Куда течёт вода из унитаза, или Как очищаются бытовые сточные воды. Канализационные очистные сооружения ОС, КОС, БОС

Техника для сада 13.10.2019
Техника для сада


НАЗНАЧЕНИЕ, ВИДЫ ОЧИСТНЫХ СООРУЖЕНИЙ И МЕТОДЫ ОЧИСТКИ

Человек в процессе своей жизнедеятельности, для различных своих нужд использует воду. При ее прямом использовании она загрязняется, изменяется ее состав и физические свойства. Для санитарного благополучия людей данные стоки отводятся с населенных пунктов. Для того, чтобы не загрязнять окружающую среду, они подвергаются обработке на специальных комплексах.



Рис.7 Очистные сооружения ОАО «Татспиртпром» Усадский спиртзавод Республика Татарстан 1500 м3/сут

Этапы очистки:

  • механическая;
  • биологическая;
  • глубокая;
  • УФ-обеззараживание стоков и дальнейший выпуск в водоем, обезвоживание и утилизация осадков.

Производство пива, соков, квасов, различных напитков






Этапы очистки:

  • механическая;
  • физико - химическая;
  • биологическая и дальнейший выпуск в горколлектор;
  • сбор, обезвоживание и утилизация осадков.

Так же по этой теме читайте статьи

ОЧИСТНЫЕ СООРУЖЕНИЯ ЛИВНЕВЫХ СТОКОВ

ЛОС - это комбинированная емкость, или несколько отдельных емкостей для очистки ливневых и талых стоков. Качественный состав ливневых стоков - это в основном нефтепродукты и взвешенные вещества от промышленных производств и селитебных территорий. Они, согласно законодательству, должны проходить очистку до НДС.

Устройство ливневых очистных сооружений с каждым годом модернизируется, в связи с увеличением количества автомобилей, торговых центров, промплощадок.

Стандартный набор оборудования очистных сооружений ливневых стоков - это цепочка из распределительного колодца, пескоотделителя, бензомаслоотделителя, сорбционного фильтра и колодца отбора проб.

Многие компании на данный период применяют комбинированную систему очистки сточных вод. Однокорпусные ЛОС - это емкость, разделенная внутри перегородками на секции пескоуловителя, нефтемаслоуловителя и сорбционного фильтра. При этом цепочка выглядит следующим образом: распредколодец, комбинированный песконефтемаслоуловитель и колодец отбора проб. Разница в занимаемой площади оборудования, в количестве емкостей и, соответственно, в цене. Отдельно стоящие модули выглядят громоздко и получаются дороже однокорпусных.

Принцип работы состоит в следующем:



После выпадения осадков или таяния снега, вода, содержащая взвеси, нефтепродукты и другие загрязнения с промплощадок, или селитебной (жилой) территории поступает к решеткам дождевых колодцев и далее по коллекторам собирается в усредняющем резервуаре, если представлены ЛОС накопительного типа, или сразу черед распределительный колодец подаются на очистные сооружения ливневой канализации.

Распределительный колодец служит для того, чтобы самый первый грязный сток направлять на очистку, а уже по прошествии времени, когда на поверхности уже не будет загрязнений, условно - чистый сток по байпасной линии будет отводиться на сброс в канализацию или в водоем. Ливневые стоки проходят первый этап очистки в песколоуловителе, в котором происходит гравитационное осаждение нерастворимых веществ и частичное всплытие свободноплавающих нефтепродуктов. Затем через перегородку перетекают в нефтемаслоуловитель, в котором установлены тонкослойные модули, благодаря которым по наклонной поверхности взвешенные вещества оседают на дно, а большая часть нефтяных частиц поднимается наверх. Последним этапом очистки служит сорбционный фильтр с активированным углем. За счет сорбционного поглощения улавливается оставшаяся часть нефтяных частиц и мелких механических примесей.

Данная цепочка позволяет обеспечить высокую степень очистки и сбрасывать очищенную воду в водоем.

Например, по нефтепродуктам до 0,05 мг/л, а по взвешенным веществам до 3 мг/л. Эти показатели полностью соответствуют действующим нормативам, регламентирующим сброс очищенных вод в рыбохозяйственные водоемы.

КАЛАЛИЗАЦИОННЫЕ ОЧИСТНЫЕ СООРУЖЕНИЯ КОС ДЛЯ ПОСЕЛКА

В настоящее время вблизи мегаполисов строится большое количество автономных поселков, которые позволяют жить в комфортных условиях «на природе», не отрываясь от привычной городской жизни. Такие населенные пункты, как правило, имеют отдельную систему водоснабжения и канализации, так как нет возможности подключиться к центральной канализации.Компактность и мобильность таких станций очистки позволяет избежать огромных затрат на монтаж и строительство.

Однако, несмотря на малые размеры, в модулях располагается все необходимое оборудование для полной биологической очистки и обеззараживания стоков с достижением показателей качества очищенных сточных вод, соответствующих требованиям СанПиН 2.1.5.980-00. Несомненным плюсом является полная заводская готовность блок-контейнеров, простота их установки и дальнейшей эксплуатации.

ОЧИСТНЫЕ СООРУЖЕНИЯ ДЛЯ ГОРОДА

Крупный город - крупные канализационные очистные сооружения КОС. Логично, ведь расход сточных вод, поступающих на обработку, напрямую зависит от количества жителей: норма водоотведения равна норме водопотребления. А для большого объема жидкости нужны соответствующие емкости и резервуары. Этот факт формирует интерес к устройству и функционированию таких КОС.

При проектировании канализационных сетей населенного пункта учитывается нагрузка на трубопроводы, которые подбирают из расчета на пропуск требуемого количества стока. Чтобы не закапывать трубы очень большого диаметра, по которым загрязненная жидкость переправлялась бы на необъятные площади очистных сооружений, в больших городах строятся несколько ОС.

Таким образом, мегаполис делится на несколько «городов» (районов), а уже для каждого из них проектируется станция очистки.

Наглядным примером являются очистные сооружения в столице России, среди которых есть Люберецкие производительностью 3 млн. м 3 /сут - крупнейшие в Европе. Основной блок - старые модернизированные ОС, обеспечивающие половину мощности станции, два других блока - 1 млн. м 3 /сут и 500тыс. м 3 /сут.

Особенностями устройства таких станций очистки сточных вод являются увеличенные размеры сооружений по сравнению с ОС других городов: отстойники диаметром 54 метра, а каналы сопоставимы с небольшими реками.

С точки зрения технологии все стандартно: механическая очистка, отстаивание, биологическая очистка, вторичное отстаивание, обеззараживание. Вы можете прочитать на нашем сайте.

Основная особенность лишь в том, какой вид имеют сооружения для данных этапов обработки. Например, Москва, как известно, строилась не сразу, но большим источником для очистных сооружений она была всегда. Строились железобетонные сооружения, которые сегодня претерпели несколько реконструкций и модернизаций. Из-за снижения количества разбавляемой чистой воды часть ранее построенных сооружений законсервирована или используется в других целях. В этом также заключается особенность устройства ОС: старые каналы песколовок становятся промежуточным резервуаром, коридор аэротенка преобразуется и немного по-другому работает.

Главное, что существенно отличает ОС крупных городов от их меньших братьев, - это закрытые конструкции.

Иными словами, на всех построенных в 60-70-е годы сооружениях монтируется крыша. Это делается для того, чтобы устранить запах, который может распространяться до новостроек, которые, в свою очередь, возникли по причине географического расширения мегаполиса. И если раньше станция очистки сточных вод была значительно удалена от города, то сейчас располагается вблизи новых жилых комплексов.

По той же причине, на подобных ОС устанавливаются распрыскиватели, которые выпускают специальные вещества, нейтрализующие запахи стоков.

Любые очистные сооружения - это сложная взаимосвязь процессов. Конечно, со своей задачей они справятся на 100%, но осложнять их работу не нужно. Отходы - в мусорку, сантехника - по назначению.

→ Решения комплексов очистных сооружений


Примеры очистных сооружений крупнейших городов


Прежде чем рассматривать конкретные примеры очистных сооружений, необходимо определить, что означают понятия крупнейший, крупный, средний и малый город.

С определённой долей условности можно классифицировать города по числу жителей или с учётом профессиональной специализации по количеству сточных вод, поступающих на очистные сооружения. Так для крупнейших городов с населением более 1 млн. чел количество сточных вод превышает 0,4 млн. м3/сут, для крупных городов с населением от 100 тыс. до 1 млн. чел количество сточных вод составляет 25-400 тыс. м3/сут. В средних городах проживает 50-100 тыс. человек, а количество сточных вод 10-25 тыс. м3/сут. В малых городах и посёлках городского типа число жителей от 3-50 тыс. человек (с возможной градацией 3-10 тыс. чел; 10-20 тыс. чел; 25-50 тыс. чел.). При этом расчётное количество сточных вод изменяется в достаточно широком диапазоне: от 0,5 до 10-15 тыс. м3/сут.

Доля малых городов в Российской Федерации составляет 90% от общего числа городов. Необходимо также учитывать, что система водоот-ведения в городах может быть децентрализованной и иметь несколько очистных сооружений.

Рассмотрим наиболее показательные примеры крупных очистных сооружений в городах Российской Федерации: Москва, Санкт-Петербург и Нижний Новгород.

Курьяновская станция аэрации (КСА) г. Москва. Курьяновская станция аэрация – старейшая и крупнейшая станция аэрации в России, на её примере можно достаточно наглядно изучить историю развития техники и технологии очистки сточных вод в нашей стране.

Площадь, занимаемая станцией, составляет 380 га; проектная производительность – 3,125 млн. м3 в сутки; из них почти 2/3 составляют хозяйственно-бытовые и 1/3 промышленные сточные воды. В составе станции имеются четыре самостоятельных блока сооружений.

Развитие Курьяновской станции аэрации началось в 1950 г. после введения в эксплуатацию комплекса сооружений пропускной способностью 250 тыс. м3 в сутки. На этом блоке была заложена промышленно-экспериментальная технологическая и конструктивная база, которая явилась основанием для разработок практически всех станций аэрации в стране, а также была использована при расширении самой Курьяновской станции.

На рис. 19.3 и 19.4 приведены технологические схемы очистки сточных вод и обработки осадков Курьяновской станции аэрации.

Технология очистки сточных вод включает следующие основные сооружения: решетки, песколовки, первичные отстойники, аэротенки, вторичные отстойники, сооружения для обеззараживания сточных вод. Часть биологически очищенных сточных вод проходит доочистку на зернистых фильтрах.

Рис. 19.3. Технологическая схема очистки сточных вод Курьяновской станции аэрации:
1 – решётка; 2 – песколовка; 3 – первичный отстойник; 4 – аэротенк; 5 – вторичный отстойник; 6 – плоское щелевое сито; 7 – скорый фильтр; 8 – регенератор; 9 – главное машинное здание ЦБО; 10 – илоуплотнитель; 11 – гравитационный ленточный сгуститель; 12 – узел приготовления раствора флокулянта; 13 – сооружения промводопровода; 14 – цех обработки песка; 75 – поступающая сточная вода; 16 – промывная вода со скорых фильтров; 17 – песковая пульпа; 18 – вода из цеха песка; 19 – плавающие вещества; 20 – воздух; 21 – осадок первичных отстойников на сооружения по обработке осадка; 22 -циркуляционный активный ил; 23 – фильтрат; 24 – обеззараженная техническая вода; 25 – техническая вода; 26 – воздух; 27 – сгущенный активный ил на сооружения обработки осадка; 28 – обеззараженная техническая вода в город; 29 – очищенная вода в р. Москва; 30 – доочищенная сточная вода в р. Москва

На КСА установлены механизированные решетки с прозорами 6 мм с непрерывно двигающимися скребковыми механизмами.

На КСА эксплуатируются песколовки трех типов – вертикальные, горизонтальные и аэрируемые. После обезвоживания и обработки в специальном цехе, песок можно использовать при строительстве дорог и для других целей.

В качестве первичных отстойников на КСА используют отстойники радиального типа диаметрами 33, 40 и 54 м. Проектная продолжительность отстаивания составляет 2 ч. Первичные отстойники в центральной части имеют встроенные преаэраторы.

Биологическая очистка сточных вод осуществляется в четырехко-ридорных аэротенках-вытеснителях, процент регенерации составляет от 25 до 50%.

Воздух для аэрации в аэротенки подаётся через фильтросные пластины. В настоящее время для выбора оптимальной системы аэрации в ряде секций аэротенков проходят испытания трубчатые полиэтиленовые аэраторы фирмы «Экополимер», тарельчатые аэраторы фирм «Грин-фрог» и «Патфил».

Рис. 19.4. Технологическая схема обработки осадков Курьяновской станции аэрации:
1 – загрузочная камера метантенка; 2 – метантенк; 3 – выгрузочная камера метантенков; 4 – газгольдер; 5 – теплообменник; 6 – камера смешения; 7 – промывной резервуар; 8 – уплотнитель сброженного осадка; 9 – фильтр-пресс; 10 – узел приготовления раствора флокулянта; 11 – иловая площадка; 12 – осадок первичных отстойников; 13 – избыточный активный ил; 14 – газ на свечу; 15 – газ брожения в котельную станции аэрации; 16 – техническая вода; 17 – песок на песковые площадки; 18 – воздух; 19 – фильтрат; 20 – сливная вода; 21 – иловая вода в городскую канализацию

Одна из секций аэротенков реконструирована для работы по одно-иловой системе нитри-денитрификации, в которой также предусмотрена система удаления фосфатов.

Вторичные отстойники, так же как первичные, приняты радиального типа, диаметрами 33, 40 и 54 м.

Доочистке подвергается около 30% биологически очищенных сточных вод, которые сначала проходят очистку на плоских щелевых ситах и далее на зернистых фильтрах.

Для сбраживания осадка на КСА используются заглубленные ме-тантенки диаметром 24 м из монолитного железобетона с земляной обсыпкой, наземные диаметром 18 м с термоизоляцией стен. Все метантенки работают по проточной схеме, в термофильном режиме. Выделяющийся газ отводится в местную котельную. После метантенков сброженная смесь сырого осадка и избыточного активного ила подвергается уплотнению. Из общего количества смеси 40-45% направляется на иловые площадки, а 55 -60% направляется в цех механического обезвоживания. Общая площадь иловых площадок составляет 380 га.

Механическое обезвоживание осадков осуществляется на восьми фильтр-прессах.

Люберецкая станция аэрации (ЛбСА) г. Москва. Более 40% сточных вод г. Москвы и крупных городов Московской области очищаются на Люберецкой станции аэрации (ЛбСА), расположенной в п. Некрасовка Московской области (рис. 19.5).

ЛбСА была построена в довоенные годы. Технологический про-цесс очистки заключался в механической очистке сточных вод и после-дующей очистке на полях орошения. В 1959 г. по решению правительства на месте Люберецких полей орошения было начато строительство станции аэрации.

Рис. 19.5. План очистных сооружений Люберецкой и Новолюберецкой станций аэрации:
1 – подача сточных вод на ЛбСА; 2 – подача сточных вод на НЛбСА; 3 – ЛбСА; 4 – НЛбСА; 5 – сооружения по обработке осадка; б – выпуски очищенных сточных вод

Технологическая схема очистки сточных вод на ЛбСА практически не отличается от принятой схемы на КСА и включает следующие сооружения: решетки; песколовки; первичные отстойники с преаэраторами; аэротенки-вытеснители; вторичные отстойники; сооружения по обработке осадка и обеззараживания сточных вод (рис. 19.6).

В отличие от сооружений КСА, большинство которых было построено из монолитного железобетона, на ЛбСА широко использовались сборные железобетонные конструкции.

После строительства и пуска в 1984 г. первого блока, а впоследствии и второго блока очистных сооружений Новолюберецкой станции аэрации (НЛбСА) проектная пропускная способность ЛбСА составляет 3,125 млн. м /сут. Технологическая схема очистки сточных вод и обработки осадка на ЛбСА практически ничем не отличается от классической схемы, принятой на КСА.

Однако в последние годы на Люберецкой станции проводят большие работы по модернизации и реконструкции очистных сооружений сточных вод.

На станции установлены новые зарубежные и отечественные мелкопрозорные механизированные решётки (4-6 мм), а также проведена модернизация существующих механизированных решёток по разработанной в МГП «Мосводоканал» технологии с уменьшением величины прозо-ров до 4-5 мм.

Рис. 19.6. Технологическая схема очистки сточных вод Люберецкой станции аэрации:
1 – сточная вода; 2 – решётки; 3 – песколовки; 4 – преаэраторы; 5 – первичные отстойники; 6 – воздух; 7 – аэротенки; 8 – вторичные отстойники; 9 – йлоуплотнители; 10 – фильтр-прессы; 11 – площадки хранения обезвоженного осадка; 12 – реагентное хозяйство; 13 – уплотнители сброженного осадка перед фильтр-прессами; 14 – узел подготовки осадка; 15 – метантенки; 16 – бункер песка; 17 – классификатор песка; 18 – гидроциклон; 19 – газгольдер; 20 – котельная; 21 – гидропрессы для обезвоживания отбросов; 22 – аварийный выпуск

Наибольший интерес вызывает технологическая схема II блока НЛбСа, которая представляет собой современную одноиловую схему нит-ри-денитрификации с двумя ступенями нитрификации. Наряду с глубоким окислением углеродсодержащих органических веществ происходит более глубокий процесс окисления азота аммонийных солей с образованием нитратов и снижением фосфатов. Внедрение данной технологии позволяет в ближайшее время получить на Люберецкой станции аэрации очищенную сточную воду, которая бы отвечала современным нормативным требованиям для сброса в водоёмы рыбохозяйственного назначения (рис. 19.7). Впервые, около 1 млн. м3/в сут сточных вод на ЛбСА подвергается глубокой биологической очистке с удалением биогенных элементов из очищенных сточных вод.

Практически весь сырой осадок из первичных отстойников, перед сбраживанием в метантенках, проходит предварительную обработку на решётках. Основными технологическими процессами обработки осадков сточных вод на ЛбСА являются: гравитационное уплотнение избыточного активного ила и сырого осадка; термофильное сбраживание; промывка и уплотнение сброженного осадка; полимерное кондиционирование; механическое обезвреживание; депонирование; естественная сушка (аварийные иловые площадки).

Рис. 19.7. Технологическая схема очистки сточных вод на ЛбСА по одноиловой схеме нитри-денитрификации:
1 – исходная сточная вода; 2 – первичный отстойник; 3 – осветлённая сточная вода; 4 – аэротенк-денитрификатор; 5 – воздух; 6 – вторичный отстойник; 7 – очищенная сточная вода; 8 – рециркуляционный активный ил; 9 – сырой осадок

Для обезвоживания осадка установлены новые рамные фильтр-прессы, позволяющие получать кек с влажностью 70-75%.

Центральная станция аэрации, г. Санкт-Петербург. Очистные сооружения Центральной станции аэрации г. Санкт-Петербург находятся в устье р. Невы на искусственно намытом острове Белом. Станция введена в эксплуатацию в 1978 г.; проектная пропускная способность – 1,5 млн. м в сутки была достигнута в 1985 г. Площадь застройки составляет 57 га.

Центральная станция аэрации г. Санкт-Петербург принимает и обрабатывает около 60% бытовых и 40% промышленных сточных вод города. Санкт-Петербург – самый большой город в бассейне Балтийского моря, это возлагает особую ответственность за обеспечение его экологической безопасности.

Технологическая схема очистки сточных вод и обработки осадков Центральной станции аэрации г. Санкт-Петербург представлена на рис. 19.8.

Максимальный расход сточной воды, перекачиваемой насосной станцией в сухую погоду, составляет 20 м3/с и в дождливую – 30 м /с. Сточные воды, поступающие из входного коллектора городской водоотводящей сети, перекачиваются в приемную камеру механической очистки.

В состав сооружений механической очистки входят: приемная камера, здание решеток, первичные отстойники с жиросборниками. Первоначально сточная вода проходит очистку на 14 механизированных решетках грабельного и ступенчатого типа. После решеток сточная вода поступает на песколовки (12 шт.) и далее через распределительный канал отводится к трем группам первичных отстойников. Первичные отстойники радиального типа, в количестве 12 штук. Диаметр каждого отстойника 54 м при глубине 5 м.

Рис. 19.8. Технологическая схема очистки сточных вод и обработки осадков Центральной станции г. Санкт-Петербург:
1 – сточные воды из города; 2 – главная насосная станция; 3 – подводящий канал; 4 – механизированные решётки; 5 – песколовки; 6 – отбросы; 7 – песок; 8 – песковые; площадки; 9 – первичные отстойники; 10 – резервуар сырого осадка; 11 – аэротенки; 12 – воздух; 13 – нагнетатели; 14 – возвратный активный ил; 15 – иловая насосная, станция; 16 – вторичные отстойники; 17 – камера выпусков; 18 – река Нева; 19 – активный ил; 20 – илоуплотнители; 21 – приёмный резервуар;
22 – центрипрессы; 23 – кек на сжигание; 24 – сжигание осадка; 25 – печь; 26 – зола; 27 – флокулянт; 28 – сливная вода илоуплотнителей; 29 – вода; 30 – раствор
флокулянта; 31 – фугат

В состав сооружений биологической очистки входят аэротенки, радиальные отстойники и главное машинное здание, включающее в себя блок воздуходувных агрегатов и иловые насосы. Аэротенки состоят из двух групп, каждая из которых представляет собой шесть параллельных трехко-ридорных аэротенков длиной 192 м с общим верхним и нижним каналами, ширина и глубина коридоров соответственно 8 и 5,5 м. Подача воздуха в аэротенки осуществляется через мелкопузырчатые аэраторы. Регенерация активного ила составляет 33%, при этом возвратный активный ил из вторичных отстойников подается в один из коридоров аэротенка, служащий регенератором.

Из аэротенков очищенная вода направляется в 12 вторичных отстойников для выделения активного ила из биологически очищенной сточной воды. Вторичные отстойники, также как и первичные, приняты радиального типа диаметром 54 м при глубине зоны отстаивания 5 м. Из вторичных отстойников активный ил поступает под гидростатическим давлением в иловую насосную станцию. После вторичных отстойников через камеру выпусков очищенная вода сбрасывается в р. Неву.

В цехе механического обезвоживания осадков обрабатывается сырой осадок из первичных отстойников и уплотненный активный ил из вторичных отстойников. Основным оборудованием этого цеха является десять центрипрессов, оборудованных системами предварительного подогрева смеси сырого осадка и активного ила. Для повышения степени влагоотдачи смеси в центрипрессы подаётся раствор флокулянта. После обработки в центрипрессах влажность кека достигает 76,5%.

В цехе сжигания осадка установлены 4 печи с псевдоожиженным слоем (французской фирмы OTV ).

Отличительной особенностью этих очистных сооружений является, что в цикле обработки осадка отсутствует предварительное сбраживание в метантенках. Обезвоживание смеси осадков и избыточного активного ила происходит непосредственно в центрипрессах. Сочетание центрипрессов и сжигание уплотненных осадков резко снижает объем конечного продукта -золы. По сравнению с традиционной механической обработкой осадков, образующейся золы в 10 раз меньше, чем обезвоженного кека. Использование метода сжигания смеси осадка и избыточного активного ила в печах с псевдоожиженным слоем гарантирует безопасность в санитарном отношении.

Станция аэрации г. Нижний Новгород. Нижегородская станция аэрации – комплекс сооружений, предназначенный для полной биологической очистки бытовых и производственных сточных вод г. Нижний Новгород и г. Бор. В технологическую схему включены следующие сооружения: блок механической очистки – решетки, песколовки, первичные отстойники; блок биологической очистки – аэротенки и вторичные отстойники; доочистка; сооружения по обработке осадков (рис. 19.9).

Рис. 19.9. Технологическая схема обработки сточных вод на Нижегородской станции аэрации:
1 – приёмная камера сточных вод; 2 – решётки; 3 – песколовки; 4 – песковые площадки; 5 – первичные отстойники; 6 – аэротенки; 7 – вторичные отстойники; 8 – насосная станция избыточного активного ила; 9 – эрлифтная камера; 10 – биологические пруды; 11 – контактные резервуары; 12 – выпуск в р. Волга; 13 – илоуплотнители; 14 – насосная станция сырого осадка (из первичных отстойников); 75 – метантенки; 16 – иловая насосная станция; 17 -флокулянт; 18 – фильтр-пресс; 19 – иловые площадки

Проектная пропускная способность сооружений составляет 1,2 млн. м3/сут. В здании установлены 4 механизированные решетки производительностью – 400 тыс. м3/сут каждая. Отбросы с решеток перемещаются с помощью транспортеров, сбрасываются в бункеры, хлорируются и выводятся на полигон для компостирования.

Песколовки включают два блока: первый состоит из 7 горизонтальных аэрируемых песколовок производительностью 600 м7ч каждая, второй – из 2 горизонтальных щелевых песколовок производительностью 600 м3/ч каждая.

На станции построены 8 первичных радиальных отстойников, диаметром 54 м. Для удаления плавающих загрязнений отстойники оборудованы жиросборниками.
В качестве сооружений биологической очистки используются 4-коридорные аэротенки-смесители. Рассредоточенный впуск сточных вод в аэротенки позволяет изменять объем регенераторов от 25 до 50%, обеспечивать хорошее смешение поступающей воды с активным илом и равномерное потребление кислорода по всей длине коридоров. Длина каждого аэротенка составляет 120 м, общая ширина – 36 м, глубина – 5,2 м.

Конструкция вторичных отстойников и их размеры аналогичны первичным, всего на станции построено 10 вторичных отстойников.

После вторичных отстойников вода направляется на доочистку в два биологических пруда с естественной аэрацией. Биологические пруды построены на естественном основании и обвалованы земляными дамбами; площадь зеркала воды каждого пруда – 20 га. Время пребывания в биологических прудах составляет 18-20 ч.

После биопрудов очищенная сточная вода обеззараживается в контактных резервуарах с использованием хлора.

Очищенная и обеззараженная вода через лотки Паршаля поступает в водоотводящие каналы и после насыщения кислородом в водосбросном перепадном устройстве поступает в р. Волга.

Смесь сырого осадка из первичных отстойников и уплотненного избыточного активного ила направляется в метантенки. В метантенках поддерживается термофильный режим.

Сброженный осадок частично подаётся на иловые площадки, а частично на ленточный фильтр-пресс.


Сегодня речь в очередной раз пойдет на тему близкую каждому из нас без исключений:)

Большинство людей, нажимая на кнопку унитаза не задумываются, что происходит с тем, что они смывают. Утекло и утекло, делов то. В таком большом городе как Москва в день в канализационную систему утекает не много ни мало четыре миллиона кубометров сточных вод. Это примерно столько же, сколько протекает воды в Москва-реке за день напротив Кремля. Весь этот огромный объем сточной воды нужно очищать и задача это весьма непростая.

В Москве действует две крупнейшие станции очистки сточных вод, примерно одинакового размера. Каждая из них очищает половину того, что "производит" Москва. Про Курьяновскую станцию я уже . Сегодня я расскажу про Люберецкую станцию - мы вновь пробежимся по основным этапам очистки воды, но еще и затронем одну весьма важную тему - как на станциях очистки борются с неприятными запахами с помощью низкотемпературной плазмы и отходов парфюмерной промышленности и почему эта проблема вообще стала актуальна как никогда.

Для начала немного истории. Впервые канализация "пришла" в район современных Люберец в начале ХХ века. Тогда были созданы Люберецкие поля орошения, на которых сточные воды, еще по старой технологии просачивались через землю и тем самым очищались. Со временем эта технология стала неприемлема для все возрастающего количества сточных вод и в 1963 году была построена новая станция очистки - Люберецкая. Чуть позже была построена еще одна станция - Новолюберецкая, фактически граничащая с первой и использующая часть ее инфраструктуры. По сути сейчас это одна большая станция очистки, но состоящая из двух частей - старой и новой.

Взглянем на карту - слева, на западе - старая часть станции, справа, на востоке - новая:

Площадь станции - огромная, по прямой из угла в угол около двух километров.

Как не сложно догадаться - от станции идет запах. Раньше он мало кого волновал, а сейчас эта проблема стала актуальна по двум основным причинам:

1)Когда станция была построена, в 60х, вокруг нее практически никто не жил. Рядом был небольшой поселок, где жили сами работники станции. Тогда эта местность была далеко-далеко от Москвы. Сейчас же идет очень активная застройка. Станцию фактически со всех сторон окружают новостройки и будет их еще больше. Новые дома строят даже на бывших иловых площадках станции (поля, на которые свозился ил оставшийся от переработки сточных вод). В результате жители близлежащих домов вынуждены периодически нюхать "канализационные" запахи, ну и естественно они постоянно жалуются.

2)Канализационные воды стали более концентрированные чем раньше, в советские времена. Произошло это из-за того, что объем используемой воды за последнее время сильно сократился , в то время как в туалет ходить меньше не стали, а даже наоборот - население выросло. Причин того, что "разбавляющей" воды стало намного меньше довольно много:
а)использование счетчиков - воду стали экономнее использовать;
б)использование более современной сантехники - все реже можно встретить текущий кран или унитаз;
в)использование более экономной бытовой техники - стиральные машины, посудомоечные машины и т.п.;
г)закрытие огромного количества промышленных предприятий, которые потребляли очень много воды - АЗЛК, ЗИЛ, Серп и Молот(частично) и т.п.
Как результат - если станция при строительстве рассчитывалась на объем 800 литров воды на человека в сутки, то сейчас реально этот показатель не больше 200. Повышение концентрации и снижение потока привело к ряду побочных эффектов - в канализационных трубах рассчитанных на больший поток стал откладываться осадок, приводящий к неприятным запахам. На самой станции стало больше пахнуть.

Для борьбы с запахом Мосводоканал, в ведении которого находятся очистные сооружения проводит поэтапную реконструкцию сооружений, применяя несколько разных способов избавления от запахов, про которые и пойдет рассказ ниже.

Давайте пойдем по порядку, а точнее по току воды. Сточная вода из Москвы поступает на станцию по Люберецкому канализационному каналу, представляющему собой огромный подземный коллектор заполненный сточными водами. Канал самотечный и почти на всем протяжении идет на очень малой глубине, а порой вообще фактически над землей. Его масштаб можно оценить с крыши административного здания очистных сооружений:

Ширина канала - около 15 метров(разделен на три части), высота - 3 метра.

На станции канал приходит в так называемую приемную камеру, откуда разделяется на два потока - часть идет на старую часть станции, часть на новую. Приемная камера выглядит так:

Сам канал приходит справа-сзади, а разделенный на две части поток уходит по зеленым каналам на заднем плане, каждый из которых может перекрываться так называемым шибером - специальным затвором (на фото - темные конструкции). Тут можно заметить первое нововведение для борьбы с запахами. Приемная камера полностью накрыта листами металла. Раньше она выглядела как "бассейн" заполненный фекальными водами, теперь же их не видно, естественно сплошное металлическое покрытие практически полностью перекрывает запах.

Для технологических целей был оставлен лишь совсем небольшой лючок, приподняв который можно насладиться всем букетом запахов. Привет от walsk :)

Эти огромные шиберы позволяют перекрывать каналы идущие от приемной камеры в случае необходимости.

От приемной камеры идет два канала. Они тоже еще совсем недавно были открытыми, теперь же их полностью накрыли металлическим перекрытием.

Под перекрытием скапливаются газы, выделяющиеся из сточных вод. Главным образом это метан и сероводород - оба газа взрывоопасны при высоких концентрациях, поэтому пространство под перекрытием нужно обязательно вентилировать, но тут возникает следующая проблема - если просто поставить вентилятор, то весь смысл перекрытия просто пропадет - запах попадет наружу. Поэтому для решения проблемы МКБ "Горизонт" разработало и изготовило специальную установку для очистки воздуха. Установка находится в отдельной будочке и к ней идет вентиляционная труба от канала.

Данная установка - экспериментальная, для отработки технологии. В ближайшее время такие установки начнут массово ставить на очистных сооружениях и на канализационно-насосных станциях, которых в Москве более 150 штук и от которых тоже исходят неприятные запахи. Справа на фото - один из разработчиков и испытателей установки - Александр Позиновкий.

Принцип действия установки следующий:
в четыре вертикальные трубы из нержавеющей стали снизу подается загрязненный воздух. В этих же трубах находятся электроды, на которые несколько сот раз в секунду подается высокое напряжение(десятки тысяч вольт), в результате чего возникают разряды и низкотемпературная плазма. При взаимодействии с ней большинство пахнущих газов переходят в жидкое состояние и оседают на стенках труб. По стенам труб постоянно стекает тонкий слой воды, с которым эти вещества смешиваются. Вода циркулирует по кругу, резервуар для воды - синяя емкость справа, снизу на фото. Очищенный воздух выходит сверху из нержавеющих труб и просто выпускается в атмосферу.
Для тех кому интереснее подробнее - фотография стенда , на котором все объяснено.

Для патриотов - установка полностью разработана и создана в России, за исключением стабилизатора питания(снизу в шкафу на фото). Высоковольтная часть установки:

Так как установка экспериментальная - в ней имеется дополнительное измерительное оборудование - газоанализатор и осциллограф.

Осциллограф показывает напряжение на конденсаторах. Во время каждого разряда конденсаторы разряжаются и на осциллограмме хорошо виден процесс их заряда.

К газоанализатору идет две трубки - одна забирает воздух до установки, другая после. Кроме того есть краник, который позволяет выбрать ту трубку, которая подключается к датчику газоанализатора. Александр демонстрирует нам сначала "грязный" воздух. Содержание сероводорода - 10.3 мг/м 3 . После переключения крана - содержание падает практически до нуля: 0.0-0.1.

Каждый из каналов также перекрывается отдельным шибером. Вообще говоря, на станции их огромное количество - торчат тут и там:)

После очистки от крупного мусора вода попадает в песколовки, которые, как опять же не сложно догадаться из названия предназначены для удаления мелких твердых частиц. Принцип работы песколовок довольно прост - по сути это длинный прямоугольный резервуар, в котором вода движется с определенной скоростью, в результате песок просто успевает осесть. Также туда подается воздух, который способствует процессу. Снизу песок удаляется с помощью специальных механизмов.

Как часто бывает в технике - идея простая, а исполнение - сложное. Так и тут - визуально это самая "навороченная" конструкция на пути очистки воды.

Песколовки облюбовали чайки. Вообще чаек на Люберецкой станции оказалось очень много, но именно на песколовках их было больше всего.

Увеличил фотографию уже дома и посмеялся с их вида - забавные птички. Называются чайки озерные. Нет, темная голова у них не потому что они постоянно окунают ее туда, куда не надо, просто такая конструктивная особенность:)
Скоро им впрочем придется не легко - многие открытые водные поверхности на станции будут накрыты.

Вернемся к технике. На фото - дно песколовки (не работающей в данный момент). Именно туда оседает песок и оттуда же и удаляется.

После песколовок вода снова поступает в общий канал.

Тут можно увидеть, как выглядели все каналы на станции, до того как их начали накрывать. Этот канал прямо сейчас накрывается.

Каркас варят из нержавейки, как и большинство металлических конструкций в канализации. Дело в том, что в канализации очень агрессивная среда - вода полная всяких веществ, 100% влажность, газы способствующие коррозии. Обычное железо очень быстро превращается в труху в таких условиях.

Работы ведутся прямо над действующим каналом - так как это один из двух основных каналов, то отключить его нельзя (москвичи ждать не будут:)).

На фото небольшой перепад уровня, около 50 сантиметров. Дно в этом месте сделано специальной формы, для гашения горизонтальной скорости воды. Как результат - очень активное бурление.

После песколовок вода поступает на первичные отстойники. На фото - на переднем плане камера, в которую поступает вода, из нее она попадает в центральную часть отстойника на заднем плане.

Классический отстойник выглядит так:

А без воды - так:

Грязная вода поступает из отверстия в центре отстойника и попадает в общий объем. В самом отстойнике взвесь содержащаяся в грязной воде постепенно оседает на дно, по которому постоянно перемещается илосгребатель, закрепленный на ферме, вращающейся по кругу. Скребок сгребает осадок в специальный кольцевой лоток, а из него, в свою очередь он попадает в круглый приямок, откуда откачивается по трубе специальными насосами. Излишки воды утекают в канал проложенный по кругу отстойника и оттуда в трубу.

Первичные отстойники - еще один источник неприятных запахов на станции, т.к. в них находится фактически грязная (очищенная только от твердых примесей) канализационная вода. Для того чтобы избавится от запаха Москводоканал решил накрыть отстойники, но тут встала большая проблема. Диаметр отстойника составляет 54 метра(!). Фото с человеком для масштаба:

При этом если делать крышу, то она должна во-первых выдерживать снеговую нагрузку зимой, во-вторых иметь только одну опору по центру - над самим отстойником опоры делать нельзя, т.к. там постоянно вращается ферма. В результате было принято элегантное решение - сделать перекрытие плавающим.

Перекрытие собрано из плавающих блоков из нержавеющей стали. Причем внешнее кольцо блоков закреплено неподвижно, а внутренняя часть вращается наплаву, вместе с фермой.

Такое решение оказалось очень удачным, т.к. во-первых отпадает проблема со снеговой нагрузкой, а во вторых не образуется объема воздуха, который пришлось бы вентилировать и дополнительно очищать.

По утверждениям Мосводоканала данная конструкция снизила выбросы пахнущих газов на 97%.

Данный отстойник был первым и экспериментальным, где была отработана данная технология. Эксперимент признан успешным и сейчас на Курьяновской станции уже накрывают подобным образом другие отстойники. Со временем все первичные отстойники будут накрыты подобным образом.

Однако, процесс реконструкции длительный - отключить всю станцию сразу невозможно, реконструировать отстойники можно только друг за другом, отключая по очереди. Да и деньги нужны немалые. Поэтому, пока не все отстойники накрыты применяют третий по счету способ борьбы с запахами - распыление нейтрализующих веществ.

Вокруг первичных отстойников были установлены специальные распылители, которые создают облако веществ нейтрализующих запахи. Сами вещества пахнут не сказать чтобы очень приятно или неприятно, но довольно специфично, впрочем их задача не замаскировать запах, а нейтрализовать его. К сожалению не запомнил конкретных веществ, которые применяются, но как сказали на станции - это отходы парфюмерной промышленности Франции.

Для распыления используются специальные форсунки, которые создают частицы диаметром 5-10 микрон. Давление в трубах если не ошибаюсь 6-8 атмосфер.

После первичных отстойников вода поступает в аэротэнки - длинные бетонные резервуары. В них подается огромное количество воздуха по трубам, а также содержится активный ил - основа всего метода биологической очистки вод. Активный ил перерабатывает "отходы", при этом быстро размножается. Процесс аналогичен тому, что происходит в природе в водоемах, однако протекает во много раз быстрее из-за теплой воды, большого количества воздуха и ила.

Воздух подается из главного машинного зала, в котором установлены турбовоздуходувки. Три башенки над зданием - воздухозаборники. Процесс подачи воздуха требует огромного количества электричества, при этом прекращение подачи воздуха приводит к катастрофическим последствиям, т.к. активный ил очень быстро погибает, а его восстановление может занять месяцы(!).

Аэротэнки, как ни странно особо не источают сильных неприятных запахов, поэтому их накрывать не планируется.

На этой фотографии видно как грязная вода поступает в аэротэнк(темная) и смешивается с активным илом(коричневый).

Часть сооружений в настоящее время отключено и законсервировано, по причинам о которых я писал в начале поста - снижение потока воды в последние годы.

После аэротэнков вода попадает во вторичные отстойники. Конструктивно они полностью повторяют первичные. Их назначение - отделить активный ил от уже очищенной воды.

Законсервированные вторичные отстойники.

Вторичные отстойники не пахнут - по сути тут уже чистая вода.

Вода собираемая в кольцевой лоток отстойника утекает в трубу. Часть воды проходит дополнительное УФ обеззараживание и сливается в речку Пехорку, часть же воды по подземному каналу идет до Москва-реки.

Осевший же активный ил используется для получения метана, который потом хранится в полуподземных резервуарах - метантэнках и используется на собственной ТЭЦ.

Отработавший ил отправляется на иловые площадки в подмосковье, где его дополнительно обезвоживают и либо захоранивают, либо сжигают.

На последок панорама станции с крыши административного здания. Нажмите для увеличения.

Выражаю огромную признательность за приглашение пресс-службе Мосводоканала , а также отдельно Александру Чурбанову - директору Люберецких очистных сооружений. Спасибо

Курьяновские очистные сооружения (КОС) проектной мощностью 2,2 млн.м 3 /сут , являющиеся крупнейшими в Европе, обеспечивают прием и очистку хозбытовых и промышленных сточных вод северо-западного, западного, южного, юго-восточного районов Москвы (60% территории города) и, кроме того, ряда городов и населенных пунктов Подмосковья.
Состав КОС включает в себя три самостоятельно функционирующих блока по очистке сточных вод: старая станция (КОСст.) с проектной производительностью 1,0 млн. м 3 в сутки, I-й блок Новокурьяновских очистных сооружений (НКОС-I) – 600 тыс. м 3 в сутки и II-й блок Новокурьяновских очистных сооружений (НКОС-II) – 600 тыс. м 3 в сутки.

КОС работают по технологической схеме полной биологической очистки, в том числе на реконструированных сооружениях НКОС-I и НКОС-II с удалением биогенных элементов: первая ступень – механическая очистка, включающая процеживание воды на решетках, улавливание минеральных примесей в песколовках и отстаивание воды в первичных отстойниках; вторая ступень – биологическая очистка воды в аэротенках и вторичных отстойниках. Часть биологически очищенных сточных вод подвергается доочистке на скорых фильтрах и используется для нужд промышленных предприятий вместо водопроводной воды.

Со сточными водами на КОС поступает большое количество различных видов отбросов: предметы быта горожан, отбросы пищевых производств, пластиковая тара и полиэтиленовые пакеты, а также строительный и прочий мусор. Для их удаления на КОС используются механизированные решетки с прозорами 10 мм.

Второй ступенью механической очистки сточных вод являются песколовки - сооружения, служащие для удаления минеральных примесей, содержащихся в поступающей воде. К минеральным загрязнениям, находящимся в сточных водах, относятся: песок, глинистые частицы, растворы минеральных солей, минеральные масла. На КОС эксплуатируются различные типы песколовок – вертикальные, горизонтальные и аэрируемые.

Пройдя первые две ступени механической очистки, сточные воды поступают в первичные отстойники, предназначенные для осаждения из сточной воды нерастворенных примесей. Конструктивно все первичные отстойники на КОС открытого типа и имеют радиальную форму, при различных диаметрах – 33, 40 и 54 м.

Осветленная сточная вода после первичных отстойников подвергается полной биологической очистке в аэротенках. Аэротенкиоткрытые железобетонные сооружения прямоугольной формы, 4-х коридорного типа. Рабочая глубина аэротенков старого блока составляет 4 м, аэротенков НКОС – 6 м. Биологическая очистка сточных вод осуществляется с помощью активного ила при принудительной подаче воздуха.

Иловая смесь из аэротенков поступает во вторичные отстойники, где происходит процесс разделения активного ила от очищенной воды. Вторичные отстойники конструктивно подобны первичным отстойникам.

Весь объем сточной воды, очищенной на КОС, поступает на сооружения доочистки. Производительность отделения процеживания составляет 3 млн. м 3 /сут, что позволяет весь объем биологически очищенной воды пропустить через плоские щелевые сита. Часть воды после процеживания проходит фильтрацию на скорых фильтрах и используется для технических нужд в качестве оборотного водоснабжения.

Начиная с 2012 года все сточные воды, прошедшие полный цикл очистки на Курьяновских очистных сооружениях, подвергаются ультрафиолетовому обеззараживанию перед сбросом в р.Москва (производительность 3 млн.м 3 /сут). Благодаря чему показатели бактериальной загрязненности биологически очищенной воды КОС достигли нормативных значений, что благотворно сказалось на качестве воды р.Москвы и санитарно-эпидемиологического состояния акватории в целом.




Осадки, образующиеся на различных этапах очистки сточных вод, поступают на единый комплекс по обработке осадка, в составе которого входят:

  • ленточные сгустители для снижения влажности осадка,
  • метантенки для сбраживания и стабилизации осадка в термофильном режиме (50-53 0 С),
  • декантерные центрифуги для обезвоживания осадка с применением флокулянтов.

Обезвоженный осадок вывозится сторонними организациями за пределы территории очистных сооружений в целях обезвреживания/утилизации и/или использования для производства готовой продукции.

И сегодня я расскажу вам про канализацию и утилизацию воды в современном мегаполисе. Благодаря недавнему походу на Юго-Западные очистные сооружения города Санкт-Петербурга я и несколько моих спутников единомоментно превратились из простых блогеров в экспертов мирового уровня по технологиям сбора и очистки воды, и теперь с радостью покажем и расскажем вам, как это всё устроено!

Труба, из которой мощной струей льётся рейтинг социальный капитал содержимое канализационного коллектора

Аэротенки ЮЗОС

Итак, начнем. Воде, разбавленной мылом и шампунем, уличной грязью, промышленными отходами, остатками еды, а также результатами этой еды переваривания (всё это попадает в канализацию, а потом - на очистные сооружения) предстоит пройти долгий и тернистый путь перед тем, как она снова верётся в Неву или Финский залив. Начинается этот путь либо в решётке водостока, если дело происходит на улице, либо в “фановой” трубе, если речь идёт про квартиры и офисы. Из не очень больших (15 см в диаметре, все наверняка видели их у себя дома в ванной или туалетной комнатах) фановых труб вода вперемешку с отходами попадает в более крупные общедомовые трубы. Несколько домов (а так же уличных водостоков на близлежащей территории) объединяются в локальный водосбор, которые, в свою очередь, объединяются в районы канализования и далее - в бассейны канализования. На каждом этапе диаметр трубы с нечистотами увеличивается, и в тоннельных коллекторах он достигает уже 4,7м. По такой вот здоровенной трубе грязная водица неторопясь (самотёком, никаких насосов) доходит до станций аэрации. В Петербурге есть три крупных, полностью обеспичивающих город, и несколько поменьше, в отдалённых районах типа Репино, Пушкина или Кронштадта.

Да, насчёт самих очистных сооружений. У некоторых может возникнуть вполне резонный вопрос - «А зачем вообще очищать сточные воды? Залив с Невой всё стерпят!». В общем-то так оно раньше и было, до 1978 года стоки практически никак не очищались и сразу попадали в залив. Залив их худо бедно перерабатывал, справляясь, однако, с возрастающим потоком нечистот каждый год всё хуже. Естественно, такое положение дел не могло не сказаться на экологии. Больше всего доставалось нашим скандинавским соседям, но и окрестностиПетербурга тоже испытывали на себе негативное влияние. Да и перспектива дамбы через Финский заставила задуматься о том, что отходы города-миллионика вместо счастливого плавания в Балтйиском моря теперь будут болтаться между Кронштадтом и (тогда ёще) Ленинградом. В общем, переспективы со временем захлебнуться нечистотами никого не радовали, и город в лице Водоканала постепенно начал решать задачу очистки стоков. Почти полностью решённой её считать можно лишь последний год - осенью 2013 был запущен главный канализационный коллектор Северной части города, после чего количество очищаемых вод достигло 98,4 процента.



Бассейны канализования на карте Санкт-Петербурга

Посмотрим на примере Юго-Западных Очистных Сооружений, как происходит очистка. Достигнув самого дна коллектора (дно как раз находится на территории очистных сооружений) вода мощными насосами поднимается на почти 20 метровую высоту. Это нужно для того, чтобы грязная вода проходила этапы очистки под действием силы тяжести, с минимальным привлечением насосного оборудования.

Первый этап очистки - решётки, на которых остаётся крупный и не очень мусор - всякие тряпки, грязные носки, утопленные котята, потерянные мобильные телефоны и прочие бумажники с документами. Большая часть собранного отправляется прямиком на свалку, но самые любопытные находки остаются в импровизированном музее.



Насосная станция


Бассейн с нечистотами. Вид снаружи


Бассейн с нечистотами. Вид изнутри


В этом помещении установлены решётки, улавливащие крупный мусор


За мутным пластиком можно разглядеть собранное решёткой. Выделяются бумага и этикетки


Принесённое водой

А вода двигается дальше, следующий шаг - песколовки. Задача этого этапа собрать грубые примеси и песок - всё то, что прошло мимо решёток. Перед выпуском из песколовок в воду добавляют химические реагенты для удаления фосфора. Далее вода направляется в первичные отстойники, в которых отделяются взвешенные и плавающие вещества.

Первичные остойники завершают первый этап очистики - механический и частично - химический. Отфильтрованная и отстоявшаяся вода не содержит в себе мусора и механических примесей, но в ней по прежнему полно не самой полезной органики, а так же обитает множество микроорганизмов. От этого всего тоже необходимо избавится, и начинают с органики...




Песколовки


Конструкция на переднем плане медленно двигается вдоль бассейна


Первичные отстойники. Вода в канализации имеет температуру около 15-16 градусов, от неё активно идёт пар, так как температура окружающего воздуха ниже

Процесс биологической очистки проходит в аэротенках - это такие здоровенные ванные, в котороые заливают воду, закачивают воздух и запускают «активный ил» - коктейль из простейших микроорганизмов, заточенных на переваривание именно тех химических соединений, от которых нужно избавиться. Воздух, закачиваемый в тенки, нужен для повышения активности микроорганизмов, в таких условиях они почти полностью «переваривают» содержимое ванной за пять часов. Далее биолически очищеную воду направляют во вторичные отстойники, где от неё отделяют активный ил. Ил снова отправляется в аэротенки (кроме излишков, которые сжигают), а вода попадает на последнюю стадию очистки - обработку ультрафиолетом.


Аэротенки. Эффект "кипения" из-за активной закачки воздуха


Диспетчерская. С высоты видно всю станцию


Вторичный отстойник. Вода в нём почему-то очень привлекает птиц

На Юго-Западных Очистных Сооружениях на этом этапе так же проводится субъектиный контроль качества очистки. Выглядит это следующим образом - очищенную и обеззараженную воду заливают в небольшой аквариум, в котором сидят несколько раков. Раки - существа очень привередливые, на грязь в воде реагируют немедленно. Поскольку эмоции ракообразных люди различать пока не научились, используется более объективная оценка - кардиограмма. Если вдруг несколько (защита от ложных срабатываний) раков испытали сильный стресс, значит с водой что-то не так, и нужно срочно разбираться, какой из этапов очистки дал сбой.

Но это ситуация нештатная, а при обычном порядке вещей уже чистая вода отправляется в Финский залив. Да, насчёт чистоты. Хоть раки в такой воде и существуют, и микробы-вирусы все из неё удалены, пить её все же не рекомендуется . Тем не менее, вода полностью соответствует экологическим стандартам ХЕЛКОМ (коннвенции по защите Балтики от загрязнения), что за последние годы уже положительно сказалось на состоянии Финского Залива.


Зловещий зелёный свет обеззараживает воду


Рак-детектор. К панцирю прикреплена не обычная верёвка, а кабель, по которому передаются данные о состоянии животного


Клац-клац

Скажу ещё пару слов насчет утилизации всего того, что из воды отфильтровывается. Твёрдые отходы отвозят на полигоны-свалки, а вот всё остальное сжигают на заводе, расположенном на территории очистных сооружений. В топку отправляются обезвоженный осадок из первичных отстойников и избытки активного ила из вторичных. Сжигание происходит при относительно высокой температуре (800 градусов) для максимального сокращения вредных веществ в выхлопе. Удивительно, что из всего объема помещений завода печки занмают лишь незначительную часть, около 10%. Всё остальные 90% отданы огромной системе разнообразных фильтров, отсеивающих все возможные и невозможные вредные вещества. На заводе, кстати, внедрена аналогичная субъективная система «контроля качества». Только детекторами выступают уже не раки, а улитки. Но принцип действия в общем и целом такой же - если содержание вредных веществ на выходе из трубы будет выше допустимого, организм моллюсска сразу же отреагирует.


Печи


Продувочные задвижки котла-утилизатора. Назначение до конца не ясно, но как эффектно выглядят!


Улитка. Над головой у неё трубка, из которой капает вода. А рядом ещё одна, с выхлопом


P. S. Один из самых популярных вопросов, которые задавали к анонсу - "Ну чё там с запахом? Воняет, да?". Запахом я оказался в некотором роде даже разочарован:) Неочищенное содержимое канализации (на самом первом фото) практически не пахнет. На территории станции запах, конечно, присутствует, но очень умеренный. Сильнее всего (и это уже ощутимо!) воняет обезвоженный осадок из первичных отстойников и активный ил - то, что отправляется в печку. Поэтому, кстати, их и начали сжигать, полигоны, на которые раньше свозили ил, давали уж очень неприятный запах для окрестностей...

Другие интересные посты на тему промышленности и производства.

Рекомендуем почитать

Наверх