Изоферменты: биологическая роль. Изоферменты, их происхождение, биологическое значение

Энциклопедия растений 25.09.2019
Энциклопедия растений

Изоферменты , или изоэнзимы – это множественные формы фермента , катализирующие одну и ту же реакцию, но отличающиеся друг от друга по физическим и химическим свойствам, в частности по сродству к субстрату, максимальной скорости катализируемой реакции (активности), электрофоретической подвижности или регуляторным свойствам.

В живой природе имеются ферменты, молекулы которых состоят из двух и более субъединиц, обладающих одинаковой или разной первичной, вторичной или третичной структурой. Субъединицы нередко называют протомерами, а объединенную олигомерную молекулу – мультимером (рис. 14.8 а-г).

Считают, что процесс олигомеризации придает субъединицам белков повышенную стабильность и устойчивость по отношению к действию денатурирующих агентов, включая нагревание, влияние протеиназ и др. Однако на нынешнем этапе знаний нельзя ответить однозначно на вопрос о существенности четвертичной структуры для каталитической активности ферментов, поскольку пока отсутствуют методы, позволяющие в «мягких» условиях разрушить лишь четвертичную структуру. Обычно применяемые методы жесткой обработки (экстремальные значения рН, высокие концентрации гуанидинхлорида или мочевины) приводят к разрушению не только четвертичной, но и вторичной, и третичной структур стабильного олигомерного фермента, протомеры которого оказываются денатурированными и, как следствие, лишенными биологической активности.

Рис. 14.8. Модели строения некоторых олигомерных ферментов: а – молекула глутаматдегидрогеназы, состоящая из 6 протомеров (336 кДа); б – молекула РНК-полимеразы; в – половина молекулы каталазы; г – молекулярный комплекс пируватдегидрогеназы

Следует указать на отсутствие ковалентных, главновалентных связей между субъединицами. Связи в основном являются нековалентными, поэтому такие ферменты довольно легко диссоциируют на протомеры. Удивительной особенностью таких ферментов является зависимость активности всего комплекса от способа упаковки отдельных субъединиц. Если генетически различимые субъединицы могут существовать более чем в одной форме, то соответственно и фермент, образованный из двух или нескольких типов субъединиц, сочетающихся в разных количественных пропорциях, может существовать в нескольких сходных, но не одинаковых формах. Подобные разновидности фермента получили название изоферментов (изоэнзимов или, реже, изозимов ).

Одним из наиболее изученных ферментов, множественность форм которого детально изучена методом гель-электрофореза, является лактатдегидрогеназа (ЛДГ), катализирующая обратимое превращение пировиноградной кислоты в молочную. Она может состоять из четырёх субъединиц двух разных Н- и М- типов (сердечный и мышечный). Активный фермент представляет собой одну из следующих комбинаций: НННН, НННМ, ННММ, НМММ, ММММ или Н 4 , Н 3 М, Н 2 М 2 , НМ 3 , М 4 . Они соответствуют изоферментам ЛДГ 1 , ЛДГ 2 , ЛДГ 3 , ЛДГ 4 , и ЛДГ 5 . При этом синтез Н- и М-типов осуществляется различными генами и в разных органах экспрессируется по-разному.

Поскольку Н-протомеры при рН 7,0-9,0 несут более выраженный отрицательный заряд, чем М-протомеры, то изофермент Н 4 при электрофорезе будет мигрировать с наибольшей скоростью в электрическом поле к положительному электроду (аноду). С наименьшей скоростью будет продвигаться к аноду изофермент М 4 , в то время как остальные изоферменты будут занимать промежуточные позиции (рис. 14.9).

Рис. 14.9. Распределение и относительное количество изоферментов ЛДГ в различных органах

Для каждой ткани в норме характерно свое соотношение форм (изоферментный спектр) ЛДГ. Например, в сердечной мышце преобладает тип Н 4 , т. е. ЛДГ 1 , а в скелетных мышцах и печени – тип М 4 , т.е. ЛДГ 5 .

Эти обстоятельства широко используют в клинической практике, поскольку изучение появления изоферментов ЛДГ (и ряда других ферментов) в сыворотке крови может представлять интерес для дифференциальной диагностики органических и функциональных поражений органов и тканей. По изменению содержания изоферментов в сыворотке крови можно судить как о топографии патологического процесса, так и о степени поражения органа или ткани.

В одних случаях субъединицы имеют почти идентичную структуру и каждая содержит каталитически активный участок (например, -галактозидаза, состоящая из четырё субъединиц). В других случаях субъединицы оказываются неидентичными. Примером последних может служить триптофансинтаза, состоящая из двух субъединиц, каждая из которых наделена собственной (но не основной) энзиматической активностью, однако, только будучи объединенными в макромолекулярную структуру, обе субъединицы проявляют триптофансинтазную активность.

Термин «множественные формы фермента » применим к белкам, катализирующим одну и ту же реакцию и встречающимся в природе в организмах одного вида. Термин «изофермент » применим только к тем множественным формам ферментов, которые появляются вследствие генетически обусловленных различий в первичной структуре белка (но не к формам, образовавшимся в результате модификации одной первичной последовательности).

Давно выяснено, что все ферменты являются белками и обладают всеми свойствами белков. Поэтому подобно белкам ферменты делятся на простые и сложные.

Простые ферменты состоят только из аминокислот – например, пепсин , трипсин , лизоцим .

Сложные ферменты (холоферменты ) имеют в своем составе белковую часть, состоящую из аминокислот – апофермент , и небелковую часть – кофактор . Примером сложных ферментов являются сукцинатдегидрогеназа (содержит ФАД), аминотрансферазы (содержат пиридоксальфосфат), пероксидаза (содержит гем), лактатдегидрогеназа (содержит Zn 2+), амилаза (содержит Ca2+ ).

Кофактор , в свою очередь, может называться коферментом (НАД+ , НАДФ+ , ФМН, ФАД, биотин) или простетической группой (гем, олигосахариды, ионы металлов Fe2+ , Mg2+ , Ca2+ , Zn2+ ).

Деление на коферменты и простетические группы не всегда однозначно:
если связь кофактора с белком прочная, то в этом случае говорят о наличии простетической группы ,
но если в качестве кофактора выступает производное витамина - то его называют коферментом , независимо от прочности связи.

Для осуществления катализа необходим полноценный комплекс апобелка и кофактора, по отдельности катализ они осуществить не могут. Кофактор входит в состав активного центра, участвует в связывании субстрата или в его превращении.

Как многие белки, ферменты могут быть мономерами , т.е. состоять из одной субъединицы, и полимерами , состоящими из нескольких субъединиц.

Структурно-функциональная организация ферментов

В составе фермента выделяют области, выполняющие различную функцию:

1. Активный центр – комбинация аминокислотных остатков (обычно 12-16), обеспечивающая непосредственное связывание с молекулой субстрата и осуществляющая катализ. Аминокислотные радикалы в активном центре могут находиться в любом сочетании, при этом рядом располагаются аминокислоты, значительно удаленные друг от друга в линейной цепи. В активном центре выделяют два участка:

  • якорный (контактный, связывающий) – отвечает за связывание и ориентацию субстрата в активном центре,
  • каталитический – непосредственно отвечает за осуществление реакции.
Схема строения ферментов

У ферментов, имеющих в своем составе несколько мономеров, может быть несколько активных центров по числу субъединиц. Также две и более субъединицы могут формировать один активный центр.

У сложных ферментов в активном центре обязательно расположены функциональные группы кофактора.

Схема формирования сложного фермента

2. Аллостерический центр (allos – чужой) – центр регуляции активности фермента, который пространственно отделен от активного центра и имеется не у всех ферментов. Связывание с аллостерическим центром какой-либо молекулы (называемой активатором или ингибитором, а также эффектором, модулятором, регулятором) вызывает изменение конфигурации белка-фермента и, как следствие, скорости ферментативной реакции.

Аллостерические ферменты являются полимерными белками, активный и регуляторный центры находятся в разных субъединицах.

Схема строения аллостерического фермента

В качестве такого регулятора может выступать продукт данной или одной из последующих реакций, субстрат реакции или иное вещество (см "Регуляция активности ферментов ").

Изоферменты

Изоферменты – это молекулярные формы одного и того же фермента, возникшие в результате небольших генетических различий в первичной структуре фермента, но катализирующие одну и ту же реакцию . Изоферменты отличаются сродством к субстрату, максимальной скоростью катализируемой реакции, чувствительностью к ингибиторам и активаторам, условиями работы (оптимум pH и температуры).

Как правило, изоферменты имеют четвертичную структуру, т.е. состоят из двух или более субъединиц. Например, димерный фермент креатинкиназа (КК) представлен тремя изоферментными формами, составленными из двух типов субъединиц: M (англ. muscle – мышца) и B (англ. brain – мозг). Креатинкиназа-1 (КК-1) состоит из субъединиц типа B и локализуется в головном мозге, креатинкиназа-2 (КК-2) – по одной М- и В-субъединице, активна в миокарде, креатинкиназа-3 (КК-3) содержит две М-субъединицы, специфична для скелетной мышцы.

Также существует пять изоферментов лактатдегидрогеназы (роль ЛДГ) – фермента, участвующего в обмене глюкозы. Отличия между ними заключаются в разном соотношении субъединиц Н (англ. heart – сердце) и М (англ. muscle – мышца). Лактатдегидрогеназы типов 1 (Н 4) и 2 (H 3 M 1) присутствуют в тканях с аэробным обменом (миокард, мозг, корковый слой почек), обладают высоким сродством к молочной кислоте (лактату) и превращают его в пируват. ЛДГ-4 (H 1 M 3) и ЛДГ-5 (М 4) находятся в тканях, склонных к анаэробному обмену (печень, скелетные мышцы, кожа, мозговой слой почек), обладают низким сродством к лактату и катализируют превращение пирувата в лактат. В тканях с промежуточным типом обмена (селезенка, поджелудочная железа, надпочечники, лимфатические узлы) преобладает ЛДГ-3 (H 2 M 2).

Еще одним примером изоферментов является группа гексокиназ , которые присоединяют фосфатную группу к моносахаридам гексозам и вовлекают их в реакции клеточного метаболизма. Из четырех изоферментов выделяется гексокиназа IV (глюкокиназа ), которая отличается от остальных изоферментов высокой специфичностью к глюкозе, низким сродством к ней и нечувствительностью к ингибированию продуктом реакции.

Мультиферментные комплексы

В мультиферментном комплексе несколько ферментов прочно связаны между собой в единый комплекс и осуществляют ряд последовательных реакций, в которых продукт реакции непосредственно передается на следующий фермент и является только его субстратом. Возникает туннельный эффект , т.е. субстрат попадает в созданный ферментами "туннель". В результате промежуточные метаболиты избегают контакта с окружающей средой, снижается время их перехода к следующему активному центру и значительно ускоряется скорость реакции.

) и катализирующие конкретные реакции. Такая способность возникает в результате формирования промежуточного продукта при связывании антитела с антигеном (имитация переходного комплекса E-X ферментативной реакции).

Ферменты, катализирующие одну и ту же химическую реакцию, но отличающиеся по первичной структуре белка, называют изофермен-тами, или изоэнзимами. Они катализируют один и тот же тип реакции с принципиально одинаковым механизмом, но отличаются друг от друга кинетическими параметрами, условиями активации, особенностями связи апофермента и кофермента.

Природа появления изоферментов разнообразна, но чаще всего обусловлена различиями в структуре генов, кодирующих эти изоферменты. Следовательно, изоферменты различаются по первичной структуре белковой молекулы и, соответственно, по физико-химическим свойствам. На различиях в физико-химических свойствах основаны методы определения изоферментов.

По своей структуре изоферменты в основном являются олигомерными белками. Причём та или иная ткань преимущественно синтезирует определённые виды протомеров. В результате определённой комбинации этих протомеров формируются ферменты с различной структурой - изомерные формы. Обнаружение определённых изоферментных форм ферментов позволяет использовать их для диагностики заболеваний.

Изоформы лактатдегидрогеназы. Фермент лак-татдегидрогеназа (ЛДГ) катализирует обратимую реакцию окисления лактата (молочной кислоты) до пирувата (пировиноградной кислоты) (см. раздел 7).

Лактатдегидрогеназа - олигомерный белок с молекулярной массой 134 000 Д, состоящий из 4 субъединиц 2 типов: М (от англ, muscle - мышца) и Н (от англ, heart - сердце). Комбинация этих субъединиц лежит в основе формирования 5 изоформ лактатдегидрогеназы (рис. 2-35, А). ЛДГ 1 и ЛДГ 2 наиболее активны в сердечной мышце и почках, ЛДГ4 и ЛДГ5 - в скелетных мышцах и печени. В остальных тканях имеются различные формы этого фермента.

    Изоформы ЛДГ отличаются электрофоретической подвижностью, что позволяет устанавливать тканевую принадлежность изоформ ЛДГ (рис. 2-35, Б).

Изоформы креатинкиназы. Креатинкиназа (КК) катализирует реакцию образования креатинфосфата:

Молекула КК - димер, состоящий из субъединиц двух типов: М (от англ, muscle - мышца) и В (от англ, brain - мозг). Из этих субъединиц образуются 3 изофермента - ВВ, MB, MM. Изофермент ВВ находится преимущественно в головном мозге, ММ - в скелетных мышцах и MB - в сердечной мышце. Изоформы КК имеют разную электрофоретическую подвижность (рис. 2-36).

Активность КК в норме не должна превышать 90 МЕ/л. Определение активности КК в плазме крови имеет диагностическое значение при инфаркте миокарда (происходит повышение уровня МВ-изоформы). Количество изоформы ММ может повышаться при травмах и повреждениях скелетных мышц. Изоформа ВВ не может проникнуть через гематоэнцефалический барьер, поэтому в крови практически не определяется даже при инсультах и диагностического значения не имеет.

Изоферменты - это ферменты, синтез которых кодируется разными генами, у них разная первичная структура и разные свойства, но они катализируют одну и ту же реакцию. Виды изоферментов:

    Органные - ферменты гликолиза в печени и мышцах.

    Клеточные - малатдегидрогеназа цитоплазматическая и митохондриальная (ферменты разные, но катализируют одну и ту же реакцию).

    Гибридные - ферменты с четвертичной структурой, образуются в результате нековалентного связывания отдельных субъединиц (лактатдегидрогеназа - 4 субъединицы 2 типов).

    Мутантные - образуются в результате единичной мутации гена.

    Аллоферменты - кодируются разными аллелями одного и того же гена.

10. I. Применение ферментов с лечебной целью в свою очередь подразде­ляется на два вида: 1) применение в целях заместительной терапии и 2) с целью воздействия фермента на очаг заболевания.

С целью заместительной терапии наиболее широко используют пищева­рительные ферменты, когда у пациента обнаруживается их недостаточ­ность. В качестве примера можно привести препараты желудочного сока или чистыйпепсин или ацидин-пепсин, который незаменим при гастритах с секреторной недостаточностью, при диспепсиях у детей. Панкреатин - препарат, представляющий смесь ферментов поджелудочной железы, приме­няют при панкреатитах, в основном хронического характера. Такое же значение имеют известные препараты холензим, панзинорм и др.

Другая область применения заместительной терапии - это лечение заболеваний, связанных с так называемымиэнзимопатиями . Это заболе­вания врожденные или наследственные, при которых нарушен синтез ка­ких-либо ферментов. Эти заболевания обычно чрезвычайно тяжелые, дети с наследственным отсутствием какого-либо фермента живут недолго, страдают тяжелыми умственными и расстройствами, отсталостью физичес­кого и умственного развития. Заместительная терапия иногда может по­мочь преодолеть эти нарушения.

Целый ряд ферментных препаратов используют в хирургической прак­тике для очистки раневой поверхности от гноя, микробов, излишков грануляционной ткани; в клинике внутренних болезней их применяют:с целью разжижения вязких секретов, экссудатов, сгустков крови, напри­мер, при тяжелых воспалительных заболеваниях легких и бронхов. это в основном ферменты - гидролазы, способные расщеплять природные биопо­лимеры - белки, НК, полисахариды. В связи с их противовоспалительным действием их применяют также при тромбофлебитах, воспалительно-дист­рофических формах пар одонтоза , остеомиелите, гайморите, отитах и др. воспалительных заболеваниях.

Среди них такие ферменты, как трипсин, химотрипсин, РНК-за, ДНК -аза, фибринолизин. Фибиринолизин также используют для удаления внутрисосудистых тромбов. РНК-азу и ДНК-азу с успехом применяют для лечения некоторых вирусных инфекций, например для уничтожения вируса герпеса.

Такие ферменты, как гиалуронидаза, коллагеназа, лидаза, исполь­зуются для борьбы с излишними рубцовыми образованиями.

Аспарагиназа - фермент, образуемый некоторыми штаммами кишечной палочки. Оказывает лечебный эффект при некоторых формах опухолей. Лечебный эффект связан со свойством фермента нарушать обмен амино­кислоты аспарагина, необходимой опухолевым клеткам для роста.

Применение ферментных препаратов с лечебной целью представляет пока еще очень молодое направление медицинской науки. Ограничением здесь является трудоемкость технологий и дороговизна получения чис­тых ферментных препаратов в кристаллическом виде, пригодном для хра­нения и применения у человека. Кроме того, при использовании фер­ментных препаратов приходится учитывать также и другие обстоятельст­ва:

1) Ферменты - это белки, а следовательно в некоторых случаях мо­гут вызвать нежелательную аллергическую реакцию.

2) Быстрым разложением введенных ферментов (белковый препарат, поэтому немедленно захватывается клетками "мусорщиками" - макрофага­ми, фибробластами и др. Отсюда, требуются большие концентрации пре­паратов, чтобы достичь нужного эффекта.

3) Однако при повышении концентрации ферментные препараты могут оказаться токсичными.

И все-таки, в тех случаях, когда удается преодолеть эти пре­пятствия, ферментные препараты оказывают прекрасный лечебный эффект.

Например, эти недостатки частично устраняются при переводе фер­ментов в так называемую "иммобилизованную" форму.

Более подробно о методах иммобилизации ферментов и способах их применения вы прочтете в ваших учебно-методических пособиях.

Максимальной скорости катализируемой (), электрофоретической подвижности или регуляторным свойствам.

Рис. 4.5. Модели строения некоторых олигомерных .

Следует указать на отсутствие ковалентных, главновалентных связей между субъединицами. Связи в основном являются нековалентными, поэтому такие довольно легко диссоциируют на протомеры. Удивительной особенностью таких является зависимость всего комплекса от способа упаковки между собой отдельных субъединиц. Если генетически различимые субъединицы могут существовать более чем в одной форме, то соответственно и , образованный из двух или нескольких типов субъединиц, сочетающихся в разных количественных пропорциях, может существовать в нескольких сходных, но не одинаковых формах. Подобные разновидности получили название (изоэнзимов или, реже, изозимов). В частности, если состоит из 4 субъединиц двух разных типов – Н и М (сердечный и мышечный), то активный может представлять собой одну из следующих комбинаций: НННН, НННМ, ННММ, НМММ, ММММ, или Н 4 , Н 3 М, Н 2 М 2 , НМ 3 , М 4 , соответствующую ЛДГ 1 , ЛДГ 2 , ЛДГ 3 , ЛДГ 4 и ЛДГ 5 . При этом синтез Н- и М-типов осуществляется различными и в разных органах экспрессируется по-разному.

В одних случаях субъединицы имеют почти идентичную структуру и каждая содержит каталитически активный участок (например, β-галакто-зидаза, состоящая из 4 субъединиц). В других случаях субъединицы оказываются неидентичными. Примером последних может служить трипто-фансинтаза, состоящая из 2 субъединиц, каждая из которых наделена собственной (но не основной) энзиматической , однако, только будучи объединенными в макромолекулярную структуру, обе субъединицы проявляют триптофансинтазную .

Термин «множественные формы » применим к , катализирующим одну и ту же и встречающимся в природе в одного вида. Термин « » применим только к тем множественным формам , которые появляются вследствие генетически обусловленных различий в (но не к формам, образовавшимся в результате модификации одной первичной последовательности).

Одним из наиболее изученных 4 , множественность форм которого детально изучена методом гель-электрофореза, является ЛДГ, катализирующая обратимое превращение в молочную. Пять ЛДГ образуются из 4 субъединиц примерно одинакового размера, но двух разных типов. Поскольку Н-протомеры несут более выраженный отрицательный заряд при рН 7,0–9,0, чем М-про-томеры, состоящий из 4 субъединиц Н-типа (Н 4), при будет мигрировать с наибольшей скоростью в электрическом поле к положительному (). С наименьшей скоростью будет продвигаться к М 4 , в то время как остальные изо-ферменты будут занимать промежуточные позиции. Следует подчеркнуть, что

Вопрос 2. Изоферменты. Понятие. Примеры изоформ лактатдегидрогеназы (ЛДГ) и креатинкиназы (КК). Реакции, катализируемые ЛДГ и КК. Значение определения активности изоферментов в сыворотке крови

Изоферменты, или изоэнзимы - ферменты, катализирующие один и тот же тип реакции с принципиально одинаковым механизмом, но отличающихся друг от друга кинетическими параметрами, условиями активации, особенностями связи апофермента и кофермента.

Природа появления изоферментов разнообразна, но чаще всего обусловлена различиями в структуре генов, кодирующих эти изоферменты. Следовательно, изоферменты различаются по первичной структуре белковой молекулы и, соответственно, по физико-химическим свойствам.

По своей структуре изоферменты в основном являются олигомерными белками. Причем та или иная ткань синтезирует преимущественно определенные виды протомеров. В результате определенной комбинации этих протомеров формируются ферменты с различной структурой - изомерные формы. Обнаружение определенных изоферментных форм ферментов позволяет использовать их для диагностики заболеваний.

Лактатдегидрогеназа (ЛДГ) - олигомерный белок с молекулярной массой 134000 Д. ЛДГ состоит из 4 пептидных цепей двух типов - M(от. англ. muscle) и H(от. англ.heart). Выделяют 5 изоформ ЛДГ, несколько отличающихся по химическим и физическим свойствам. В отличие от общей ЛДГ, изоформы фермента более или менее специфичны для разных тканей.

  • · ЛДГ-1 (HHHH, H 4) - преобладает в сердце, почках и эритроцитах;
  • · ЛДГ-2 (HHHM, H 3 M) - в сердце, селезенке и лимфатических узлах; кребс изоформа кровь метаболический
  • · ЛДГ-3 (HHMM, H 2 M 2) - в легких;
  • · ЛДГ-4 (HMMM, HM 3) - в поджелудочной железе, плаценте;
  • · ЛДГ-5 (MMMM, M 4) - в печени и скелетных мышцах.

Появление в эволюции различных изоформ ЛДГ обусловлено особенностями окислительного метаболизма тканей. Изоферменты ЛДГ4 и ЛДГ5 (м-типы) работают эффективно в анаэробных условиях, ЛДГ1 и ЛДГ2 (Н-типы) - в аэробных, когда пируват быстро окисляется до СО2 и Н2О, а не восстанавливается до молочной кислоты.

Фермент лактатдегидрогеназа (ЛДГ) катализирует обратимую реакцию окисления лактата (молочной кислоты) до пирувата (пировиноградной кислоты)

При ряде заболеваний исследуют активность ЛДГ в плазме крови. В норме активность ЛДГ составляет 170 - 520 ЕД/л. Повышение активности определенных изоформ ЛДГ наблюдают при поражениях сердца, печени, почек, а также при мегалобластных и гемолитических анемиях. Для постановки диагноза необходимо исследование изоформ ЛДГ в плазме крови методом электрофореза. Выявление в плазме крови тканеспецифических изоформ ЛДГ широко используется в качестве диагностического теста. При поражении печени в крови повышается активность ЛДГ 5 , а при инфаркте миокарда - ЛДГ 1 .

Креатинкиназа (КК) - это фермент, который катализирует реакцию переноса фосфорильного остатка с АТФ на креатинин с образованием креатинфосфата и АДФ. АТФ (аденозинтрифосфат) - молекула, являющаяся источником энергии в биохимических реакциях человеческого организма.

Реакция, катализируемая креатинкиназой, обеспечивает энергией мышечные сокращения. Различают креатинкиназу, содержащуюся в митохондриях и цитоплазме клеток.

Молекула креатинкиназы состоит из двух частей, которые могут быть представлены одной из двух субъединиц: М, от английского muscle - "мышца", и B, brain - "мозг". Таким образом, в организме человека креатинкиназа есть в виде трёх изомеров: ММ, МВ, ВВ. ММ-изомер содержится в скелетной мускулатуре и миокарде, МВ - в основном в миокарде, ВВ - в тканях головного мозга, в небольшом количестве в любых клетках организма.

Активность КК в норме не должна превышать 90 МЕ/л. Определение активности КК в плазме крови имеет диагностическое значение при инфаркте миокарда (происходит повышение уровня МВ-изоформы). Количество изоформы ММ может повышаться при травмах и повреждениях скелетных мышц. Изоформа ВВ не может проникнуть через гематоэнцефалический барьер, поэтому в крови практически не определяется даже при инсультах и диагностического значения не имеет.

Рекомендуем почитать

Наверх