Биологически важные химические элементы клетки таблица. Химический состав живых организмов

Элементы декора 30.06.2020
Элементы декора

Клетки растений и животных содержат неорганические и органические вещества. К неорганическим относят воду и минеральные вещества. К органическим веществам относят белки, жиры, углеводы, нуклеиновые кислоты.

Неорганические вещества

Вода - это соединение, которое живая клетка содержит в наибольшем количестве. Вода составляет около 70% массы клетки. Большинство внутриклеточных реакций протекает в водной среде. Вода в клетке находится в свободном и связанном состоянии.

Значение воды для жизнедеятельности клетки определено ее строением и свойствами. Содержание воды в клетках может быть различным. 95% воды находится в клетке в свободном состоянии. Она необходима как растворитель для органических и неорганических веществ. Все биохимические реакции в клетке идут при участии воды. Вода используется для выведения различных веществ из клетки. Вода обладает высокой теплопроводностью и предотвращает резкие колебания температуры. 5% воды находится в связанном состоянии, образуя непрочные соединения с белками.

Минеральные вещества в клетке могут быть в диссоциированном состоянии или в соединении с органическими веществами.

Химические элементы, которые участвуют в процессах обмена веществ и обладают биологической активностью, называют биогенными.

Цитоплазма содержит около 70% кислорода, 18% углерода, 10% водорода, кальций, азот, калий, фосфор, магний, серу, хлор, натрий, алюминий, железо. Эти элементы составляют 99,99% от состава клетки и их называют макроэлементами. Например, кальций и фосфор входят в состав костей. Железо - составная часть гемоглобина.

Марганец, бор, медь, цинк, йод, кобальт - микроэлементы. Они составляют тысячные доли процента от массы клетки. Микроэлементы нужны для образования гормонов, ферментов, витаминов. Они влияют на обменные процессы в организме. Например, йод входит в состав гормона щитовидной железы, кобальт - в состав витамина В 12 .

Золото, ртуть, радий и др. - ультрамикроэлементы - составляют миллионные доли процента от состава клетки.

Недостаток или избыток минеральных солей нарушает жизнедеятельность организма.

Органические вещества

Кислород, водород, углерод, азот входят в состав органических веществ. Органические соединения представляют собой круп- ные молекулы, называемые полимерами. Полимеры состоят из многих повторяющихся единиц (мономеров). К органическим полимерным соединениям относят углеводы, жиры, белки, нуклеиновые кислоты, АТФ.

Углеводы

Углеводы состоят из углерода, водорода, кислорода.

Мономерами углеводов являются моносахариды. Углеводы раз- деляют на моносахариды, дисахариды и полисахариды.

Моносахариды - простые сахара с формулой (СН 2 О) n , где n - любое целое число от трех до семи. В зависимости от числа угле- родных атомов в молекуле различают триозы (3С), тетрозы (4С), пентозы (5С), гексозы (6С), гептозы (7С).

Триозы С 3 Н 6 О 3 - например глицеральдегид и дигидроксиацетон - играют роль промежуточных продуктов в процессе дыхания, уча- ствуют в фотосинтезе. Тетрозы С 4 Н 8 О 4 встречаются у бактерий. Пентозы С 5 Н 10 О 5 - например рибоза - входит в состав РНК, дезоксирибоза входит в состав ДНК. Гексозы - С 6 Н 12 О 6 - например глюкоза, фруктоза, галактоза. Глюкоза - источник энергии для клетки. Вместе с фруктозой и галактозой глюкоза может участвовать в образовании дисахаридов.

Дисахариды образуются в результате реакции конденсации между двумя моносахаридами (гексозами) с потерей молекулы воды.

Формула дисахаридов С 12 Н 22 О 11 Среди дисахаридов наиболее широко распространены мальтоза, лактоза и сахароза.

Сахароза, или тростниковый сахар, синтезируется у растений. Мальтоза образуется из крахмала в процессе его переваривания в организме животных. Лактоза, или молочный сахар содержится только в молоке.

Полисахариды (простые) образуются в результате реакции конденсации большого числа моносахаридов. К простым полисахаридам относят крахмал (синтезируется у растений), гликоген (содержится в клетках печени и мышцах животных и человека), целлюлозу (образует клеточную стенку у растений).

Сложные полисахариды образуются в результате взаимодействия углеводов с липидами. Например, гликолипиды входят в состав мембран. К сложным полисахаридам относят также соединения углеводов с белками (гликопротеиды). Например, гликопротеиды входят в состав слизи, выделяемой железами желудоч- но-кишечного тракта.

Функции углеводов:

1. Энергетическая: 60% энергии организм получает при распаде углеводов. При расщеплении 1 г углеводов выделяется 17,6 кДж энергии.

2. Структурная и опорная: углеводы входят в состав плазматической мембраны, оболочки растительных и бактериальных клеток.

3. Запасающая: питательные вещества (гликоген, крахмал) откладываются в запас в клетках.

4. Защитная: секреты (слизь), выделяемые различными железами, предохраняют стенки полых органов, бронхов, желудка, кишечника от механических повреждений, вредных бактерий и вирусов.

5. Участвуют в фотосинтезе.

Жиры и жироподобные вещества

Жиры состоят из углерода, водорода, кислорода. Мономерами жиров являются жирные кислоты и глицерин. Свойства жиров определяются качественным составом жирных кислот и их количественным соотношением. Растительные жиры жидкие (масла), животные - твердые (например сало). Жиры нерастворимы в воде - это гидрофобные соединения. Жиры, соединяясь с белками, образуют липопротеиды, соединяясь с углеводами - гликолипиды. Гликолипиды и липопротеиды - это жироподобные вещества.

Жироподобные вещества входят в состав мембран клеток, мембранных органелл, нервной ткани. Жиры могут соединяться с глюко- зой и образовывать гликозиды. Например, гликозид дигитоксина - вещество, используемое при лечении болезней сердца.

Функции жиров:

1. Энергетическая: при полном распаде 1 г жира до углекислого газа и воды выделяется 38,9 кДж энергии.

2. Структурная: входят в состав клеточной мембраны.

3. Защитная: слой жира защищает организм от переохлаждения, механических ударов и сотрясений.

4. Регуляторная: стероидные гормоны регулируют процессы обмена веществ и размножение.

5. Жир - источник эндогенной воды. При окислении 100 г жира выделяется 107 мл воды.

Белки

В состав белков входят углерод, кислород, водород, азот. Мономерами белка являются аминокислоты. Белки построены из двадцати различных аминокислот. Формула аминокислоты:

В состав аминокислот входят: NH 2 - аминогруппа, обладающая основными свойствами; СООН - карбоксильная группа, имеет кислотные свойства. Аминокислоты отличаются друг от друга своими радикалами - R. Аминокислоты - амфотерные соединения. Они соединяются друг с другом в молекуле белка с помощью пептидных связей.

Схема конденсации аминокислот (образование пептидной связи)

Есть первичная, вторичная, третичная и четвертичная структуры белка. Порядок, количество и качество аминокислот, входящих в состав молекулы белка, определяют его первичную структуру. Белки первичной структуры могут с помощью водородных связей соединяться в спираль и образовывать вторичную структуру. Полипептидные цепи скручиваются определенным образом в компактную структуру, образуя глобулу (шар) - это тре- тичная структура белка. Большинство белков имеют третичную структуру. Аминокислоты активны только на поверхности глобулы. Белки, имеющие глобулярную структуру, объединяются вместе и образуют четвертичную структуру. Замена одной аминокислоты приводит к изменению свойств белка (рис. 30).

При воздействии высокой температуры, кислот и других факторов может происходить разрушение белковой молекулы. Это явление называется денатурацией (рис. 31). Иногда денатуриро-

Рис. 30. Различные структуры молекул белка.

1 - первичная; 2 - вторичная; 3 - третичная; 4 - четвертичная (на примере гемоглобина крови).

Рис. 31. Денатурация белка.

1 - молекула белка до денатурации;

2 - денатурированный белок;

3 - восстановление исходной молекулы белка.

ванный белок при изменении условий вновь может восстановить свою структуру. Этот процесс называется ренатурацией и возможен лишь тогда, когда не разрушена первичная структура белка.

Белки бывают простые и сложные. Простые белки состоят только из аминокислот: например, альбумины, глобулины, фибриноген, миозин.

Сложные белки состоят из аминокислот и других органических соединений: например, липопротеины, гликопротеины, нук- леопротеины.

Функции белков:

1. Энергетическая. При распаде 1 г белка выделяется 17,6 кДж энергии.

2. Каталитическая. Служат катализаторами биохимических реакций. Катализаторы - ферменты. Ферменты ускоряют биохимические реакции, но не входят в состав конечных продуктов. Ферменты строго специфичны. Каждому субстрату соответствует свой фермент. Название фермента включает название субстрата и окончание «аза»: мальтаза, рибонуклеаза. Ферменты активны при определенной температуре (35 - 45 О С).

3. Структурная. Белки входят в состав мембран.

4. Транспортная. Например, гемоглобин переносит кислород и СО 2 в крови позвоночных.

5. Защитная. Защита организма от вредных воздействий: выработка антител.

6. Сократительная. Благодаря наличию белков актина и миозина в мышечных волокнах происходит сокращение мышц.

Нуклеиновые кислоты

Существует два типа нуклеиновых кислот: ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Мономе- рами нуклеиновых кислот являются нуклеотиды.

ДНК (дезоксирибонуклеиновая кислота). В состав нуклеотида ДНК входит одно из азотистых оснований: аденин (А), гуанин (Г), тимин (Т) или цитозин (Ц) (рис. 32), углевод дезоксирибоза и остаток фосфорной кислоты. Молекула ДНК представляет собой двойную спираль, построенную по принципу комплементарности. В молекуле ДНК комплементарны следующие азотистые основания: А = Т; Г = Ц. Две спирали ДНК соединены водородными связями (рис. 33).

Рис. 32. Строение нуклеотида.

Рис. 33. Участок молекулы ДНК. Комплементарное соединение нуклеотидов разных цепей.

ДНК способна к самоудвоению (репликации) (рис. 34). Репликация начинается с разделения двух комплементарных цепей. Каждая цепь используется в качестве матрицы для образования новой молекулы ДНК. В процессе синтеза ДНК участвуют ферменты. Каждая из двух дочерних молекул обязательно включает одну старую спираль и одну новую. Новая молекула ДНК абсо- лютно идентична старой по последовательности нуклеотидов. Такой способ репликации обеспечивает точное воспроизведение в дочерних молекулах той информации, которая была записана в материнской молекуле ДНК.

Рис. 34. Удвоение молекулы ДНК.

1 - матричная ДНК;

2 - образование двух новых цепей на основе матрицы;

3 - дочерние молекулы ДНК.

Функции ДНК:

1. Хранение наследственной информации.

2. Обеспечение передачи генетической информации.

3. Присутствие в хромосоме в качестве структурного компонента.

ДНК находится в ядре клетки, а также в таких органеллах клетки, как митохондрии, хлоропласты.

РНК (рибонуклеиновая кислота). Рибонуклеиновые кислоты бывают 3 видов: рибосомная, транспортная и информационная РНК. Нуклеотид РНК состоит из одного из азотистых оснований: аденина (А), гуанина (Г), цитозина (Ц), урацила (У), углевода - рибозы и остатка фосфорной кислоты.

Рибосомная РНК (рРНК) в соединении с белком входит в состав рибосом. рРНК составляет 80% от всей РНК в клетке. На рибосомах идет синтез белка.

Информационная РНК (иРНК) составляет от 1 до 10% от всей РНК в клетке. По строению иРНК комплементарна участку молекулы ДНК, несущему информацию о синтезе определенного белка. Длина иРНК зависит от длины участка ДНК, с которого считывали информацию. иРНК переносит информацию о синтезе белка из ядра в цитоплазму к рибосоме.

Транспортная РНК (тРНК) составляет около 10% всей РНК. Она имеет короткую цепь нуклеотидов в форме трилистника и находится в цитоплазме. На одном конце трилистника находится триплет нуклеотидов (антикодон), кодирующий определенную аминокислоту. На другом конце триплет нуклеотидов, к которому при- соединяется аминокислота. Для каждой аминокислоты имеется своя тРНК. тРНК переносит аминокислоты к месту синтеза белка, т.е. к рибосомам (рис. 35).

РНК находится в ядрышке, цитоплазме, рибосомах, митохондриях и пластидах.

АТФ - Аденазинтрифосфорная кислота. Аденазинтрифосфорная кислота (АТФ) состоит из азотистого основания - аденина, сахара - рибозы, и трех остатков фосфорной кислоты (рис. 36). В молекуле АТФ накапливается большое количество энергии, необходимой для биохимических процессов, идущих в клетке. Синтез АТФ происходит в митохондриях. Молекула АТФ очень неустой-

чива и способна отщеплять одну или две молекулы фосфата с выделением большого количества энергии. Связи в молекуле АТФ называют макроэргическими.

АТФ → АДФ + Ф + 40 кДж АДФ→ АМФ + Ф + 40 кДж

Рис. 35. Строение тРНК.

А, Б, В и Г - участки комплементарного соединения внутри одной цепочки РНК; Д - участок (активный центр) соединения с аминокислотой; Е - участок комплементарного соединения с молекулой.

Рис. 36. Строение АТФ и ее превращение в АДФ.

Вопросы для самоконтроля

1. Какие вещества в клетке относят к неорганическим?

2. Какие вещества в клетке относят к органическим?

3. Что является мономером углеводов?

4. Какое строение имеют углеводы?

5. Какие функции выполняют углеводы?

6. Что является мономером жиров?

7. Какое строение имеют жиры?

8. Какие функции выполняют жиры?

9. Что является мономером белка? 10.Какое строение имеют белки? 11.Какие структуры имеют белки?

12.Что происходит при денатурации белковой молекулы?

13.Какие функции выполняют белки?

14.Какие нуклеиновые кислоты известны?

15.Что является мономером нуклеиновых кислот?

16.Что входит в состав нуклеотида ДНК?

17.Какое строение имеет нуклеотид РНК?

18.Какое строение имеет молекула ДНК?

19.Какие функции выполняет молекула ДНК?

20. Какое строение имеет рРНК?

21.Какое строение имеет иРНК?

22.Какое строение имеет тРНК?

23.Какие функции выполняют рибонуклеиновые кислоты?

24.Какое строение имеет АТФ?

25.Какие функции выполняет АТФ в клетке?

Ключевые слова темы «Химический состав клеток»

азотистое основание альбумины

аминокислотная группа аминокислоты

амфотерные соединения

антикодон

бактерии

белки

биологическая активность биологический катализатор

биохимические реакции

болезнь

вещества

видовая специфичность

витамины

вода

водородные связи вторичная структура выработка антител высокая температура галактоза гексозы гемоглобин гепарин

гидрофобные соединения

гликоген

гликозиды

гликопротеиды

глицерин

глобула

глобулины

глюкоза

гормоны

гуанин

двойная спираль дезоксирибоза денатурация дисахарид

диссоциированное состояние

ДНК

единица информации живой организм животное жизнедеятельность жирные кислоты жировая ткань жироподобные вещества жиры

запас питательных веществ избыток

индивидуальная специфичность

источник энергии

капли

карбоксильная группа

качество кислота

клеточная стенка кодон

колебание температуры

количество

комплементарность

конечные продукты

кости

крахмал

лактоза

лечение

липопротеиды

макроэлементы

макроэргические связи

мальтоза

масса

мембрана клетки

микроэлементы

минеральные соли

миозин

митохондрии

молекула

молочный сахар

мономер

моносахарид

мукополисахариды

мукопротеиды

наследственная информация недостаток

неорганические вещества нервная ткань нуклеиновые кислоты нуклеопротеиды нуклеотид обмен веществ обменные процессы органические вещества пентозы

пептидные связи первичная структура перенос кислорода плоды

подкожная клетчатка

полимер полисахарид

полупроницаемая мембрана

порядок

потеря

проникновение воды

процент

радикал

разрушение

распад

растворитель

растение

расщепление

реакция конденсации

ренатурация

рибоза

рибонуклеаза

рибосома

РНК

сахар

свертывание крови

свободное состояние

связанное состояние

семена

сердце

синтез белка

слой

слюна

сократимые белки

строение

субстрат

теплопроводность

тетрозы тимин

тканевая специфичность

третичная структура

трилистник

триозы

триплет

тростниковый сахар углеводы

ультрамикроэлементы

урацил

участок

ферменты

фибриноген

формула

фосфорная кислота фотосинтез фруктоза функция

химические элементы

хлоропласты

хромосома

целлюлоза

цепь

цитозин

цитоплазма

четвертичная структура шар

щитовидная железа

элементы

ядро

Химический состав клетки тесно связан с особенностями строения и функционирования этой элементарной и функциональной единицы живого. Как и в морфологическом отношении, наиболее общим и универсальным для клеток представителей всех царств является химический состав протопласта. Последний содержит около 80% воды, 10% органических веществ и 1% солей. Ведущую роль в образовании протопласта среди них имеют, прежде всего, белки , нуклеиновые кислоты , липиды и углеводы .

По составу химических элементов протопласт чрезвычайно сложен. В нем содержатся вещества как с небольшим молекулярным весом так, так и вещества с крупной молекулой. 80% веса протопласта составляют высоко молекулярные вещества и лишь 30% приходится на низкомолекулярные соединения. В то же время на каждую макромолекулу приходятся сотни, а на каждую крупную макромолекулы тысячи и десятки тысяч молекул.

В состав любой клетки входят более 60 элементов периодической таблицы Менделеева .

По частоте встречаемости элементы можно поделить на три группы:

Неорганические вещества имеют малый молекулярный вес, встречаются и синтезируются как в живой клетке, так и в неживой природе. В клетке эти вещества представлены главным образом водой и растворенной в ней солями.

Вода составляет около 70% клетки. Благодаря своему особому свойству поляризации молекул вода играет огромную роль в жизни клетки.

Молекула воды состоит из двух атомов водорода и одного атома кислорода.

Электрохимическая структура молекулы такова, что на кислороде имеется небольшой избыток отрицательного заряда, а на атомах водорода - положительного, то есть молекула воды имеет две части, которые притягивают другие молекулы воды разноименно заряженными частями. Это приводит к увеличению связи между молекулами, что в свою очередь определяет жидкое агрегатное состояние при температурах от 0 до 1000С, несмотря на относительно малый молекулярный вес. Вместе с тем, поляризованные молекулы воды обеспечивают лучшую растворимость солей.

Роль воды в клетке:

· Вода является средой клетки, в ней протекают все биохимические реакции.

· Вода осуществляет транспортную функцию.

· Вода является растворителем неорганических и некоторых органических веществ.

· Вода сама участвует в некоторых реакциях (например, фотолиз воды).

Соли находятся в клетке, как правило, в растворенном виде, то есть в виде анионов (отрицательно заряженных ионов) и катионов (положительно заряженных ионов).

Важнейшими анионами клетки являются гидроскид (ОН -), карбонат (СО 3 2-), гидрокарбонат (СО 3 -), фосфат (РО 4 3-), гидрофосфат (НРO 4 -), дигидрофосфат (Н 2 РO 4 -). Роль анионов огромна. Фосфат обеспечивает образование макроэргических связей (химических связей с большой энергией). Карбонаты обеспечивают буферные свойства цитоплазмы. Буферность - это способность поддерживать постоянной кислотность раствора.

К важнейшим катионам относятся протон (Н +), калий (К +), натрий (Nа +). Протон участвует во многих биохимических реакциях, а так же своей концентрацией определяет такую важную характеристику цитоплазмы как ее кислотность. Ионы калия и натрия обеспечивают такое важное свойство клеточной мембраны как проводимость электрического импульса.

Клетка является той элементарной структурой, в которой осуществляются все основные этапы биологического обмена веществ и содержатся все основные химические компоненты живой материи. 80% веса протопласта составляют высокомолекулярные вещества - белки, углеводы, липиды , нуклеиновые кислоты, АТФ. Органические вещества клетки представлены различными биохимическими полимерами, то есть такими молекулами, которые состоят из многочисленных повторений более простых, сходных по структуре участков (мономеров).

2. Органические вещества, их строение и роль в жизнедеятельности клетки.

В состав живой клетки входят те же химические элементы, которые входят в состав неживой природы. Из 104 элементов периодической системы Д. И. Менделеева в клетках обнаружено 60.

Их делят на три группы:

  1. основные элементы - кислород, углерод, водород и азот (98% состава клетки);
  2. элементы, составляющие десятые и сотые доли процента,- калий, фосфор, сера, магний, железо, хлор, кальций, натрий (в сумме 1,9%);
  3. все остальные элементы, присутствующие в еще более малых количествах,- микроэлементы.

Молекулярный состав клетки сложный и разнородный. Отдельные соединения - вода и минеральные соли - встречаются также в неживой природе; другие - органические соединения: углеводы, жиры, белки, нуклеиновые кислоты и др.- характерны только для живых организмов.

НЕОРГАНИЧЕСКИЕ ВЕЩЕСТВА

Вода составляет около 80% массы клетки; в молодых быстрорастущих клетках - до 95%, в старых - 60%.

Роль воды в клетке велика.

Она является основной средой и растворителем, участвует в большинстве химических реакций, перемещении веществ, терморегуляции, образовании клеточных структур, определяет объем и упругость клетки. Большинство веществ поступает в организм и выводится из него в водном растворе. Биологическая роль воды определяется специфичностью строения: полярностью ее молекул и способностью образовывать водородные связи, за счет которых возникают комплексы из нескольких молекул воды. Если энергия притяжения между молекулами воды меньше, чем между молекулами воды и вещества, оно растворяется в воде. Такие вещества называют гидрофильными (от греч. «гидро» - вода, «филее» - люблю). Это многие минеральные соли, белки, углеводы и др. Если энергия притяжения между молекулами воды больше, чем энергия притяжения между молекулами воды и вещества, такие вещества нерастворимы (или слаборастворимы), их называют гидрофобными (от греч. «фобос» - страх) - жиры, липиды и др.

Минеральные соли в водных растворах клетки диссоциируют на катионы и анионы, обеспечивая устойчивое количество необходимых химических элементов и осмотическое давление. Из катионов наиболее важны К + , Na + , Са 2+ , Mg + . Концентрация отдельных катионов в клетке и во внеклеточной среде неодинакова. В живой клетке концентрация К высокая, Na + - низкая, а в плазме крови, наоборот, высокая концентрация Na + и низкая К + . Это обусловлено избирательной проницаемостью мембран. Разность в концентрации ионов в клетке и среде обеспечивает поступление воды из окружающей среды в клетку и всасывание воды корнями растений. Недостаток отдельных элементов - Fe, Р, Mg, Со, Zn - блокирует образование нуклеиновых кислот, гемоглобина, белков и других жизненно важных веществ и ведет к серьезным заболеваниям. Анионы определяют постоянство рН-клеточной среды (нейтральной и слабощелочной). Из анионов наиболее важны НРО 4 2- , Н 2 РO 4 — , Cl — , HCO 3 —

ОРГАНИЧЕСКИЕ ВЕЩЕСТВА

Органические вещества в комплексе образуют около 20-30% состава клетки.

Углеводы - органические соединения, состоящие из углерода, водорода и кислорода. Их делят на простые - моносахариды (от греч. «монос» - один) и сложные - полисахариды (от греч. «поли» - много).

Моносахариды (их общая формула С n Н 2n О n) - бесцветные вещества с приятным сладким вкусом, хорошо растворимы в воде. Они различаются по количеству атомов углерода. Из моносахаридов наиболее распространены гексозы (с 6 атомами С): глюкоза, фруктоза (содержащиеся в фруктах, меде, крови) и галактоза (содержащаяся в молоке). Из пентоз (с 5 атомами С) наиболее распространены рибоза и дезоксирибоза, входящие в состав нуклеиновых кислот и АТФ.

Полисахариды относятся к полимерам - соединениям, у которых многократно повторяется один и тот же мономер. Мономерами полисахаридов являются моносахариды. Полисахариды растворимы в воде, многие обладают сладким вкусом. Из них наиболее просты дисахариды, состоящие из двух моносахаридов. Например, сахароза состоит из глюкозы и фруктозы; молочный сахар - из глюкозы и галактозы. С увеличением числа мономеров растворимость полисахаридов падает. Из высокомолекулярных полисахаридов наиболее распространены у животных гликоген, у растений - крахмал и клетчатка (целлюлоза). Последняя состоит из 150-200 молекул глюкозы.

Углеводы - основной источник энергии для всех форм клеточной активности (движение, биосинтез, секреция и т. д.). Расщепляясь до простейших продуктов СO 2 и Н 2 O, 1 г углевода освобождает 17,6 кДж энергии. Углеводы выполняют строительную функцию у растений (их оболочки состоят из целлюлозы) и роль запасных веществ (у растений - крахмал, у животных - гликоген).

Липиды - это нерастворимые в воде жироподобные вещества и жиры, состоящие из глицерина и высокомолекулярных жирных кислот. Животные жиры содержатся в молоке, мясе, подкожной клетчатке. При комнатной температуре это твердые вещества. У растений жиры находятся в семенах, плодах и других органах. При комнатной температуре это жидкости. С жирами по химической структуре сходны жироподобные вещества. Их много в желтке яиц, клетках мозга и других тканях.

Роль липидов определяется их структурной функцией. Из них состоят клеточные мембраны, которые вследствие своей гидрофобности препятствуют смешению содержимого клетки с окружающей средой. Липиды выполняют энергетическую функцию. Расщепляясь до СO 2 и Н 2 O, 1 г жира выделяет 38,9 кДж энергии. Они плохо проводят тепло, накапливаясь в подкожной клетчатке (и других органах и тканях), выполняют защитную функцию и роль запасных веществ.

Белки - наиболее специфичны и важны для организма. Они относятся к непериодическим полимерам. В отличие от других полимеров их молекулы состоят из сходных, но нетождественных мономеров - 20 различных аминокислот.

Каждая аминокислота имеет свое название, особое строение и свойства. Их общую формулу можно представить в следующем виде

Молекула аминокислоты состоит из специфической части (радикала R) и части, одинаковой для всех аминокислот, включающей аминогруппу (- NH 2) с основными свойствами, и карбоксильную группу (СООН) с кислотными свойствами. Наличие в одной молекуле кислотной и основной групп обусловливает их высокую реактивность. Через эти группы происходит соединение аминокислот при образовании полимера - белка. При этом из аминогруппы одной аминокислоты и карбоксила другой выделяется молекула воды, а освободившиеся электроны соединяются, образуя пептидную связь. Поэтому белки называют полипептидами.

Молекула белка представляет собой цепь из нескольких десятков или сотен аминокислот.

Молекулы белков имеют огромные размеры, поэтому их называют макромолекулами. Белки, как и аминокислоты, обладают высокой реактивностью и способны реагировать с кислотами и щелочами. Они различаются по составу, количеству и последовательности расположения аминокислот (число таких сочетаний из 20 аминокислот практически бесконечно). Этим объясняется многообразие белков.

В строении молекул белков различают четыре уровня организации (59)

  • Первичная структура - полипептидная цепь из аминокислот, связанных в определенной последовательности ковалентными (прочными) пептидными связями.
  • Вторичная структура - полипептидная цепь, закрученная в тугую спираль. В ней между пептидными связями соседних витков (и другими атомами) возникают малопрочные водородные связи. В комплексе они обеспечивают довольно прочную структуру.
  • Третичная структура представляет собой причудливую, но для каждого белка специфическую конфигурацию - глобулу. Она удерживается малопрочными гидрофобными связями или силами сцепления между неполярными радикалами, которые встречаются у многих аминокислот. Благодаря их многочисленности они обеспечивают достаточную устойчивость белковой макромолекулы и ее подвижность. Третичная структура белков поддерживается также за счет ковалентных S - S (эс - эс) связей, возникающих между удаленными друг от друга радикалами серосодержащей аминокислоты - цистеина.
  • Четвертичная структура типична не для всех белков. Она возникает при соединении нескольких белковых макромолекул, образующих комплексы. Например, гемоглобин крови человека представляет комплекс из четырех макромолекул этого белка.

Такая сложность структуры белковых молекул связана с разнообразием функций, свойственных этим биополимерам. Однако строение белковых молекул зависит от свойств окружающей среды.

Нарушение природной структуры белка называют денатурацией . Она может возникать под воздействием высокой температуры, химических веществ, лучистой энергии и других факторов. При слабом воздействии распадается только четвертичная структура, при более сильном - третичная, а затем - вторичная, и белок остается в виде первичной структуры - полипептидной цепи, Этот процесс частично обратим, и денатурированный белок способен восстанавливать свою структуру.

Роль белка в жизни клетки огромна.

Белки - это строительный материал организма. Они участвуют в построении оболочки, органоидов и мембран клетки и отдельных тканей (волос, сосудов и др.). Многие белки выполняют в клетке роль катализаторов - ферментов, ускоряющих клеточные реакции в десятки, сотни миллионов раз. Известно около тысячи ферментов. В их состав, кроме белка, входят металлы Mg, Fe, Мn, витамины и т. д.

Каждая реакция катализируется своим особым ферментом. При этом действует не весь фермент, а определенный участок - активный центр. Он подходит к субстрату, как ключ к замку. Действуют ферменты при определенной температуре и рН среды. Особые сократительные белки обеспечивают двигательные функции клеток (движение жгутиковых, инфузорий, сокращение мышц и т. д.). Отдельные белки (гемоглобин крови) выполняют транспортную функцию, доставляя кислород ко всем органам и тканям тела. Специфические белки - антитела - выполняют защитную функцию, обезвреживая чужеродные вещества. Некоторые белки выполняют энергетическую функцию. Распадаясь до аминокислот, а затем до еще более простых веществ, 1 г белка освобождает 17,6 кДж энергии.

Нуклеиновые кислоты (от лат. «нуклеус» - ядро) впервые обнаружены в ядре. Они бывают двух типов - дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). Биологическая роль их велика, они определяют синтез белков и передачу наследственной информации от одного поколения к другому.

Молекула ДНК имеет сложное строение. Она состоит из двух спирально закрученных цепей. Ширина двойной спирали 2 нм 1 , длина несколько десятков и даже сотен микромикрон (в сотни или тысячи раз больше самой крупной белковой молекулы). ДНК - полимер, мономерами которой являются нуклеотиды - соединения, состоящие из молекулы фосфорной кислоты, углевода - дезоксирибозы и азотистого основания. Их общая формула имеет следующий вид:

Фосфорная кислота и углевод одинаковы у всех нуклеотидов, а азотистые основания бывают четырех типов: аденин, гуанин, цитозин и тимин. Они и определяют название соответствующих нуклеотидов:

  • адениловый (А),
  • гуаниловый (Г),
  • цитозиловый (Ц),
  • тимидиловый (Т).

Каждая цепь ДНК представляет полинуклеотид, состоящий из нескольких десятков тысяч нуклеотидов. В ней соседние нуклеотиды соединены прочной ковалентной связью между фосфорной кислотой и дезоксирибозой.

При огромных размерах молекул ДНК сочетание в них из четырех нуклеотидов может быть бесконечно большим.

При образовании двойной спирали ДНК азотистые основания одной цепи располагаются в строго определенном порядке против азотистых оснований другой. При этом против А всегда оказывается Т, а против Г - только Ц. Это объясняется тем, что А и Т, а также Г и Ц строго соответствуют друг другу, как две половинки разбитого стекла, и являются дополнительными или комплементарными (от греч. «комплемент» - дополнение) друг другу. Если известна последовательность расположения нуклеотидов в одной цепи ДНК, то по принципу комплементарности можно установить нуклеотиды другой цепи (см. приложение, задача 1). Соединяются комплементарные нуклеотиды при помощи водородных связей.

Между А и Т возникают две связи, между Г и Ц - три.

Удвоение молекулы ДНК - ее уникальная особенность, обеспечивающая передачу наследственной информации от материнской клетки дочерним. Процесс удвоения ДНК называется редупликацией ДНК. Он осуществляется следующим образом. Незадолго перед делением клетки молекула ДНК раскручивается и ее двойная цепочка под действием фермента с одного конца расщепляется на две самостоятельные цепи. На каждой половине из свободных нуклеотидов клетки, по принципу комплементарности, выстраивается вторая цепь. В результате вместо одной молекулы ДНК возникают две совершенно одинаковые молекулы.

РНК - полимер, по структуре сходный с одной цепочкой ДНК, но значительно меньших размеров. Мономерами РНК являются нуклеотиды, состоящие из фосфорной кислоты, углевода (рибозы) и азотистого основания. Три азотистых основания РНК - аденин, гуанин и цитозин - соответствуют таковым ДНК, а четвертое - иное. Вместо тимина в РНК присутствует урацил. Образование полимера РНК происходит через ковалентные связи между рибозой и фосфорной кислотой соседних нуклеотидов. Известны три вида РНК: информационная РНК (и-РНК) передает информацию о структуре белка с молекулы ДНК; транспортная РНК (т-РНК) транспортирует аминокислоты к месту синтеза белка; рибосомная РНК (р-РНК) содержится в рибосомах, участвует в синтезе белка.

АТФ - аденозинтрифосфорная кислота - важное органическое соединение. По структуре это нуклеотид. В его состав входит азотистое основание аденин, углевод - рибоза и три молекулы фосфорной кислоты. АТФ - неустойчивая структура, под влиянием фермента разрывается связь между «Р» и «О», отщепляется молекула фосфорной кислоты и АТФ переходит в

Сегодня мы рассмотрим клетку и содержащиеся в ней микроэлементы. Процентное содержание в клетке также будет нами подробно описано. Для начала поговорим о самом понятии «клетка».

Все, что нас окружает и сами мы - это своеобразный конструктор. Все состоит из мельчайших частиц, которые невозможно увидеть без специального оборудования под названием Микроскоп. Клетка - это полость, внутри которой водный раствор химических веществ, окружена она мембраной. Перед тем, как нами будут рассмотрены микроэлементы (процентное содержание в клетке и другие вопросы), необходимо понимать: клетка способна выжить самостоятельно и обладает рядом особенностей:

  • обмен веществ;
  • самовоспроизводство и так далее.

Последнее, что стоит упомянуть: цитология занимается изучением элементарных структурных элементов, то есть клеток.

Атомный состав

В периодической системе Дмитрия Ивановича Менделеева существует более ста элементом, а в человеческой клетке содержится более половины из них. Кроме этого, порядка 20 из этих элементов являются необходимыми для жизнедеятельности организма, их можно обнаружить практически во всех ее типах. Наш основной вопрос - это микроэлементы, процентное содержание в клетке. Но, необходимо знать и то, что элементы по их процентному содержанию в клетке могут делиться на классы:

  • макроэлементы;
  • микроэлементы;
  • ультрамикроэлементы.

Если взять все микроэлементы, то их процентное содержание в общей сумме не превышает трех процентов. К данным элементам можно отнести следующие:

  • магний;
  • хлор;
  • натрий;
  • калий;
  • кальций;
  • железо;
  • сера;
  • фосфор.

Как видите, их всего восемь, по сравнению с макроэлементами, которых насчитывается всего 4, а их общее процентное содержание превышает показатель 90. К группе ультрамикроэлементов относится множество элементов, а их общее процентное содержание не превышает 0,1.

Микроэлементы

Сейчас рассмотрим микроэлементы.

Процентное содержание в клетке микроэлементов следующее:

Как видите, эти цифры очень малы. В таблице мы рассмотрели процентное содержание в клетке микроэлементов, но какова их функция. Некоторые из элементов мы выделили отдельно, а сейчас кратко об остальных. И так, натрий выполняет несколько функций, среди которых:

  • обеспечение нормального ритма сердечных сокращений;
  • создание мембранного потенциала клетки;
  • с помощью данного элемента происходит проведение нервных импульсов;
  • поддержание водно-солевого баланса.

Процентное содержание в клетке микроэлементов (калий, сера и хлор) составляет менее 1 процента. Тем не менее, данные элементы выполняют множество необходимых функций:

  • калий - это основной катион, он, так же как и натрий, обеспечивает нормальную сердечную работу, оказывает помощь при синтезе белка;
  • сера - это составляющий элемент аминокислот, витамина В 1 и других ферментов;
  • хлор - это внеклеточный анион, входит в состав кислоты желудочного сока.

Магний

Мы рассмотрели все микроэлементы. Процентное содержание в клетке так же представлено в таблице выше. Но зачем нужен магний, и какие функции он выполняет? С этим мы сейчас и разберемся.

Мы его можем найти практически во всех клетках человека. Почему? Именно магний принимает участие в большинстве биохимических реакций, которых более 300. Первое основное предназначение - это участие в создании энергии, то есть АТФ. Это очень важно, так как АТФ выполняет роль энергетической станции как для клеток, так и для организма в общем.

Вторая функция - это помощь в усвоении некоторых веществ и синтезе белка. Третья функция - это регуляция в организме следующих элементов:

  • натрия;
  • кальция.

Это нужно для правильной работы сердца и нервной системы, предотвращения ишемической болезни сердца.

Кальций

Мы рассмотрели процентное содержание микроэлементов, из таблицы видно, что кальций составляет всего 0,02% всех элементов. Тем не менее, его значение также велико. И так:

  • кальций входит в состав стенок клетки;
  • входит в состав костной ткани и зубной эмали;
  • кальций способен активировать свертывание крови;
  • входит в состав раковин множества беспозвоночных;
  • служит посредником внутри клеток и регулирует различные процессы;
  • координирует сердцебиение;
  • регулирует кровяное давление;
  • участвует в работе нервной системы;
  • сохраняет кислотно-щелочное равновесие в нашем организме;
  • препятствует попаданию вирусов в клетки и так далее.

Железо

Этот элемент просто необходим для нормального процесса жизнедеятельности организма. Именно он помогает в транспортировке кислорода ко всем органам и тканям. Также этот элемент входит в состав ферментов, гемоглобина, миоглобина. Железо участвует в процессе дыхания и фотосинтеза у растений.

Фосфор

Элемент необходим для организма по многим причинам. Основные из них:

  • формирование зубов;
  • формирование костей;
  • входит в состав множества ферментов;
  • участвует в регенерации клеток и тканей;
  • производство АТФ-молекул, необходимых хранилищ энергии для организма;
  • помощь в функционировании почек;
  • регуляция мышечных сокращений.

Все организмы на нашей планете состоят из клеток, которые схожи между собой химическим составом. В данной статье мы кратко расскажем о химическом составе клетки, его роли в жизнедеятельности всего организма, узнаем, какая наука изучает данный вопрос.

Группы элементов химического состава клетки

Наука, которая изучает составные части и строение живой клетки, называется цитологией.

Все элементы, входящие в химическую структуру организма, можно условно поделить на три группы:

  • макроэлементы;
  • микроэлементы;
  • ультрамикроэлементы.

К макроэлементам относятся водород, углерод, кислород и азот. На их долю припадает почти 98% всех составных элементов.

Микроэлементы имеются в количестве десятых и сотых долей процента. И совсем малое содержание ультрамикроэлементов - сотые и тысячные доли процента.

ТОП-4 статьи которые читают вместе с этой

В переводе с греческого «макрос» – большой, а «микро» – маленький.

Учёные установили, что каких-либо особенных элементов, которые присущи только лишь живым организмам, нет. Поэтому, что живая, что неживая природа состоит из одних и тех же элементов. Этим доказывается их взаимосвязь.

Несмотря на количественное содержание химического элемента, отсутствие или уменьшение хотя бы одного из них ведёт к гибели всего организма. Ведь у каждого из них есть своё значение.

Роль химического состава клетки

Макроэлементы являются основой биополимеров, а именно белков, углеводов, нуклеиновых кислот и липидов.

Микроэлементы входят в состав жизненно важных органических веществ, участвуют в обменных процессах. Они являются составными компонентами минеральных солей, которые находятся в виде катионов и анионов, их соотношение определяет щелочную среду. Чаще всего она слабощелочная, ведь соотношение минеральных солей не изменяется.

Гемоглобин содержит железо, хлорофилл - магний, белки - серу, нуклеиновые кислоты - фосфор, обмен веществ происходит при достаточном количестве кальция.

Рис. 2. Состав клетки

Некоторые химические элементы являются компонентами неорганических веществ, например, воды. Она играет большую роль в жизнедеятельности как растительной, так и животной клетки. Вода является хорошим растворителем, из-за этого все вещества внутри организма делятся на:

  • Гидрофильные - растворяются в воде;
  • Гидрофобные - не растворяются в воде.

Благодаря наличию воды клетка становится упругой, она способствует перемещению органических веществ в цитоплазме.

Рис. 3. Вещества клетки.

Таблица “Свойства химического состава клетки”

Чтобы наглядно понять, какие химические элементы входят в состав клетки, мы внесли их в следующую таблицу:

Элементы

Значение

Макроэлементы

Кислород, углерод, водород, азот

Составной компонент оболочки у растений, в животном организме находится в составе костей и зубов, принимает активное участие в свёртываемости крови.

Содержится в нуклеиновых кислотах, ферментах, костной ткани и зубной эмали.

Микроэлементы

Является основой белков, ферментов и витаминов.

Обеспечивает передачу нервных импульсов, активирует синтез белка, процессы фотосинтеза и роста.

Один из компонентов желудочного сока, провокатор ферментов.

Принимает активное участие в обменных процессах, компонент гормона щитовидной железы.

Обеспечивает передачу импульсов в нервной системе, поддерживает постоянное давление внутри клетки, провоцирует синтез гормонов.

Составной элемент хлорофилла, костной ткани и зубов, провоцирует синтез ДНК и процессы теплоотдачи.

Составная часть гемоглобина, хрусталика, роговицы, синтезирует хлорофилл. Транспортирует кислород по организму.

Ультрамикроэлементы

Составная часть процессов кровообразования, фотосинтеза, ускоряет внутриклеточные процессы окисления.

Марганец

Активизирует фотосинтез, участвует в кровообразовании, обеспечивает высокую урожайность.

Составная часть зубной эмали.

Регулирует рост растений.

Что мы узнали?

Каждая клетка живой природы имеет свой набор химических элементов. По своему составу предметы живой и неживой природы имеют сходства, это доказывает тесную их взаимосвязь. Каждая клеточка состоит из макроэлементов, микроэлементов и ультрамикроэлементов, у каждого из которых есть своя роль. Отсутствие хотя бы одного из них ведёт к заболеванию и даже гибели всего организма.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 1509.

Рекомендуем почитать

Наверх