенон.

ЗАГРЯЗНЕНИЕ ПОЧВ ТЯЖЕЛЫМИ МЕТАЛЛАМИ

Тяжелые металлы (ТМ) уже сейчас занимают второе место по степени опасности, уступая пестицидам и значительно опережая такие широко известные загрязнители, как двуокись углерода и серы. В перспективе они могут стать более опасными, чем отходы атомных электростанций и твердые отходы. Загрязнение ТМ связано с их широким использованием в промышленном производстве. В связи с несовершенными системами очистки ТМ попадают в окружающую среду, в том числе и в почву, загрязняя и отравляя ее. ТМ относятся к особым загрязняющим веществам, наблюдения за которыми обязательны во всех средах.

Почва является основной средой, в которую попадают ТМ, в том числе из атмосферы и водной среды. Она же служит источником вторичного загрязнения приземного воздуха и вод, попадающих из нее в Мировой океан. Из почвы ТМ усваиваются растениями, которые затем попадают в пищу.

Термин «тяжелые металлы», характеризующий широкую группу загрязняющих веществ, получил в последнее время значительное распространение. В различных научных и прикладных работах авторы по-разному трактуют значение этого понятия. В связи с этим количество элементов, относимых к группе тяжелых металлов, изменяется в широких пределах. В качестве критериев принадлежности используются многочисленные характеристики: атомная масса, плотность, токсичность, распространенность в природной среде, степень вовлеченности в природные и техногенные циклы.

В работах, посвященных проблемам загрязнения окружающей природной среды и экологического мониторинга, на сегодняшний день к тяжелым металлам относят более 40 элементов периодической системы Д.И. Менделеева с атомной массой свыше 40 атомных единиц: V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, Sn, Hg, Pb, Bi и др. По классификации Н. Реймерса (1990),

тяжелыми следует считать металлы с плотностью более 8 г/см3 . При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации. Практически все металлы, попадающие под это определе-

ние (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов.

Самыми мощными поставщиками отходов, обогащенных металлами, являются предприятия по выплавке цветных металлов (алюминиевые, глиноземные, медно-цинковые, свинцово-плавильные, никелевые, титаномагниевые, ртутные и др.), а также по переработке цветных металлов (радиотехнические, электротехнические, приборостроительные, гальванические и пр.).

В пыли металлургических производств, заводов по переработке руд концентрация Pb, Zn, Bi, Sn может быть повышена по сравнению с литосферой на несколько порядков (до 10–12), концентрация Cd, V, Sb – в десятки тысяч раз, Cd, Mo, Pb, Sn, Zn, Bi, Ag – в сотни раз. Отходы предприятий цветной металлургии, заводов лакокрасочной промышленности и железобетонных конструкций обогащены ртутью. В пыли машиностроительных заводов повышена концентрация W, Cd, Pb (табл. 1).

Под влиянием обогащенных металлами выбросов формируются ареалы загрязнения ландшафта преимущественно на региональном и локальном уровнях. Влияние предприятий энергетики на загрязнение окружающей среды обусловлено не концентрацией металлов в отходах, а их огромным количеством. Масса отходов, например, в промышленных центрах, превышает их суммарное количество, поступающее от всех других источников загрязнения. С выхлопными газами автомобилей в окружающую среду выбрасывается значительное количество Pb, которое превышает его поступление с отходами металлургических предприятий.

Пахотные почвы загрязняются такими элементами как Hg, As, Pb, Cu, Sn, Bi, которые попадают в почву в составе ядохимикатов, биоцидов, стимуляторов роста растений, структурообразователей. Нетрадиционные удобрения, изготовляемые из различных отходов, часто содержат большой набор загрязняющих веществ с высокими концентрациями. Из традиционных минеральных удобрений фосфорные удобрения содержат примеси Mn, Zn, Ni, Cr, Pb, Cu, Cd (Гапонюк, 1985).

Распределение в ландшафте металлов, поступивших в атмосферу из техногенных источников, определяется расстоянием от источника загрязнения, климатическими условиями (сила и направление ветров), рельефом местности, технологическими факторами (состояние отходов, способ поступления отходов в окружающую среду, высота труб предприятий).

Рассеивание ТМ зависит от высоты источника выбросов в атмосферу. Согласно расчетам М.Е. Берлянда (1975), при высоких дымовых трубах значительная концентрация выбросов создается в приземном слое атмосферы на расстоянии 10–40 высот трубы. Вокруг таких источников загрязнения выделяются 6 зон (табл. 2). Площадь воздействия отдельных промышленных предприятий на прилегающую территорию может достигать 1000 км2 .

Таблица 2

Зоны загрязнения почв вокруг точечных источников загрязнения

Расстояние от

Превышение содер-

источника за-

жания ТМ по отно-

грязнения в км

шению к фоновому

Охранная зона предприятия

Зоны загрязнения почв и их размер тесно связаны с векторами господствующих ветров. Рельеф, растительность, городские постройки могут изменять направление и скорость движения приземного слоя воздуха. Аналогично зонам загрязнения почв можно выделить и зоны загрязнения растительного покрова.

МИГРАЦИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ В ПОЧВЕННОМ ПРОФИЛЕ

Аккумуляция основной части загрязняющих веществ наблюдается преимущественно в гумусово-аккумулятивном почвенном горизонте, где они связываются алюмосиликатами, несиликатными минералами, органическими веществами за счет различных реакций взаимодействия. Состав и количество удерживаемых в почве элементов зависят от содержания и состава гумуса, кислотно-основных и окислительно-восстановительных условий, сорбционной способности, интенсивности биологического поглощения. Часть тяжелых металлов удерживается этими компонентами прочно и не только не участвует в миграции по почвенному профилю, но и не представляет опасности

для живых организмов. Отрицательные экологические последствия загрязнения почв связаны с подвижными соединениями металлов.

В пределах почвенного профиля техногенный поток веществ встречает ряд почвенно-геохимических барьеров. К ним относятся карбонатные, гипсовые, иллювиальные горизонты (иллювиально-железисто-гумусовые). Часть высокотоксичных элементов может переходить в труднодоступные для растений соединения, другие элементы, мобильные в данной почвенногеохимической обстановке, могут мигрировать в почвенной толще, представляя потенциальную опасность для биоты. Подвижность элементов в значительной степени зависит от кислотно-основных и окислительновосстановительных условий в почвах. В нейтральных почвах подвижны соединения Zn, V, As, Se, которые могут выщелачиваться при сезонном промачивании почв.

Накопление подвижных, особо опасных для организмов соединений элементов зависит от водного и воздушного режимов почв: наименьшая аккумуляция их наблюдается в водопроницаемых почвах промывного режима, увеличивается она в почвах с непромывным режимом и максимальна в почвах с выпотным режимом. При испарительной концентрации и щелочной реакции в почве могут накапливаться Se, As, V в легкодоступной форме, а в условиях восстановительной среды – Hg в виде метилированных соединений.

Однако следует иметь в виду, что в условиях промывного режима потенциальная подвижность металлов реализуется, и они могут быть вынесены за пределы почвенного профиля, являясь источниками вторичного загрязнения подземных вод.

В кислых почвах с преобладанием окислительных условий (почвы подзолистого ряда, хорошо дренированные) такие тяжелые металлы, как Cd и Hg, образуют легкоподвижные формы. Напротив, Pb, As, Se образуют малоподвижные соединения, способные накапливаться в гумусовых и иллювиальных горизонтах и негативно влиять на состояние почвенной биоты. Если в составе загрязняющих веществ присутствует S, в восстановительных условиях создается вторичная сероводородная среда и многие металлы образуют нерастворимые или слаборастворимые сульфиды.

В заболоченных почвах Mo, V, As, Se присутствуют в малоподвижных формах. Значительная часть элементов в кислых заболоченных почвах присутствует в относительно подвижных и опасных для живого вещества формах; таковы соединения Pb, Cr, Ni, Co, Cu, Zn, Cd и Hg. В слабокислых и нейтральных почвах с хорошей аэрацией образуются труднорастворимые соединения Pb, особенно при известковании. В нейтральных почвах подвижны соединения Zn, V, As, Se, а Cd и Hg могут задерживаться в гумусовом и иллювиальных горизонтах. По мере возрастания щелочности опасность загрязнения почв перечисленными элементами увеличивается.

ПОНЯТИЕ О ПОЧВЕННОМ ЭКОЛОГИЧЕСКОМ МОНИТОРИНГЕ

Почвенный экологический мониторинг – система регулярного неогра-

ниченного в пространстве и времени контроля почв, которая дает информацию об их состоянии с целью оценки прошлого, настоящего и прогноза изменения в будущем. Почвенный мониторинг направлен на выявление антропогенных изменений почв, которые могут в конечном итоге нанести вред здоровью человека. Особая роль почвенного мониторинга обусловлена тем, что все изменения состава и свойств почв отражаются на выполнении почвами их экологических функций, следовательно, на состоянии биосферы.

Огромное значение имеет то, что в почве в отличие от воздуха атмосферы и вод поверхностных водоемом экологические последствия антропогенного воздействия обычно проявляются позже, но они более устойчивы и сохраняются дольше. Существует необходимость оценивать и долговременные последствия этого воздействия, например, возможность мобилизации загрязняющих веществ в почвах, вследствие чего почва из «депо» загрязняющих веществ может превращаться в их вторичный источник.

Виды почвенного экологического мониторинга

Выделение видов почвенного экологического мониторинга основано на различиях в сочетании информативных почвенных показателей, соответствующих задачам каждого из них. На основе различий механизмов и масштабов проявления деградации почв выделяется две группы видов монито-

ринга: первая группа – глобальный мониторинг, вторая – локальный и региональный.

Глобальный почвенный мониторинг – составная часть глобального мониторинга биосферы. Проводится он для оценки влияния на состояние почв экологических последствий дальнего атмосферного переноса загрязняющих веществ в связи с опасностью общепланетарного загрязнения биосферы и сопровождающих его процессов глобального уровня. Результаты глобального или биосферного мониторинга характеризуют глобальные изменения состояния живых организмов на планете под влиянием человеческой деятельности.

Назначение локального ирегионального мониторингов заключается в выявлении влияния деградации почв на экосистемы локального и регионального уровней и непосредственно на условия жизни человека в сфере его природопользования.

Локальный мониторинг называют еще санитарно-гигиеническим или импактным. Он направлен на контроль уровня содержания в окружающей среде тех загрязняющих веществ, которые выбрасывает конкретное пред-

Одним из сильнейших по действию и наиболее распространенным химическим загрязнением является загрязнение тяжелыми металлами. К тяжелым металлам относятся более 40 химических элементов периодической системы Д.И. Менделеева, масса атомов которых составляет свыше 50 атомных единиц.

Эта группа элементов активно участвует в биологических процессах, входя в состав многих ферментов. Группа "тяжелых металлов" во многом совпадает с понятием "микроэлементы". Отсюда свинец, цинк, кадмий, ртуть, молибден, хром, марганец, никель, олово, кобальт, титан, медь, ванадий являются тяжелыми металлами.

Источники поступления тяжелых металлов делятся на природные (выветривание горных пород и минералов, эрозийные процессы, вулканическая деятельность) и техногенные (добыча и переработка полезных ископаемых, сжигание топлива, движение транспорта, деятельность сельского хозяйства). Часть техногенных выбросов, поступающих в природную среду в виде тонких аэрозолей, переносится на значительные расстояния и вызывает глобальное загрязнение.

Другая часть поступает в бессточные водоемы, где тяжелые металлы накапливаются и становятся источником вторичного загрязнения, т.е. образования опасных загрязнений в ходе физико-химических процессов, идущих непосредственно в среде (например, образование из нетоксичных веществ ядовитого газа фосгена). Тяжелые металлы накапливаются в почве, особенно в верхних гумусовых горизонтах, и медленно удаляются при выщелачивании, потреблении растениями, эрозии и дефляции - выдувании почв.

Период полуудаления или удаления половины от начальной концентрации составляет продолжительное время: для цинка - от 70 до 510 лет, для кадмия - от 13 до 110 лет, для меди - от 310 до 1500 лет и для свинца - от 740 до 5900 лет. В гумусовой части почвы происходит первичная трансформация попавших в нее соединений.

Тяжелые металлы обладают высокой способностью к многообразным химическим, физико-химическим и биологическим реакциям. Многие из них имеют переменную валентность и участвуют в окислительно-восстановительных процессах. Тяжелые металлы и их соединения, как и другие химические соединения, способны перемещаться и перераспределяться в средах жизни, т.е. мигрировать.

Миграция соединений тяжелых металлов происходит в значительной степени в виде органо-минеральной составляющей. Часть органических соединений, с которыми связываются металлы, представлена продуктами микробиологической деятельности. Ртуть характеризуется способностью аккумулироваться в звеньях "пищевой цепи" (об этом шла речь ранее). Микроорганизмы почвы могут давать устойчивые к ртути популяции, которые превращают металлическую ртуть в токсические для высших организмов вещества. Некоторые водоросли, грибы и бактерии способны аккумулировать ртуть в клетках.

Ртуть, свинец, кадмий входят в общий перечень наиболее важных загрязняющих веществ окружающей среды, согласованный странами, входящими в ООН. Остановимся подробнее на этих веществах.

Тяжёлые металлы - группа химических элементов со свойствами металлов (в том числе и полуметаллы) и значительным атомным весом либо плотностью. Известно около сорока различных определений термина тяжелые металлы, и невозможно указать на одно из них, как наиболее принятое. Соответственно, список тяжелых металлов согласно разным определениям будет включать разные элементы. Используемым критерием может быть атомный вес свыше 50, и тогда в список попадают все металлы, начиная с ванадия, независимо от плотности. Другим часто используемым критерием является плотность, примерно равная или большая плотности железа (8 г/см3), тогда в список попадают такие элементы как свинец, ртуть, медь, кадмий, кобальт, а, например, более легкое олово выпадает из списка. Существуют классификации, основанные и на других значениях пороговой плотности или атомного веса. Некоторые классификации делают исключения для благородных и редких металлов, не относя их к тяжелым, некоторые исключают нецветные металлы (железо, марганец).

Термин тяжелые металлы чаще всего рассматривается не с химической, а с медицинской и природоохранной точек зрения и, таким, образом, при включении в эту категорию учитываются не только химические и физические свойства элемента, но и его биологическая активность и токсичность, а также объем использования в хозяйственной деятельности.

Кроме свинца наиболее полно по сравнению с другими микроэлементами изучена ртуть.

Ртуть крайне слабо распространена в земной коре (-0,1 х 10-4 %), однако удобна для добычи, так как концентрируется в сульфидных остатках, например, в виде киновари (НgS). В этом виде ртуть относительно безвредна, но атмосферные процессы, вулканическая и человеческая деятельность привели к тому, что в мировом океане накопилось около 50 млн.т этого металла. Естественный вынос ртути в океан в результате эрозии 5000 т/год, еще 5000 т/год ртути выносится в результате человеческой деятельности.

Первоначально ртуть попадает в океан в виде Нg2+, затем она взаимодействует с органическими веществами и с помощью анаэробных организмов переходит в токсичные вещества метилртуть (СН3Нg)+ и диметилртуть (СН3-Нg-СН3), Ртуть присутствует не только в гидросфере, но и в атмосфере, так как имеет относительно высокое давление паров. Природное содержание ртути составляет ~0,003-0,009 мкг/м3.

Ртуть характеризуется малым временем пребывания в воде и быстро переходит в отложения в виде соединений с органическими веществами, находящимися в них. Поскольку ртуть адсорбируется отложениями, она может медленно освобождаться и растворяться в воде, что приводит к образованию источника хронического загрязнения, действующего длительное время после того, как исчезнет первоначальный источник загрязнения.

Мировое производство ртути в настоящее время составляет более 10000 т в год, большая часть этого количества используется в производстве хлора. Ртуть проникает в воздух в результате сжигания ископаемого топлива. Анализ льда Гренландского ледяного купола показал, что, начиная с 800 г. н.э. до 1950-х гг., содержание ртути оставалось постоянным, но уже с 50-х гг. нашего столетия количество ртути удвоилось. На рис.1 представлены пути цикловой миграции ртути. Ртуть и ее соединения опасны для жизни. Метилртуть особенно опасна для животных и человека, так как она быстро переходит из крови в мозговую ткань, разрушая мозжечок и кору головного мозга. Клинические симптомы такого поражения - оцепенение, потеря ориентации в пространстве, потеря зрения. Симптомы ртутного отравления проявляются не сразу. Другим неприятным последствием отравления метилртутью является проникновение ртути в плаценту и накапливание ее в плоде, причем мать не испытывает при этом болезненных ощущений. Метилртуть оказывает тератогенное воздействие на человека. Ртуть относится к I классу опасности.

Металлическая ртуть опасна, если ее проглотить и вдыхать ее пары. При этом у человека появляется металлический вкус во рту, тошнота, рвота, колики в животе, зубы чернеют и начинают крошиться. Пролитая ртуть разлетается на капельки и, если это произошло, ртуть должна быть тщательно собрана.

Неорганические соединения ртути практически нелетучи, поэтому опасность представляет попадание ртути внутрь организма через рот и кожу. Соли ртути разъедают кожу и слизистые оболочки тела. Попадание солей ртути внутрь организма вызывает воспаление зева, затрудненное глотание, оцепенение, рвоту, боли в животе.

У взрослого человека при попадании внутрь около 350 мг ртути может наступить смерть.

Загрязнение ртутью может быть уменьшено в результате запрещения производства и применения ряда продуктов. Нет сомнения, что загрязнение ртутью всегда будет острой проблемой. Но с введением строгого контроля за отходами производства, содержащими ртуть, а также за пищевыми продуктами можно уменьшить опасность отравления ртутью.

Ежегодно в мире в результате воздействия атмосферных процессов мигрирует около 180 тыс. т свинца. При добыче и переработке свинцовых руд теряется более 20 % свинца. Даже на этих стадиях выделение свинца в среду обитания равно его количеству, попадающему в окружающую среду в результате воздействия на магматические породы атмосферных процессов.

Наиболее серьезным источником загрязнения среды обитания организмов свинцом являются выхлопы автомобильных двигателей. Антидетонатор тетраметил - или тетраэтилсвинеп - прибавляют к большинству бензинов, начиная с 1923 г., в количестве около 80 мг/л. При движении автомобиля от 25 до 75% этого свинца в зависимости от условий движения выбрасывается в атмосферу. Основная его масса осаждается на землю, но и в воздухе остается заметная ее часть.

Свинцовая пыль не только покрывает обочины шоссейных дорог и почву внутри и вокруг промышленных городов, она найдена и во льду Северной Гренландии, причем в 1756 г. содержание свинца во льду составляло 20 мкг/т, в 1860 г. уже 50 мкг/т, а в 1965 г. - 210 мкг/т.

Активными источниками загрязнения свинцом являются электростанции и бытовые печи, работающие на угле.

Источниками загрязнения свинцом в быту могут быть глиняная посуда, покрытая глазурью; свинец, содержащийся в красящих пигментах.

Свинец не является жизненно необходимым элементом. Он токсичен и относится к I классу опасности. Неорганические его соединения нарушают обмен веществ и являются ингибиторами ферментов (подобно большинству тяжелых металлов). Одним из наиболее коварных последствий действия неорганических соединений свинца считается его способность заменять кальций в костях и быть постоянным источником отравления в течение длительного времени. Биологический период полураспада свинца в костях - около 10 лет. Количество свинца, накопленного в костях, с возрастом увеличивается, и в 30-40 лет у лиц, по роду занятий не связанных с загрязнением свинца, составляет 80-200 мг.

Органические соединение свинца считаются ещё более токсичными, чем неорганические.

Кадмий, цинк и медь являются наиболее важными металлами при изучении проблемы загрязнений, так они широко распространены в мире и обладают токсичными свойствами. Кадмий и цинк (так же как свинец и ртуть) обнаружены в основном в сульфидных осадках. В результате атмосферных процессов эти элементы легко попадают в океаны.

Около 1 млн. кг кадмия попадает в атмосферу ежегодно в результате деятельности заводов по его выплавке, что составляет около 45 % общего загрязнения этим элементом. 52 % загрязнений попадают в результате сжигания или переработки изделий, содержащих кадмий. Кадмий обладает относительно высокой летучестью, поэтому он легко проникает в атмосферу. Источники загрязнения атмосферы цинком те же, что и кадмием.

Попадание кадмия в природные воды происходит в результате применения его в гальванических процессах и техники. Наиболее серьёзные источники загрязнения воды цинком – заводы по выплавке цинка и гальванические производства.

Потенциальным источником загрязнением кадмием являются удобрения. При этом кадмий внедряется в растения, употребляемые человеком в пищу, и в конце цепочки переходят в организм человека. Кадмий и цинк легко проникают в морскую воду и океан через сеть поверхностных и грунтовых вод.

Кадмий и цинк накапливаются в определённых органах животных (особенно в печени и в почках).

Цинк наименее токсичен из всех вышеперечисленных тяжёлых металлов. Тем не менее все элементы становятся токсичными, если попадаются в избытке; цинк не является исключением. Физиологическое воздействие цинка заключается в действии его как активатора ферментов. В больших количествах он вызывает рвоту, эта доза составляет примерно 150 мг для взрослого человека.

Кадмий намного токсичнее цинка. Он и его соединения относятся к I классу опасности. Он проникает в человеческий организм в течение продолжительного периода. Вдыхание воздуха в течение 8 часов при концентрации кадмия 5 мг/м3 может привести к смерти.

При хроническом отравлении кадмием в моче появляется белок, повышается кровяное давление.

При исследовании присутствия кадмия в продуктах питания было выявлено, что выделения человеческого организма редко содержат столько же кадмия, сколько было поглощено. Единого мирового мнения относительно приемлемого безопасного содержания кадмия в пище сейчас нет.

Одним их эффективных путей предотвращения поступления кадмия и цинка в виде загрязнений состоит в введении контроля за содержанием этих металлов в выбросах плавильных заводов и других промышленных предприятий.

Кроме металлов, рассмотренных ранее (ртуть, свинец, кадмий, цинк), имеются и другие токсичные элементы, попадание которых в среду обитания организмов в результате деятельность людей вызывает серьёзное беспокойство.

Сурьма присутствует вместе с мышьяком в рудах, содержащих сульфиды металлов. Мировое производство сурьмы составляет около 70 т в год. Сурьма является компонентом сплавов, используется в производстве спичек, в чистом виде применяется в полупроводниках.

Токсическое действие сурьмы подобно мышьяку. Большие количества сурьмы вызывают рвоту, при хроническом отравлении сурьмой наступает расстройство пищеварительного тракта, сопровождаемое рвотой и понижением температуры. Мышьяк в природе присутствует в виде сульфатов. Его содержание в свинцово-цинковых концентратах около 1 %. Вследствие летучести он легко попадает в атмосферу.

Самыми сильными источниками загрязнения этим металлом являются гербициды (химические вещества для борьбы с сорными растениями), фунгициды (вещества для борьбы с грибными болезнями растений) и инсектициды (вещества для борьбы с вредными насекомыми).

По токсическим свойствам мышьяк относится к накапливающимся ядам. По степени токсичности следует различать элементарный мышьяк и его соединения. Элементарный мышьяк сравнительно мало ядовит, но обладает тератогенными свойствами. Вредное воздействие на наследственный материал (мутагенность) оспаривается.

Соединения мышьяка медленно поглощаются через кожу, быстро всасываются через лёгкие и желудочно-кишечный тракт. Смертельная доза для человека – 0,15-0,3 г. Хроническое отравление вызывает нервные заболевания, слабость, онемение конечностей, зуд, потемнение кожи, атрофию костного мозга, изменения печени. Соединения мышьяка являются канцерогенными для человека. Мышьяк и его соединения относятся ко II классу опасности.

Кобальт не является широко применяемым. Так, например, его используют в сталелитейной промышленности, в производстве полимеров. При попадании внутрь больших количеств кобальт отрицательно влияет на содержание гемоглобина в крови человека и может вызвать заболевания крови. Предполагают, что кобальт вызывает базедову болезнь. Этот элемент опасен для жизни организмов ввиду его чрезвычайно высокой реакционной способности и относится к I классу опасности.

Медь обнаруживают в сульфидных осадках вместе со свинцом, камдием и цинком. Она присутствует в небольших количествах в цинковых концентратах и может переноситься на большие расстояния с воздухом и водой. Аномальное содержание меди обнаруживается в растениях с воздухом и водой. Аномальное содержание меди обнаруживается в растениях и почвах на расстоянии более 8 км от плавильного завода. Соли меди относятся ко II классу опасности. Токсические свойства меди изучены гораздо меньше, чем те же свойства других элементов. Поглощение больших количеств меди человеком приводит к болезни Вильсона, при этом избыток меди откладывается в мозговой ткани, коже, печени, поджелудочной железе.

Природное содержание марганца в растениях, животных и почвах очень высоко. Основные области производства марганца – производство легированных сталей, сплавов, электрических батарей и других химических источников тока. Присутствие марганца в воздухе сверх нормы (среднесуточная ПКД марганца в атмосфере – воздухе населённых мест – составляет 0,01 мг/м3) вредно влияет на организм человека, что выражается в прогрессирующем разрушении центральной нервной системы. Марганец относится ко II классу опасности.

Ионы металлов являются непременными компонентами природных водоемов. В зависимости от условий среды (pH, окислительно-восстановительный потенциал, наличие лигандов) они существуют в разных степенях окисления и входят в состав разнообразных неорганических и металлорганических соединений, которые могут быть истинно растворенными, коллоидно-дисперсными или входить в состав минеральных и органических взвесей. Истинно растворенные формы металлов, в свою очередь, весьма разнообразны, что связано с процессами гидролиза, гидролитической полимеризации (образованием полиядерных гидроксокомплексов) и комплексообразования с различными лигандами. Соответственно, как каталитические свойства металлов, так и доступность для водных микроорганизмов зависят от форм существования их в водной экосистеме. Многие металлы образуют довольно прочные комплексы с органикой; эти комплексы являются одной из важнейших форм миграции элементов в природных водах. Большинство органических комплексов образуются по хелатному циклу и являются устойчивыми. Комплексы, образуемые почвенными кислотами с солями железа, алюминия, титана, урана, ванадия, меди, молибдена и других тяжелых металлов, относительно хорошо растворимы в условиях нейтральной, слабокислой и слабощелочной сред. Поэтому металлорганические комплексы способны мигрировать в природных водах на весьма значительные расстояния. Особенно важно это для маломинерализованных и в первую очередь поверхностных вод, в которых образование других комплексов невозможно.

Тяжелые металлы и их соли - широко распространенные промышленные загрязнители. В водоемы они поступают из естественных источников (горных пород, поверхностных слоев почвы и подземных вод), со сточными водами многих промышленных предприятий и атмосферными осадками, которые загрязняются дымовыми выбросами.

Тяжелые металлы как микроэлементы постоянно встречаются в естественных водоемах и органах гидробионтов (см.таблицу). В зависимости от геохимических условий отмечаются широкие колебания их уровня.

Естественными источниками поступления свинца в поверхностные воды являются процессы растворения эндогенных (галенит) и экзогенных (англезит, церуссит и др.) минералов. Значительное повышение содержания свинца в окружающей среде (в т.ч. и в поверхностных водах) связано со сжиганием углей, применением тетраэтилсвинца в качестве антидетонатора в моторном топливе, с выносом в водные объекты со сточными водами рудообогатительных фабрик, некоторых металлургических заводов, химических производств, шахт и т.д.

Присутствие никеля в природных водах обусловлено составом пород, через которые проходит вода: он обнаруживается в местах месторождений сульфидных медно-никелевых руд и железо-никелевых руд. В воду попадает из почв и из растительных и животных организмов при их распаде. Повышенное по сравнению с другими типами водорослей содержание никеля обнаружено в сине-зеленых водорослях. Соединения никеля в водные объекты поступают также со сточными водами цехов никелирования, заводов синтетического каучука, никелевых обогатительных фабрик. Огромные выбросы никеля сопровождают сжигание ископаемого топлива. Концентрация его может понижаться в результате выпадения в осадок таких соединений, как цианиды, сульфиды, карбонаты или гидроксиды (при повышении значений рН), за счет потребления его водными организмами и процессов адсорбции. В поверхностных водах соединения никеля находятся в растворенном, взвешенном и коллоидном состоянии, количественное соотношение между которыми зависит от состава воды, температуры и значений рН. Сорбентами соединений никеля могут быть гидроксид железа, органические вещества, высокодисперсный карбонат кальция, глины.

В природные воды соединения кобальта попадают в результате процессов выщелачивания их из медноколчедановых и других руд, из почв при разложении организмов и растений, а также со сточными водами металлургических, металлообрабатывающих и химических заводов. Некоторые количества кобальта поступают из почв в результате разложения растительных и животных организмов. Соединения кобальта в природных водах находятся в растворенном и взвешенном состоянии, количественное соотношение между которыми определяется химическим составом воды, температурой и значениями рН.

В настоящее время существуют две основные группы аналитических методов для определения тяжелых металлов: электрохимические и спектрометрические методы. В последнее время с развитием микроэлектроники электрохимические методы получают новое развитие, тогда как ранее они постепенно вытеснялись спектрометрическими методами. Среди спектрометрических методов определения тяжелых металлов первое место занимает атомно-абсорбционная спектрометрия с разной атомизацией образцов: атомно-абсорбционная спектрометрия с пламенной атомизацией (FAAS) и атомно-абсорбционная спектрометрия с электротермической атомизацией в графитовой кювете (GF AAS). Основными способами определения нескольких элементов одновременно являются атомная эмиссионная спектрометрия с индукционно связанной плазмой (ICP-AES) и масс-спектрометрия с индукционно связанной плазмой (ICP-MS). За исключением ICP-MS остальные спектрометрические методы имеют слишком высокий предел обнаружения для определения тяжелых металлов в воде.

Определение содержание тяжёлых металлов в пробе производится путем перевода пробы в раствор – за счет химического растворения в подходящем растворителе (воде, водных растворах кислот, реже щелочей) или сплавления с подходящим флюсом из числа щелочей, оксидов, солей с последующим выщелачиванием водой. После этого соединение искомого металла переводится в осадок добавлением раствора соответствующего реагента – соли или щелочи, осадок отделяется, высушивается или прокаливается до постоянного веса, и содержание тяжёлых металлов определяется взвешиванием на аналитических весах и пересчетом на исходное содержание в пробе. При квалифицированном применении метод дает наиболее точные значения содержания тяжёлых металлов, но требует больших затрат времени.

Для определения содержания тяжёлых металлов электрохимическими методами пробу также необходимо перевести в водный раствор. После этого содержание тяжёлых металлов определяется различными электрохимическими методами – полярографическим (вольтамперометрическим), потенциометрическим, кулонометрическим, кондуктометрическим и другими, а также сочетанием некоторых из перечисленных методов с титрованием. В основу определения содержания тяжёлых металлов указанными методами положен анализ вольт-амперных характеристик, потенциалов ион-селективных электродов, интегрального заряда, необходимого для осаждения искомого металла на электроде электрохимической ячейки (катоде), электропроводности раствора и др., а также электрохимический контроль реакций нейтрализации и др. в растворах. С помощью этих методов можно определять тяжёлые металлы до 10-9 моль/л.

Почва является основной средой, в которую попадают тяжёлые металлы, в том числе из атмосферы и водной среды. Она же служит источником вторичного загрязнения приземного воздуха и вод, попадающих из неё в Мировой океан. Из почвы тяжёлые металлы усваиваются растениями, которые затем попадают в пищу более высокоорганизованным животным.

Продолжительность пребывания загрязняющих компонентов в почве гораздо выше, чем в других частях биосферы, что приводит к изменению состава и свойств почвы как динамической системы и в конечном итоге вызывает нарушение равновесия экологических процессов.

В естественных нормальных условиях все процессы, происходящие в почвах, находятся в равновесии. Изменение состава и свойств почвы может быть вызвано природными явлениями, но наиболее часто в нарушении равновесно состоянию почвы повинен человек:

  1. атмосферный перенос загрязняющих веществ в виде аэрозолей и пыли (тяжелые металлы, фтор, мышьяк, оксиды серы, азота и др.)
  2. сельскохозяйственные загрязнения (удобрения, пестициды)
  3. неземное загрязнение – отвалы крупнотоннажных производств и выбросы топливно-энергетических комплексов
  4. загрязнение нефтью и нефтепродуктами
  5. растительный опад. Токсичные элементы в любом состоянии поглощаются листьями или оседают на листовой поверхности. Затем, при опадании листьев, эти соединения попадают в почву.

Определение тяжелых металлов в первую очередь проводят в почвах, расположенных в зонах экологического бедствия, на сельскохозяйственных угодьях, прилегающих к загрязнителям почв тяжелыми металлами, и на полях, предназначенных для выращивания экологически чистой продукции.

В почвенных пробах определяют «подвижные» формы тяжелых металлов или их валовое содержание. Как правило, при необходимости контроля над техногенным загрязнением почв тяжелыми металлами, принято определять их валовое содержание. Однако валовое содержание не всегда может характеризовать степень опасности загрязнения почвы, поскольку почва способна связывать соединения металлов, переводя их в недоступные растениям соединения. Правильнее говорить о роли «подвижных» и «доступных» для растений форм. Определение содержания подвижных форм металлов желательно проводить в случае высоких их валовых количеств в почве, а также, когда необходимо характеризовать миграцию металлов-загрязнителей из почвы в растения.

Если почвы загрязнены тяжелыми металлами и радионуклидами, то очистить их практически невозможно. Пока известен единственный путь: засеять такие почвы быстрорастущими культурами, дающими большую фитомассу. Такие культуры, извлекающие тяжелые металлы, после созревания подлежат уничтожению. На восстановление загрязненных почв требуются десятки лет.

К тяжелым металлам, которые обладают высокой токсичностью можно отнести свинец, ртуть, никель, медь, кадмий, цинк, олово, марганец, хром, мышьяк, алюминий, железо. Эти вещества широко используются в производстве, вследствие чего в огромных количествах накапливаются в окружающей среде и легко попадают в организм человека как с продуктами питания и водой, так и при вдыхании воздуха.

Когда содержание тяжелых металлов в организме превышает предельно-допустимые концентрации, начинается их отрицательное воздействие на человека. Помимо прямых последствий в виде отравления, возникают и косвенные – ионы тяжелых металлов засоряют каналы почек и печени, чем снижают способность этих органов к фильтрации. Вследствие этого в организме накапливаются токсины и продукты жизнедеятельности клеток, что приводит к общему ухудшению здоровья человека.

Вся опасность воздействия тяжелых металлов заключается в том, что они остаются в организме человека навсегда. Вывести их можно лишь употребляя белки, содержащиеся в молоке и белых грибах, а также пектин, который можно найти в мармеладе и фруктово-ягодном желе. Очень важным является то, что бы все продукты были получены в экологически чистых районах и не содержали вредных веществ.

Тяжелые металлы - биохимически активные элементы, входящие в круговорот органических веществ и воздействующие преимущественно на живые организмы. К тяжелым металлам относятся такие элементы, как свинец, медь, цинк, кадмий, никель, кобальт и ряд других.

Миграция тяжёлых металлов в почвах зависит, прежде всего, от щёлочно-кислотных и окислительно-восстановительных условий, определяющих разнообразие почвенно-геохимических обстановок. Важную роль в миграции тяжелых металлов в профиле почв играют геохимические барьеры, в одних случаях усиливающие, в других ослабляющие (в силу способности к консервации) устойчивость почв к загрязнению тяжелыми металлами. На каждом из геохимических барьеров задерживается определённая группа химических элементов, обладающая сходными геохимическими свойствами.

Специфика основных почвообразовательных процессов и тип водного режима обусловливают характер распределения тяжелых металлов в почвах: накопление, консервацию или вынос. Выделены группы почв с накоплением тяжелых металлов в разных частях почвенного профиля: на поверхности, в верхней, в средней части, с двумя максимумами. Кроме того, выделены почвы в зоне , которым присуща концентрация тяжелых металлов за счёт внутрипрофильной криогенной консервации. Особую группу образуют почвы, где в условиях промывного и периодически промывного режимов происходит вынос тяжелых металлов из профиля. Внутрипрофильное распределение тяжелых металлов имеет большое значение для оценки загрязнения почв и прогноза интенсивности аккумуляции в них загрязнителей. Характеристика внутрипрофильного распределения тяжелых металлов дополнена группировкой почв по интенсивности их вовлечения в биологический круговорот. Всего выделено три градации: высокая, умеренная и слабая.

Своеобразна геохимическая обстановка миграции тяжелых металлов в почвах речных пойм, где при повышенной обводнённости значительно возрастает подвижность химических элементов и соединений. Специфика геохимических процессов здесь обусловлена, прежде всего, резко выраженной сезонностью смены окислительно-восстановительных условий. Это связано с особенностями гидрологического режима рек: продолжительностью весенних, наличием или отсутствием осенних паводков, характером меженного периода. Длительность затопления паводковыми водами пойменных террас определяет преобладание либо окислительных (кратковременное затопление поймы), либо окислительно-восстановительных (долгопоёмный режим) условий.

Наибольшим техногенным воздействиям площадного характера подвергаются пахотные почвы. Основной источник загрязнения, с которым в пахотные почвы поступает до 50 % общего количества тяжелых металлов, - фосфорные удобрения. Для определения степени потенциального загрязнения пахотных почв проведен сопряженный анализ свойств почв и свойств загрязнителя: учитывались содержание, состав гумуса и гранулометрический состав почв, а также щелочно-кислотные условия. Данные по концентрации тяжелых металлов в фосфоритах месторождений разного генезиса позволили рассчитать их среднее содержание с учетом приблизительных доз внесения удобрений в пахотные почвы разных районов. Оценка свойств почв соотнесена с величинами агрогенной нагрузки. Совокупная интегральная оценка легла в основу выделения степени потенциального загрязнения почв тяжелыми металлами.

Наиболее опасны по степени загрязнения тяжелыми металлами почвы многогумусовые, глинисто-суглинистые с щелочной реакцией среды: темно-серые лесные, и темно-каштановые - почвы, обладающие высокой аккумулятивной способностью. Повышенной опасностью загрязнения почв тяжелыми металлами характеризуются также Московская и Брянская области. обстановка с дерново-подзолистыми почвами не способствует здесь аккумуляции тяжелых металлов, однако в этих областях техногенная нагрузка велика и почвы не успевают «самоочищаться».

Эколого-токсикологическая оценка почв на содержание тяжелых металлов показала, что 1,7 % земель сельскохозяйственного назначения загрязнено веществами I класса опасности (высокоопасными) и 3,8 % - II класса опасности (умеренно опасными). Загрязнение почв с содержанием тяжелых металльов и мышьяка выше установленных норм выявлено в Республике Бурятия, Республике Дагестан, Республике , Республике Мордовия, Республике Тыва, в Красноярском и Приморском краях, в Ивановской, Иркутской, Кемеровской, Костромской, Мурманской, Новгородской, Оренбургской, Сахалинской, Читинской областях.

Локальное загрязнение почв тяжелыми металлами связано, прежде всего, с крупными городами и . Оценка опасности загрязнения почв комплексом тяжелых металлов проводилась по суммарному показателю Zc.

Загрязнение почвы тяжелыми металлами

К тяжелым металлам (ТМ) относятся около 40 металлов с атомными массами свыше 50 и плотностью более 5 г/см 3 , хотя в число ТМ входит и легкий бериллий. Оба признака достаточно условны и перечни ТМ по ним не совпадают.

По токсичности и распространению в окружающей среде можно выделить приоритетную группу ТМ: Pb, Hg, Cd, As, Bi, Sn, V, Sb. Несколько меньшее значение имеют: Сг, Cu, Zn, Mn, Ni, Co, Mo.

Все ТМ в той или иной степени ядовиты, хотя некоторые из них (Fe, Cu, Co, Zn, Mn) входят в состав биомолекул и витаминов.

Тяжелые металлы антропогенного происхождения попадают из воздуха в почву в виде твердых или жидких осадков. Лесные массивы с их развитой контактирующей поверхностью особенно интенсивно задерживают тяжелые металлы.

В общем, опасность загрязнения тяжелыми металлами из воздуха существует в равной степени для любых почв. Тяжелые металлы негативно влияют на почвенные процессы, плодородие почв и качество сельскохозяйственной продукции. Восстановление биологической продуктивности почв, загрязненных тяжелыми металлами – одна из наиболее сложных проблем охраны биоценозов.

Важной особенностью металлов является устойчивость загрязнения. Сам элемент разрушиться не может, переходя из одного соединения в другое или перемещаясь между жидкой и твердой фазами. Возможны окислительно-восстановительные переходы металлов с переменной валентностью.

Опасные для растений концентрации ТМ зависят от генетического типа почвы. Основными показателями, влияющими на накопление ТМ в почвах, являются кислотно-основные свойства и содержание гумуса .

Учесть все разнообразие почвенно-геохимических условий при установлении ПДК тяжелых металлов практически невозможно. В настоящее время для ряда тяжелых металлов установлены ОДК их содержания в почвах, которые используются в качестве ПДК (приложение 3).

При превышении допустимых значений содержания ТМ в почвах эти элементы накапливаются в растениях в количествах, превышающих их ПДК в кормах и продуктах питания.

В загрязненных почвах глубина проникновения ТМ обычно не превышает 20 см, однако при сильном загрязнении ТМ могут проникать на глубину до 1,5м. Среди всех тяжелых металлов цинк и ртуть обладают наибольшей миграционной способностью и распределяются равномерно в слое почвы на глубине 0…20 см, в то время как свинец накапливается только в поверхностном слое (0…2,5 см). Промежуточное положение между этими металлами занимает кадмий.

У свинца четко выражена тенденция к накоплению в почве, т.к. его ионы малоподвижны даже при низких значениях рН. Для различных видов почв скорость вымывания свинца колеблется от 4г до 30 г/га в год. В то же время количество вносимого свинца может составлять в различных районах 40…530 г/га в год. Попадающий при химическом загрязнении в почву свинец сравнительно легко образует гидроксид в нейтральной или щелочной среде. Если почва содержит растворимые фосфаты, тогда гидроксид свинца переходит в труднорастворимые фосфаты.

Значительные загрязнения почвы свинцом можно обнаружить вдоль крупных автомагистралей, вблизи предприятий цветной металлургии, вблизи установок по сжиганию отходов, где отсутствует очистка отходящих газов. Проводимая постепенная замена моторного топлива, содержащего тетраэтилсвинец, топливом без свинца дает положительные результаты: поступление свинца в почву резко снизилось и в будущем этот источник загрязнения в значительной степени будет ликвидирован.

Опасность попадания свинца с частицами почв в организм ребенка является одним из определяющих факторов при оценке опасности загрязнения почв населенных пунктов. Фоновые концентрации свинца в почвах разного типа колеблются в пределах 10…70 мг/кг. По мнению американских исследователей, содержание свинца в городских почвах не должно превышать 100 мг/кг – при этом обеспечивается защита организма ребенка от избыточного поступления свинца через руки и загрязненные игрушки. В реальных же условиях содержание свинца в почве значительно превышает этот уровень. В большинстве городов содержание свинца в почве варьируется в пределах 30…150 мг/кг при средней величине около 100 мг/кг. Наиболее высокое содержание свинца – от 100 до 1000 мг/кг – обнаруживается в почве городов, в которых расположены металлургические и аккумуляторные предприятия (Алчевск, Запорожье, Днепродзержинск, Днепропетровск, Донецк, Мариуполь, Кривой Рог).

Растения более устойчивы по отношению к свинцу, чем люди и животные, поэтому необходимо тщательно следить за содержанием свинца в продуктах питания растительного происхождения и в фураже.

У животных на пастбищах первые признаки отравления свинцом наблюдаются при суточной дозе около 50 мг/кг сухого сена (на сильно загрязненных свинцом почвах получаемое сено может содержать свинца 6,5 г/кг сухого сена!). Для людей при употреблении салата ПДК составляет 7,5 мг свинца на 1 кг листьев.

В отличие от свинца кадмий попадает в почву в значительно меньших количествах: около 3…35 г/га в год. Кадмий заносится в почву из воздуха (около 3 г/га в год) либо с фосфорсодержащими удобрениями (35…260 г/т). В некоторых случаях источником загрязнения могут быть предприятия, связанные с переработкой кадмия. В кислых почвах со значением рН<6 ионы кадмия весьма подвижны и накопления металла не наблюдается. При значениях рН>6 кадмий отлагается вместе с гидроксидами железа, марганца и алюминия, при этом происходит потеря протонов группами ОН. Такой процесс при понижении рН становится обратимым, и кадмий, а также другие ТМ, могут необратимо медленно диффундировать в кристаллическую решетку оксидов и глин.

Соединения кадмия с гуминовыми кислотами значительно менее устойчивы, чем аналогичные соединения свинца. Соответственно накопление кадмия в гумусе протекает в значительно меньшей степени, чем накопление свинца.

В качестве специфичного соединения кадмия в почве можно назвать сульфид кадмия, который образуется из сульфатов при благоприятных условиях восстановления. Карбонат кадмия образуется только при значениях рН >8, таким образом, предпосылки для его осуществления крайне незначительны.

В последнее время большое внимание стали уделять тому обстоятельству, что в биологическом иле, который вносится в почву для ее улучшения, обнаруживается повышенная концентрация кадмия. Около 90% кадмия, имеющегося в сточных водах, переходит в биологический ил: 30% при первоначальном осаждении и 60…70% при его дальнейшей обработке.



Удалить кадмий из ила практически невозможно. Однако, более тщательный контроль за содержанием кадмия в сточных водах позволяет снизить его содержание в иле до значений ниже 10 мг/кг сухого вещества. Поэтому практика использования ила очистных сооружений в качестве удобрения весьма различается в разных странах.

Основными параметрами, определяющими содержания кадмия в почвенных растворах или его сорбцию почвенными минералами и органическими компонентами, являются рН и вид почвы, а также присутствие других элементов, например кальция.

В почвенных растворах концентрация кадмия может составлять 0,1…1мкг/л. В верхних слоях почвы, глубиной до 25см, в зависимости от концентрации и типа почвы элемент может удерживаться в течение 25…50 лет, а в отдельных случаях даже 200…800 лет.

Растения усваивают из минеральных веществ почвы не только жизненно важные для них элементы, но и такие, физиологическое действие которых либо неизвестно, либо безразлично для растения. Содержание кадмия в растении полностью определяется его физическими и морфологическими свойствами – его генотипом.

Коэффициент переноса тяжелых металлов из почвы в растения приведены ниже:

Pb 0,01…0,1 Ni 0,1…1,0 Zn 1…10

Cr 0,01…0,1 Cu 0,1…1,0 Cd 1…10

Кадмий склонен к активному биоконцентрированию, что приводит в довольно короткое время к его накоплению в избыточных биодоступных концентрациях. Поэтому кадмий, по сравнению с другими ТМ, является наиболее сильным токсикантом почв (Cd > Ni > Cu > Zn).

Между отдельными видами растений наблюдаются значительные различия. Если шпинат (300 млрд -1), кочанный салат (42 млрд -1), петрушку (31 млрд -1), а также сельдерей, кресс-салат, свеклу и лук-резанец можно отнести к растениям, „обогащенным” кадмием, то в бобовых, томатах, косточковых и семечковых фруктах содержится относительно мало кадмия (10…20 млрд -1). Все концентрации указаны относительно массы свежего растения (или плода). Из зерновых культур зерно пшеницы сильнее загрязнено кадмием, чем зерно ржи (50 и 25 млрд -1), однако 80…90% поступившего из корней кадмия остается в корнях и соломе.

Поглощение кадмия растениями из почвы (перенос почва/растение) зависит не только от вида растения, но и от содержания кадмия в почве. При высокой концентрации кадмия в почве (более 40 мг/кг) на первом месте стоит его поглощение корнями; при меньшем содержании наибольшее поглощение происходит из воздуха через молодые побеги. Длительность роста также влияет на обогащение кадмием: чем короче вегетация, тем меньше перенос из почвы в растение. Это является причиной того, что накопление кадмия в растениях из удобрений оказывается меньшим, чем его разбавление за счет ускорения роста растения, вызванного действием этих же удобрений.

Если в растениях достигается высокая концентрация кадмия, то это может привести к нарушениям нормального роста растений. Урожай бобов и моркови, например, снижается на 50%, если содержание кадмия в субстрате составляет 250 млн -1 . У моркови листья увядают при концентрации кадмия 50 мг/кг субстрата. У бобов при этой концентрации на листьях выступают ржавые (резко очерченные) пятна. У овса на концах листьев можно наблюдать хлороз (пониженное содержание хлорофилла).

По сравнению с растениями многие виды грибов накапливают большое количество кадмия. К грибам с высоким содержанием кадмия относят некоторые разновидности шампиньонов, в частности овечий шампиньон, в то время как луговой и культурный шампиньоны содержат относительно мало кадмия. При исследовании различных частей грибов было установлено, что пластинки в них содержат больше кадмия, чем сама шляпка, а меньше всего кадмия в ножке гриба. Как показывают опыты по выращиванию шампиньонов, двух-трехкратное увеличение содержания кадмия в грибах обнаруживается в том случае, если его концентрация в субстрате увеличивается в 10 раз.

Дождевые черви обладают способностью быстрого накопления кадмия из почвы, вследствие чего они оказались пригодными для биоиндикации остатков кадмия в почве.

Подвижность ионов меди еще выше, чем подвижность ионов кадмия. Это создает более благоприятные условия для усвоения меди растениями. Благодаря своей высокой подвижности медь легче вымывается из почвы, чем свинец. Растворимость соединений меди в почве заметно увеличивается при значениях рН< 5. Хотя медь в следовых концентрациях считается необходимой для жизнедеятельности, у растений токсические эффекты проявляются при содержании 20 мг на кг сухого вещества.

Известно альгицидное действие меди. Медь оказывает токсическое действие и на микроорганизмы, при этом достаточна концентрация около 0,1мг/л. Подвижность ионов меди в гумусном слое ниже, чем в расположенном ниже минеральном слое.

К сравнительно подвижным элементам в почве относится цинк. Цинк принадлежит к числу распространенных в технике и быту металлов, поэтому ежегодное внесение его в почву достаточно велико: оно составляет 100…2700г на гектар. Особенно загрязнена почва вблизи предприятий, перерабатывающих цинксодержащие руды.

Растворимость цинка в почве начинает увеличиваться при значениях рН<6. При более высоких значениях рН и в присутствии фосфатов усвояемость цинка растениями значительно понижается. Для сохранения цинка в почве важнейшую роль играют процессы адсорбции и десорбции, определяемые значением рН, в глинах и различных оксидах. В лесных гумусовых почвах цинк не накапливается; например, он быстро вымывается благодаря постоянному естественному поддержанию кислой среды.

Для растений токсический эффект создается при содержании около 200мг цинка на кг сухого материала. Организм человека достаточно устойчив по отношению к цинку и опасность отравления при использовании сельскохозяйственных продуктов, содержащих цинк, невелика. Тем не менее, загрязнение почвы цинком представляет серьезную экологическую проблему, так как при этом страдают многие виды растений. При значениях рН>6 происходит накопление цинка в почве в больших количествах благодаря взаимодействию с глинами.

Различные соединения железа играют существенную роль в почвенных процессах в связи со способностью элемента менять степень окисления с образованием соединений различной растворимости, окисленности, подвижности. Железо в очень высокой степени вовлечено в антропогенную деятельность, оно отличается настолько высокой технофильностью, что нередко говорят о современном «ожелезнении» биосферы. В техносферу в настоящее время вовлечено более 10 млрд т железа, 60% которого рассеяно в пространстве.

Аэрация восстановленных горизонтов почвы, различных отвалов, терриконов приводит к реакциям окисления; при этом присутствующие в таких материалах сульфиды железа преобразуются в сульфаты железа с одновременным образованием серной кислоты:

4FeS 2 + 6H 2 O + 15O 2 = 4FeSO 4 (OH) + 4H 2 SO 4

В таких средах значения рН могут снижаться до 2,5…3,0. Серная кислота разрушает карбонаты с образованием гипса, сульфатов магния и натрия. Периодическая смена окислительно-восстановительных условий среды приводит к декарбонизации почв, дальнейшему развитию устойчивой кислой среды с рН 4…2,5, причем соединения железа и марганца накапливаются в поверхностных горизонтах.

Гидроксиды и оксиды железа и марганца при образовании осадков легко захватывают и связывают никель, кобальт, медь, хром, ванадий, мышьяк.

Основные источники загрязнения почвы никелем – предприятия металлургии, машиностроения, химической промышленности, сжигание каменного угля и мазута на ТЭЦ и котельных. Антропогенное загрязнение никелем наблюдается на расстоянии до 80…100 км и более от источника выброса.

Подвижность никеля в почве зависит от концентрации органического вещества (гумусовых кислот), рН и потенциала среды. Миграция никеля носит сложный характер. С одной стороны, никель поступает из почвы в виде почвенного раствора в растения и поверхностные воды, с другой – его количество в почве пополняется вследствие разрушения почвенных минералов, отмирания растений и микроорганизмов, а также за счет его внесения в почву с атмосферными осадками и пылью, с минеральными удобрениями.

Основной источник загрязнения почвы хромом – сжигание топлива и отходы гальванических производств, а также отвалы шлаков при производстве феррохрома, хромовых сталей; некоторые фосфорные удобрения содержат хрома до 10 2 …10 4 мг/кг.

Поскольку Cr +3 в кислой среде инертен (выпадая почти полностью в осадок при рН 5,5), его соединения в почве весьма стабильны. Напротив, Cr +6 крайне нестабилен и легко мобилизуется в кислых и щелочных почвах. Снижение подвижности хрома в почвах может приводить к его дефициту в растениях. Хром входит в состав хлорофилла, придающего листьям растений зеленый цвет, и обеспечивает усвоение растениями из воздуха углекислоты.

Установлено, что известкование, а также применение органических веществ и соединений фосфора существенно снижает токсичность хроматов в загрязненных почвах. При загрязнении почв шестивалентным хромом подкисление, а затем применение восстанавливающих агентов (например, серы) используется для восстановления его до Cr +3 , после чего проводится известкование для осаждения соединений Cr +3 .

Высокая концентрация хрома в почве городов (9…85 мг/кг) связана с высоким содержанием его в дождевых и поверхностных водах.

Накопление или вымывание токсичных элементов, попавших в почву, в значительной степени зависит от содержания гумуса, который связывает и удерживает ряд токсичных металлов, но в первую очередь – медь, цинк, марганец, стронций, селен, кобальт, никель (в гумусе количество этих элементов в сотни-тысячи раз больше, чем в минеральной составляющей почв).

Природные процессы (солнечная радиация, климат, выветривание, миграция, разложение, вымывание) способствуют самоочищению почв, основной характеристикой которого является его продолжительность. Продолжительность самоочищения – это время, в течение которого происходит уменьшение на 96% массовой доли загрязняющего вещества от начального значения или до его фонового значения. Для самоочищения почв, а также их восстановления требуется много времени, которое зависит от характера загрязнения и природных условий. Процесс самоочищения почв длится от нескольких дней до нескольких лет, а процесс восстановления нарушенных земель – сотни лет.

Способность почв к самоочищению от тяжелых металлов невелика. Из довольно богатых органическим веществом лесных почв умеренного пояса с поверхностным стоком удаляется только примерно 5% поступающего из атмосферы свинца и около 30% цинка и меди. Остальная часть выпавших ТМ практически полностью задерживается в поверхностном слое почвы, поскольку миграция вниз по почвенному профилю происходит крайне медленно: со скоростью 0,1…0,4 см/год. Поэтому время полувыведения свинца в зависимости от типа почв может составить от 150 до 400 лет, а для цинка и кадмия – 100…200 лет.

Сельскохозяйственные почвы несколько быстрее очищаются от избыточных количеств некоторых ТМ в силу более интенсивной миграции за счет поверхностного и внутрипочвенного стока, а также из-за того, что заметная часть микроэлементов через корневую систему переходит в зеленую биомассу и уносится с урожаем.

Следует отметить, что загрязнение почв некоторыми токсичными веществами существенно тормозит процесс самоочищения почв от бактерий группы кишечной палочки. Так, при содержании 3,4-бензпирена 100 мкг/кг почвы численность этих бактерий в почве в 2,5 раза выше, чем в контроле, а при концентрации более 100 мкг/кг и до 100 мг/кг – их значительно больше.

Исследования почв в районе металлургических центров, проведенные Институтом почвоведения и агрохимии, свидетельствуют, что в радиусе 10км содержание свинца в 10 раз превышает фоновое значение. Наибольшее превышение отмечено в г.г.Днепропетровске, Запорожье и Мариуполе. Содержание кадмия в 10…100 раз выше фонового уровня отмечено вокруг Донецка, Запорожье, Харькова, Лисичанска; хрома – вокруг Донецка, Запорожье, Кривого Рога, Никополя; железа, никеля – вокруг Кривого Рога; марганца – в районе Никополя. В общем, по данным того же института, около 20% территории Украины загрязнено тяжелыми металлами.

Во время оценки степени загрязнения тяжелыми металлами используют данные о ПДК и их фоновом содержании в почвах основных природно-климатических зон Украины. В случае установления в почве повышенного содержания нескольких металлов загрязнение оценивают по металлу, содержание которого превышает норматив в наибольшей степени.

Рекомендуем почитать

Наверх