Как найти силу трения. Большая энциклопедия нефти и газа

Техника для сада 29.09.2019
Техника для сада

Трение - явление, с которым мы сталкиваемся в обыденной жизни постоянно. Определить, трение вредно или полезно, невозможно. Сделать даже шаг на скользком льду представляется тяжелым занятием, на шероховатой поверхности асфальта прогулка доставляет удовольствие. Детали автомобилей без смазки изнашиваются значительно быстрее.

Изучение трения, знание его основных свойств позволяет человеку использовать его.

Сила трения в физике

Сила, возникающая при движении или попытке движения одного тела по поверхности другого, направленная против направления движения, приложенная к движущимся телам, названа силой трения. Модуль силы трения, формула которой зависит от многих параметров, меняется в зависимости от вида сопротивления.

Отличают следующие виды трения:

Скольжения;

Качения.

Любая попытка сдвинуть с места тяжелый предмет (шкаф, камень) приводит к напряжению При этом в движение предмет привести получается не всегда. Мешает покоя.

Состояние покоя

Расчетная трения покоя не позволяет определить ее достаточно точно. В силу действия третьего закона Ньютона величина силы сопротивления покоя зависит от приложенного усилия.

При возрастании усилия растет и сила трения.

0 < F тр.покоя < F max

Не позволяет вбитым в дерево гвоздям выпадать; пуговицы, пришитые нитками, прочно удерживаются на своем месте. Интересно, что шагать человеку позволяет именно сопротивление покоя. Причем направлено оно по ходу движения человека, что противоречит общему положению вещей.

Явление скольжения

При возрастании внешней силы, движущей тело, до значения наибольшей силы трения покоя оно приходит в движение. Сила трения скольжения рассматривается в процессе скольжения одного тела по поверхности другого. Ее значение зависит от свойств взаимодействующих поверхностей и силы вертикального действия на поверхность.

Расчетная формула силы трения скольжения: F=μР, где μ-коэффициент пропорциональности (трения скольжения), Р - сила вертикального (нормального) давления.

Одна из управляющих движением сил - сила трения скольжения, формула которой записывается с использованием силы реакции опоры. Вследствие выполнения третьего закона Ньютона силы нормального давления и реакции опоры одинаковы по величине и противоположны по направлению: Р = N.

Перед тем как найти силу трения, формула которой приобретает иной вид (F=μ N), определяют силу реакции.

Коэффициент сопротивления при скольжении вводится экспериментально для двух трущихся поверхностей, зависит от качества их обработки и материала.

Таблица. Значение коэффициента сопротивления для различных поверхностей

№ пп

Взаимодействующие поверхности

Значение коэффициента трения скольжения

Сталь+лед

Кожа+чугун

Бронза+железо

Бронза+чугун

Сталь+сталь

Наибольшая сила трения покоя, формула которой была записана выше, может быть определена так же, как сила трения скольжения.

Это становится важным при решении задач на определение силы движущего сопротивления. К примеру, книга, которую движут рукой, прижатой сверху, скользит под действием силы сопротивления покоя, возникающей между рукой и книгой. Величина сопротивления зависит от значения силы вертикального давления на книгу.

Явление качения

Переход наших предков от волокуш к колесницам считается революционным. Изобретение колеса - величайшее изобретение человечества. возникающее при движении колеса по поверхности, значительно уступает по величине сопротивлению скольжения.

Возникновение сопряжено с силами нормального давления колеса на поверхность, имеет природу, отличающую его от скольжения. Вследствие незначительной деформации колеса возникают разные по величине силы давления в центре образовавшейся площадки и по ее краям. Эта разница сил и определяет возникновение сопротивления при качении.

Расчетная формула силы трения качения обыкновенно берется аналогично процессу скольжения. Различие видно исключительно в значениях коэффициента сопротивления.

Природа сопротивления

При изменении шероховатости трущихся поверхностей меняется и значение силы трения. При большом увеличении две соприкасающиеся поверхности выглядят как неровности с острыми пиками. При наложении именно выступающими частями тела соприкасаются друг с другом. Общая площадь соприкосновения незначительна. При движении или попытке движения тел «пики» создают сопротивление. Величина силы трения не зависит от площади поверхностей соприкосновения.

Представляется, что две идеально гладкие поверхности должны не испытывать сопротивления абсолютно. На практике сила трения в этом случае максимальна. Объясняется это несоответствие природой возникновения сил. Это электромагнитные силы, действующие между атомами взаимодействующих тел.

Механические процессы, не сопровождающиеся трением в природе, невозможны, ведь возможности «отключить» электрическое взаимодействие заряженных тел нет. Независимость сил сопротивления от взаимного положения тел позволяет назвать их непотенциальными.

Интересно, что сила трения, формула которой меняется в зависимости от скорости движения взаимодействующих тел, пропорциональна квадрату соответствующей скорости. К такой силе относится сила вязкого сопротивления в жидкости.

Движение в жидкости и газе

Перемещение твердого тела в жидкости или газе, жидкости вблизи твердой поверхности сопровождается вязким сопротивлением. Его возникновение связывают с взаимодействием слоев жидкости, увлекаемых твердым телом в процессе движения. Разная скорость слоев - источник вязкого трения. Особенность этого явления - отсутствие жидкого трения покоя. Независимо от величины внешнего воздействия тело приходит в движение, находясь в жидкости.

В зависимости от быстроты перемещения сила сопротивления определяется скоростью движения, формой движущегося тела и вязкостью жидкости. Движение в воде и масле одного и того же тела сопровождается различным по величие сопротивлением.

Для небольших скоростей: F = kv, где k - коэффициент пропорциональности, зависящий от линейных размеров тела и свойств среды, v - скорость тела.

Температура жидкости также влияет на трение в ней. В морозную погоду автомобиль разогревают для того, чтобы масло нагрелось (его вязкость уменьшается) и способствовало уменьшению разрушения соприкасающихся деталей двигателя.

Увеличение скорости движения

Значительное увеличение скорости тела может вызвать появление турбулентных потоков, при этом сопротивление резко возрастает. Значение имеют: квадрат скорости движения, плотность среды и силы трения приобретает иной вид:

F = kv 2 , где k - коэффициент пропорциональности, зависящий от формы тела и свойств среды, v - скорость тела.

Если телу придать обтекаемую форму, турбулентность можно уменьшить. Форма тела дельфинов и китов - прекрасный пример законов природы, влияющих на скорость животных.

Энергетический подход

Совершить работу по перемещению тела препятствует сопротивление среды. При использовании закона сохранения энергии говорят, что изменение механической энергии равно работе сил трения.

Работа силы рассчитывается по формуле: A = Fscosα, где F - сила, под действием которой тело перемещается на расстояние s, α - угол между направлениями силы и перемещения.

Очевидно, что сила сопротивления противоположна перемещению тела, откуда cosα = -1. Работа силы трения, формула которой имеет вид A тр = - Fs, величина отрицательная. При этом превращается во внутреннюю (деформация, нагревание).

Сила трения возникает в месте соприкосновения двух тел и препятствует взаимному перемещению этих тел относительно друг друга. Она всегда направлена противоположно движению тел либо направлению приложения внешней силы. В случае если тела неподвижны. В результате трения механическая энергия переходит в тепловую.

Трение делится на трение покоя и трение движения. Трение движения в свою очередь делится трение качения и трение скольжения. Трение покоя возникает, когда соприкасающиеся тела пытаются сместить друг относительно друга.

Формула 1 - Сила трения.


N - Сила реакции опоры.

Мю - Коэффициент трения.


Трение покоя, как видно из названия, возникает, когда к телам прикладывается сторонняя сила стремящаяся сместить их друг относительно друга. Но движение еще не возникает. Движения нет именно потому, что ему препятствует сила трения покоя. В тот момент, когда внешняя сила превысит силу трения покоя, возникнет сила трения скольжения.

Причиной возникновения силы трения является неровности на поверхности соприкасающихся тел. Даже если поверхности выглядят гладкими, на самом деле при большом увеличении, видно, что поверхность является шершавой. Так вот именно эти неровности на поверхности двух тел и цепляются друг к другу.

Рисунок 1 - Соприкасающиеся поверхности.


Казалось бы, если поверхности отполировать до зеркального блеска то трение между ними должно если не исчезнуть совсем, то уж точно упасть до минимального значения. А на практике оказывается все не так просто. В случае очень гладких поверхностей проявляется еще один фактор увеличивающий трение. Это межмолекулярное притяжение. При очень тонкой обработке материала, молекулы вещества двух тел находятся настолько близко друг к другу, что возникают настолько сильные силы притяжения, что они препятствуют движению тел друг относительно друга.

Конечно же, на величину силы трения влияет и сила, которая прижимает тела друг к другу. Чем она выше, тем выше сила трения. Если вы зимой катите, пустые санки по снегу это выходит достаточно легко. Если на санках будет сидеть ребенок, тащить их будет уже сложнее. Ну а если в них сядет взрослый, вы уже дважды подумаете, а стоит ли их тащить вообще. Во всех этих случаях качество поверхности полозьев санок и поверхность снега неизменна. А вот сила тяжести разная, что и приводит к увеличению силы трения.

Кроме трения скольжения еще существует и сила трения качения. Опять же в названии скрыта и суть явления. То есть это, то трение, которое возникает во время качения одного объекта по поверхности другого. Трение качения во много раз меньше трения скольжения.

Представьте себе металлический шарик, катящийся по поверхности стола. Из-за деформации стола, да и самого шарика, место контакта между ними представляет не точку, а некоторую поверхность. В результате точка приложения реакции опоры смещается от центра равновесия немного вперед. А реакции опоры немного назад. В результате Нормальная часть реакции опоры компенсируется силой тяжести, а тангенциальная составляющая и есть той силой трения качению.

Определение

Силой трения называют силу, которая возникает при относительном перемещении (или попытке перемещения) тел и является результатом сопротивления движению окружающей среды или других тел.

Силы трения возникают тогда, когда соприкасающиеся тела (или их части) перемещаются относительно друг друга. При этом трение, которое появляется при относительном перемещении соприкасающихся тел, называют внешним. Трение, возникающее между частями одного сплошного тела (газ, жидкость) названо внутренним.

Сила трения – это вектор, который имеет направление вдоль касательной к трущимся поверхностям (слоям). При этом эта сила направлена в сторону противодействия относительному смещению этих поверхностей (слоев). Так, если два слоя жидкости перемещаются друг по другу, при этом движутся с различными скоростями, то сила, которая приложена к слою, перемещающемуся с большей скоростью, имеет направление в сторону, которая противоположна движению. Сила же, которая воздействует на слой, который движется с меньшей скоростью, направлена по движению.

Виды трения

Трение, которое возникает между поверхностями твердых тел, называют сухим. Оно возникает не только при скольжении поверхностей, но и при попытке вызвать перемещение поверхностей. При этом возникает сила трения покоя. Внешнее трение, которое появляется между движущимися телами, называют кинематическим.

Законы сухого трения говорят о том, что максимальная сила трения покоя и сила трения скольжения не зависят от площади поверхностей соприкосновения соприкасающихся тел, подверженных трению. Эти силы пропорциональны модулю силы нормального давления (N), которая прижимает трущиеся поверхности:

где – безразмерный коэффициент трения (покоя или скольжения). Данный коэффициент зависит от природы и состояния поверхностей трущихся тел, например от наличия шероховатостей. Если трение возникает как результат скольжения, то коэффициент трения является функцией скорости. Довольно часто вместо коэффициента трения применяют угол трения, который равен:

Угол равен минимальному углу наклона плоскости к горизонту, при котором тело, лежащее на этой плоскости, начинает скользить, под воздействие силы тяжести.

Более точным считают закон трения, который принимает во внимание силы притяжения между молекулами тел, которые подвергаются трению:

где S – общая площадь контакта тел, p 0 – добавочное давление, которое вызывается силами молекулярного притяжения, – истинный коэффициент трения.

Трение между твердым телом и жидкостью (или газом) называют вязким (жидким). Сила вязкого трения становится равной нулю, если скорость относительного движения тел обращается в нуль.

При движении тела в жидкости или газе появляются силы сопротивления среды, которые могут стать существенно больше, чем силы трения. Величина силы трения скольжения зависит от формы, размеров и состояния поверхности тела, скорости движения тела относительно среды, вязкости среды. При не очень больших скоростях сила трения вычисляется при помощи формулы:

где знак минус означает, что сила трения имеет направление в сторону противоположную направлению вектора скорости. При увеличении скоростей движения тел в вязкой среде линейный закон (4) переходит в квадратичный:

Коэффициенты и существенно зависимы от формы, размеров, состояния поверхностей тел, вязкости среды.

Помимо этого выделяют трение качения.В первом приближении трение качения рассчитывают, применяя формулу:

где k – коэффициент трения качения, который имеет размерность длины и зависит от материала тел, подверженных контакту и качеств поверхностей и т.д. N – сила нормального давления, r – радиус катящегося тела.

Единицы измерения силы трения

Основной единицей измерения силы трения (как и любой другой силы) в системе СИ является: [P]=H

В СГС: [P]=дин.

Примеры решения задач

Пример

Задание. На горизонтальном диске лежит маленькое тело. Диск вращается вокруг оси, которая проходит через его центр, перпендикулярно плоскости с угловой скоростью . На каком расстоянии от центра диска может находиться в состоянии равновесия тело, если коэффициент трения между диском и телом равен ?

Решение. Изобразим на рис.1 силы, которые будут действовать на тело, положенное на вращающийся диск.

В соответствии со вторым законом Ньютона имеем:

В проекции на ось Yиз уравнения (1.1) получим:

В проекции на ось X имеем:

где ускорение движения маленького тела равно по модуль нормальной составляющей полного ускорения. Силутрения покоя найдем как:

примем во внимание выражение (1.2), тогда имеем.

Сила трения (Fтр.) - это сила, возникающая при контакте поверхностей двух тел и препятствующая их относительному перемещению. Она появляется за счёт электромагнитных сил, возникающих атомами и молекулами в месте контакта этих двух объектов.

Чтобы остановить движущийся объект, сила должна действовать в противоположную по отношению к направлению движения сторону. Например, если толкнуть книгу через стол, то она начнёт движение. Сила, с которой вы воздействовали на книгу, будет перемещать её. Книга скользит, затем замедляется и останавливается из-за влияния силы трения.

Особенности сил трения

Трение, о котором говорилось выше, проявляющееся при движении объектов называют внешним или сухим. Но оно может существовать и между частями или слоями одного объекта (жидкого или газообразного), такой вид называют внутренним.
Главной особенностью назовём зависимость трения от скорости относительного движения тел.
Существуют и другие характерные особенности:

  • возникновение при контакте двух движущихся тел поверхностями;
  • её действие параллельно области соприкосновения;
  • направлена противоположно вектору скорости тела;
  • зависит от качества поверхностей (гладкие или шероховатые), взаимодействующих объектов;
  • форма или размер объекта, движущегося в газе или жидкости, влияют на величину силы трения.

Виды трения

Выделяют несколько видов. Рассмотрим их различия. На книгу, скользящую по столу, действует трение скольжения.

Сила трения скольжения

Где N - сила реакции опоры.

Обратите внимание на некоторые ситуации:

Если человек едет на велосипеде, то трение, возникающее во время контакта колеса с дорогой - трение качения. Такой вид силы значительно меньше по величине силы трения скольжения.

Сила трения качения

Существенно меньшие значения величины такого вида силы используют люди, используя колесо, ролики и шариковые подшипники в различных движущихся частях устройств.

Шарль Огюстен Кулон в своей работе по теории трения предложил вычислять силу трения качения следующим образом:


где λ - коэффициент трения качения, R - радиус ролика или колеса, P - вес тела.
Представьте себе ситуацию, в которой человек пытается передвинуть с места на место диван. Человек воздействует на диван некоторой силой, но не может его сдвинуть. Это происходит потому, что диван не ускоряется. То есть, результат действия на диван внешних сил равен нулю. Следовательно силу человека компенсирует сила, равная по величине, но направленная в противоположную сторону. Это сила трения покоя.

F тр. п. действует в ответ на силы, стремящиеся вызвать движение стационарного объекта. Если на неподвижный объект нет внешнего воздействия, то величина этой силы равна нулю. Если внешнее воздействие появляется (F), то сила трения покоя возрастает до максимума, а затем тело начинает движение. Величина силы трения скольжения практически совпадает с максимумом силы трения покоя.

,
μ - коэффициент трения.
Смазка, чаще всего в виде тонкого слоя жидкости, уменьшает трение.
Жидкости или газы - это особые среды, в которых тоже проявляется данный вид сил. В этих средах трение проявляется только во время перемещения объекта. Нельзя говорить о силе трения покоя в данных средах.

Сила трения в жидкостях и газах

Такой вид силы называют силой сопротивления среды. Она замедляет движение объекта. Более обтекаемая форма объекта влияет на величину силы сопротивления - она значительно уменьшается. Поэтому в судостроении используются обтекаемые формы корпусов кораблей или подводных лодок.
Сила сопротивления среды зависит от:

  • геометрических размеров и формы объекта;
  • вязкости жидкой или газообразной среды;
  • состояния поверхности объекта;
  • скорости объекта относительно той среды, в которой он находится.

Цель : Закрепить полученные знания о трении и о видах трения.

Ход работы:

1. Изучить теоретическую часть
2. Заполнить таблицу 1.
3. Решить задачу по варианту из таблицы 2.
4. Ответить на контрольные вопросы.

Таблица 1

Таблица 2

Конькобежец проезжает по гладкой горизонтальной поверхности льда по инерции 80 м. Определить силу трения и начальную скорость, если масса конькобежца 60 кг, а коэффициент трения 0,015

Тело массой 4,9 кг лежит на горизонтальной плоскости. Какую силу надо приложить к телу в горизонтальном направлении, чтобы сообщить ему ускорение 0,5 м/с 2 при коэффициенте трения 0,1?

На горизонтальном столе лежит деревянный брусок массой 500 г, который приводится в движение грузом массой 300 г, подвешенным на вертикальном конце нити, перекинутой через блок, закрепленный на конце стола. Коэффициент трения при движении бруска равен 0,2. С каким ускорением будет двигаться брусок?

Сила трения - это сила, возникающая между поверхностями соприкасающихся тел. Если между поверхностями отсутствует смазка, то трение называется сухим. Сила сухого трения прямо пропорциональна силе, прижимающей поверхности друг к другу и направлена в сторону, противоположную возможному движению. Коэффициент пропорциональности называется коэффициентом трения. Прижимающая сила перпендикулярна поверхности. Она называется нормальной реакцией опоры.

Законы трения в жидкостях и газах отличаются от законов сухого трения. Трение в жидкости и газе зависит от скорости движения: при малых скоростях оно пропорциональной квадрату, а при больших - кубу скорости.

Формулы для решения:

Где "k" - коэффициент трения, "N" - нормальная реакция опоры.

Второй закон Ньютона и уравнения движения в векторной форме. F = ma

По третьему закону Ньютона N = - mg

выражение для скорости

Уравнения движения для равноускоренного кинематического движения

; 0 - V = a t где 0 – конечная скорость V – начальная скорость

Алгоритм решения типовой задачи:

1. Кратко записываем условие задачи.

2. Изображаем условие графически в произвольной системе отсчета, указав действующие на тело (точку) силы, в том числе, нормальную реакцию опоры и силу трения, скорость и ускорение тела.

3. Корректируем и обозначаем на рисунке систему отсчета, вводя начало отсчета времени и уточняя оси координат для сил и ускорения. Лучше направить одну из осей вдоль нормальной реакции опоры, а отсчет времени начать в момент нахождения тела (точки) в нуле координат.

4. Записываем в векторной форме второй закон Ньютона и уравнения движения. Уравнения движения и скорости - это зависимости перемещения (пути) и скорости от времени.

5. Записываем в эти же уравнения в скалярной форме: в проекциях на оси координат. Записываем выражение для силы трения.

6. Решаем уравнения в общем виде.

7. Подставляем величины в общее решение, вычисляем.

8. Записываем ответ.

Теоретическая часть
Трением называется сопротивление соприкасающихся тел движению друг относительно друга. Трением сопровождается каждое механическое движение, и это обстоятельство имеет существенное следствие в современном техническом прогрессе.
Сила трения есть сила сопротивления движению соприкасающихся тел друг относительно друга.Трение объясняется двумя причинами: неровностями трущихся поверхностей тел и молекулярным взаимодействием между ними. Если выйти за пределы механики, то следует сказать, что силы трения имеют электромагнитное происхождение, как и силы упругости. Каждая из указанных выше двух причин трения в разных случаях проявляет себя в разной мере. Например, если соприкасающиеся поверхности твердых трущихся тел имеют значительные неровности, то основная слагаемая в возникающей здесь силе трения будет обусловлена именно данным обстоятельством, т.е. неровностью, шероховатостью поверхностей трущихся тел.Тела, перемещающиеся с трением друг относительно друга, должны соприкасаться поверхностями или двигаться одно в среде другого. Движения тел друг относительно друга может и не возникнуть из-за наличия трения, если движущая сила меньше максимальной силы трения покоя. Если соприкасающиеся поверхности твердых трущихся тел отлично отшлифованы и гладки, то основная слагаемая возникающей при этом силы трения будет определяться молекулярным сцеплением между трущимися поверхностями тел.

Рассмотрим более детально процесс возникновения сил трения скольжения и покоя на стыке двух соприкасающихся тел. Если посмотреть на поверхности тел под микроскопом, то будут видны микронеровности, которые мы изобразим в увеличенном виде (рис. 1, а).Рассмотрим взаимодействие соприкасающихся тел на примере одной пары неровностей (гребень и впадина) (рис. 3, б). В случае, когда сила, пытающаяся вызвать движение, отсутствует, характер взаимодействия на обоих склонах микронеровностей аналогичный. При таком характере взаимодействия все горизонтальные составляющие силы взаимодействия уравновешивают друг друга, а все вертикальные про суммируются и составляют силу N (реакция опоры) (рис. 2, а).

Иная картина взаимодействия тел получается, когда на одно из тел начинает действовать сила. В этом случае точки контакта будут преимущественно на левых по рисунку «склонах». Первое тело будет давить на второе. Интенсивность этого давления характеризуется силой R". Второе тело в соответствии с третьим законом Ньютона будет действовать на первое тело. Интенсивность этого действия характеризуется силой R (реакция опоры). Силу R

можно разложить на составляющие: силу N, направленную перпендикулярно поверхности соприкосновения тел, и силу Fсц, направленную против действия силы F (рис. 2, б).


После рассмотрения взаимодействия тел следует обратить внимание на два момента.
1) При взаимодействии двух тел в соответствии с третьим законом Ньютона возникают две силы R и R"; силу R для удобства ее учета при решении задач мы раскладываем на составляющие N и Fсц (Fтр в случае движения).
2) Силы N и F Tp имеют одну и ту же природу (электромагнитное взаимодействие); иначе и быть не могло, так как это составляющие одной и той же силы R.
Весьма важное значение в современной технике для снижения вредного влияния сил трения имеет замена трения скольжения трением качения. Сила трения качения определяется как сила, необходимая для равномерного прямолинейного качения тела по горизонтальной плоскости. Опытом установлено, что сила трения качения вычисляется по формуле:


где F-сила трения качения; к-коэффициент трения качения; Р-сила давления катящегося тела на опору и R-радиус катящегося тела.

Из практики очевидно, из формулы ясно, что чем больше радиус катящегося тела, тем меньшее препятствие оказывают ему неровности поверхности опоры.
Заметим, что коэффициент трения качения, в отличие от коэффициента трения скольжения, именованная величина и выражается в единицах длины - метрах.
Заменяется трение скольжения трением качения, в необходимых и возможных случаях, заменой подшипников скольжения на подшипники качения.

Существует внешнее и внутреннее трение (иначе называемое вязкостью). Внешним называют такой вид трения, при котором в местах соприкосновения твердых тел возникают силы, затрудняющие взаимное перемещение тел и направленные по касательной к их поверхностям.

Внутренним трением (вязкостью) называется вид трения, состоящий в том, что при взаимном перемещении. Слоев жидкости или газа между ними возникают касательные силы, препятствующие такому перемещению.

Внешнее трение подразделяют на трение покоя (статическое трение) и кинематическое трение. Трение покоя возникает между неподвижными твердыми телами, когда какое-либо из них пытаются сдвинуть с места. Кинематическое трение существует между взаимно соприкасающимися движущимися твердыми телами. Кинематическое трение, в свою очередь, подразделяется на трение скольжения и трение качения.

В жизни человека силы трения играют важную роль. В одних случаях он их использует, а в других борется с ними. Силы трения имеют электромагнитную природу.
Виды сил трения.
Силы трения имеют электромагнитную природу, т.е. в основе сил трения лежат электрические силы взаимодействия молекул. Они зависят от скорости движения тел относительно друг друга.
Существует 2 вида трения: сухое и жидкое.
1.Жидкое трение – это сила, возникающая при движении твёрдого тела в жидкости или газе или при движении одного слоя жидкости(газа) относительно другого и тормозящая это движение.

В жидкостях и газах сила трения покоя отсутствует.
При малых скоростях движения в жидкости (газе):
Fтр= k1v,
где k1– коэффициент сопротивления, зависящий от формы, размеров тела и от св-в среды. Определяется опытным путём.

При больших скоростях движения:
Fтр= k2v,
где k2– коэффициент сопротивления.
2.Сухое трение – это сила, возникающая при непосредственном соприкосновении тел, и всегда направлена вдоль поверхностей соприкосновения электромагнитных тел именно разрывом молекулярных связей.
Трение покоя.
Рассмотрим взаимодействие бруска с поверхностью стола.Поверхность, соприкасающихся тел не является абсолютно ровной.Наибольшая сила притяжения возникает между атомами веществ, находящимися на минимальном расстоянии друг от друга, то есть на микроскопических выступах. Суммарная сила притяжения атомов, соприкасающихся тел столь значительна, что даже под действием внешней силы, приложенной к бруску параллельно поверхности его соприкосновения со столом, брусок остаётся в покое. Это означает, что на брусок действует сила равная по модулю внешней силе, но противоположно направленная. Эта сила является силой трения покоя.Когда приложенная сила достигает максимального критического значения, достаточного для разрыва связей между выступами, брусок начинает скользить по столу. Максимальная сила трения покоя не зависит от площади соприкосновения поверхности.По третьему закону Ньютона сила нормального давления равна по модулю силе реакции опоры N.
Максимальная сила трения покоя пропорциональна силе нормального давления:

где μ – коэффициент трения покоя.

Коэффициент трения покоя зависит от характера обработки поверхности и от сочетания материалов, из которых состоят соприкасающиеся тела. Качественная обработка гладких поверхностей контакта приводит к увеличению числа притягивающихся атомов и соответственно к увеличению коэффициента трения покоя.

Максимальное значение силы трения покоя пропорционально модулю силы F д давления, производимого телом на опору.
Определить значение коэффициента трения покоя можно следующим образом. Пусть тело (плоский брусок) лежит на наклонной плоскости АВ (рис. 3). На него действуют три силы: сила тяжести F, сила трения покоя Fп и сила реакции опоры N. Нормальная составляющая Fп силы тяжести представляет собой силу давления Fд, производимого телом на опору, т. е.
FН=Fд. Тангенциальная составляющая Fт силы тяжести представляет собой силу, стремящуюся сдвинуть тело вниз по наклонной плоскости.
При малых углах наклона a сила Fт уравновешивается силой трения покоя Fп и тело на наклонной плоскости покоится (сила N реакции опоры по третьему закону Ньютона равна по модулю и противоположна по направлению силе Fд, т. е. уравновешивает ее).
Будем увеличивать угол наклона a до тех пор, пока тело не начнет скользить вниз по наклонной плоскости. В этот момент
Fт=FпmaxИз рис. 3 видно, чтоFт=Fsin = mgsin; Fн=Fcos = mgcos.
получим
fн=sin/cos=tg.
Измерив угол, при котором начинается скольжение тела, можно по формуле вычислить значение коэффициента трения покоя fп.


Рис. 3. Трение покоя.
Трения скольжения

Трение скольжения возникает при относительном перемещении соприкасающихся тел.
Сила трения скольжения всегда направлена в сторону, противоположную относительной скорости соприкасающихся тел.
Когда одно тело начинает скользить по поверхности другого тела, связи между атомами (молекулами) первоначально неподвижных тел разрываются, трение уменьшается. При дальнейшем относительном движении тел постоянно образуются новые связи между атомами. При этом сила трения скольжения остаётся постоянной, несколько меньшей силы трения покоя. Как и максимальная сила трения покоя, сила трения скольжения пропорциональна силе нормального давления и, следовательно, силе реакции опоры:
,где - коэффициент трения скольжения (), зависящий от свойств соприкасающихся поверхностей.


Рис. 3. Трение скольжения

Контрольные вопросы

  1. Что такое внешнее и внутреннее трение?
  2. Какое трение называют трением покоя?
  3. что такое сухое и жидкое трение?
  4. Что такое максимальная сила трения покоя?
  5. Как определить значение коэффициента трения покоя?

Рекомендуем почитать

Наверх