Блок автоматики для насоса с частотным преобразованием. Принцип работы и правила монтажа частотного преобразователя для насоса

Постройки 17.06.2019
Постройки

Большинство общепромышленных моделей частотных преобразователей можно использовать для управления насосами, но для этого необходимо их запрограммировать специальным образом.

Преобразователи частоты для насосов являются адаптированными приборами и показывают лучшие результаты в работе с насосным оборудованием. Частотные преобразователи для насосов более экономичны и функциональны в своей сфере.

Модели приборов и аналоги

Ниже в таблице представлен краткий обзор нескольких оптимизированных под управление насосами моделей. Подробную информацию по моделям можно получить на карточке соответствующего частотного преобразователя .

Модель Диапазон мощностей Вход Выход Уровень защиты Температура среды Примечания, особенности
PD20
0,75…18,5 кВт 3Ф 380В Выходная частота
0…50/60 Гц
IP65 -10…+40°С Полнофункциональные ПЧ с высоким уровнем защиты, могут устанавливаться на двигатель, специализированы для многонасосных применений
0,37…2,2 кВт 1Ф 220В Выходная частота
0…50/60 Гц
IP65 -10…+40°С Полнофункциональные ПЧ с высоким уровнем защиты, могут устанавливаться на двигатель, специализированы для одиночных небольших насосов
15…315 кВт 3Ф 380В Выходная частота
0…400 Гц
IP20 -10…+40°С Скалярное управление, многофункциональные выходы и входы, полный набор функций для работы с насосами
0,75…400 кВт 3Ф 230В
3Ф 460В
ПИД IP20 -10…+50°С Специализированные модели
0,75…220 кВт 3Ф 230В
3Ф 460В
ПИД IP20 -10…+40°С Доступны специализированные модели
0,4…4 кВт 1Ф 220В
3Ф 380В
Выходная частота
0…600 Гц
IP20 -10…+50°С Для насосов и вентиляторов

Области применения преобразователей частоты для насосов

ПЧ для насосов оптимизированы для следующих приложений:

  • Системы вентиляции и кондиционирования (компрессоры и т.п.)
  • ЖКХ, системы водоснабжения и водоотведения, отопления (насосы горячей/холодной воды, оборудование котельных, канализация)
  • Энергетика (оборудование ТЭС, ТЭЦ, котлоагрегатов)
  • Технологические линии в обогатительной отрасли (песковые, пульповые насосы)
  • Прочие насосные агрегаты (станции подкачки для водопроводных сетей либо силовых распределительных пунктов)
  • Погружные, скважинные насосы

Несмотря на вышеуказанные применения, такие приборы пригодны и для общепромышленного применения.

Назначение частотных преобразователей для насосов

  • Оптимизированное управление в насосных системах с целью поддержания определенных параметров на заданном уровне (давление, температура, уровень, расход, потребление воды)
  • Групповое управление насосами
  • Экономия воды и электроэнергии на предприятиях, ресурсосбережение на станциях подкачки
  • Защита трубопроводов от гидроударов, увеличение срока службы арматуры
  • Полная защита электродвигателей в насосных установках
  • Автоматизация насосных станций

Преимущества

Преобразователи частоты для насосов имеют преимущества:

  • Как правило, имеют более высокий уровень защиты
  • Благодаря своей специализации реализуют наиболее эффективное управление в насосных системах
  • В большинстве случаев представляют собой многофункциональные устройства, способное полностью автоматизировать насосную станцию

Недостатки

На недостатки приборов влияют используемые в них принципов регулирования. В зависимости от того скалярный это или векторный преобразователь, ему присущи те или иные недостатки. (ссылки на страницы)

Принцип работы частотных преобразователей для насосов

Преобразователь частоты для насосов преобразует входное силовое напряжение в оптимальное для выбранного режима работы насоса выходное. При этом в системе формируется контур управления с обратной связью по выбранному параметру (например, по давлению воды в системе водоснабжения). Датчик давления передает информацию в электронный блок ПЧ, а преобразователь, в свою очередь, изменяет выход (частоту, напряжение) в ту или иную сторону для поддержания постоянного давления воды в трубопроводе.

Примеры представлены на рисунках:


Насосная станция на два насоса
(автоматическое поддержание давления, пуск дополнительного насоса от сети)


Автоматизацию работы насосного оборудования, можно считать самым важным аспектом в области технического развития систем водоснабжения и водоотведения. Это важно не только для станций, обеспечивающих водой населённые пункты.

Умный насос для скважины сделает так же комфортной эксплуатацию автономного водопровода. Для этого очень важно правильно произвести расчёт скважинного насоса, и соответственно полученным расчётам, подобрать для него преобразователь частот.

Видео в этой статье поможет вам сделать это своими руками.

Достоинства автоматического водоснабжения

Чтобы добиться максимально щадящего режима эксплуатации оборудования, на насосных станциях автоматизируют всё – начиная от запуска и остановки агрегатов, и заканчивая контролем расхода воды. Приборы, помогающие осуществлять тотальный контроль над системой, передают сигналы на табло в диспетчерском пункте.

Примерно тоже, только в меньших масштабах, происходит и в случае автоматизации домашнего насоса. Давайте рассмотрим, какие преимущества даёт системе автоматика.

Итак:

  • Наиболее важно вот что: плавный запуск и остановка двигателя насоса, сводит до нуля вероятность возникновения гидроударов, а бережный режим эксплуатации способствует продлению срока службы любого оборудования. При этом снижаются расходы, связанные с эксплуатацией водозабора.
  • Прежде всего, это расход электроэнергии. Её цена неуклонно растёт, и это ощущают все: как частные лица, так и предприятия. Частотное регулирование работы двигателей насосов даёт возможность уменьшить объёмы накопительных резервуаров, и даже полностью от них отказаться.

В таких случаях, используют прибор, который называется: «инверторный блок управления для скважинного насоса» — именно его вы видите на фото сверху. Инвертор объединяет в себе различные комбинации контрольных приборов, которыми не оснащён сам насос, и в том числе, имеет встроенный преобразователь частот.

Функциональность и подбор частотного преобразователя

Понятно, что максимальное потребление воды происходит только в определённые моменты, а большую часть времени мощность насоса оказывается излишней. Частотный преобразователь позволяет настроить систему так, чтобы в «час пик» насос выдавал полную мощность, а в остальное время снижал обороты.

  • От количества вращений в определённый промежуток времени колеса насоса, зависит развиваемый им напор, и, соответственно, производительность. Суть применения частотного преобразователя заключается в том, чтобы заставить вращаться вал двигателя в заданном темпе. При этом частота переменного тока, получаемого из электросети, меняет свою величину.
  • Современные преобразователи имеют широчайший диапазон, и способны преобразовать напряжение как выше, так и ниже характеристик питающей электросети. Схема данного прибора разделена на две части: силовую, состоящую из группы транзисторов либо тиристоров, и управляющую, по сути, являющуюся электронным ключом.
  • Состоит управляющая часть из цифровых микропроцессоров, и выполняет все контрольные и защитные функции. Так как структура силовой части имеет характерные различия, частотные преобразователи подразделяются на две группы. Одна из них, включает в себя приборы с промежуточным звеном постоянного тока.

  • Вторая группа этого звена не имеет, и называется «преобразователи частот с непосредственной связью». Приборы без промежуточного звена обладают более высоким КПД, и способны «обуздать» самый мощный высоковольтный двигатель. Не смотря на то, что цена данного варианта более высокая, система, в которую он внедрён, по затратам получается на порядок экономичнее.
  • За счёт чего получается экономия? Дело в том, что такие преобразователи имеют малый диапазон частот, причём он не может быть равным, или превышать характеристики питающей сети. Нормативная частота тока в сети равна 50Гц, а прибор преобразует её до 30Гц и ниже, вплоть до нуля. Следовательно, снижается потребление электроэнергии – вот вам и экономия!

Столь ограниченный диапазон не позволяет использовать преобразователи данного типа в промышленных масштабах. Зато для бытовых насосов это как раз то, что надо.

Подбор насоса для скважины

Прежде всего, нужно иметь в виду, что мощностные характеристики насоса должны превышать расчётное потребление. То есть, всегда должен быть запас мощности.

Расчёт строится на таких данных:

  • Глубина и
  • Диаметр обсадной трубы
  • , а если проще — расстояние от зеркала воды в скважине, до поверхности земли при работающем насосе
  • Суммарный суточный расход воды на семью, содержание животных и полив (рассчитывается исходя из существующих нормативов)
  • Удалённость скважины от дома
  • Высота подачи воды (учитывается этажность здания)
  • Диаметр напорного трубопровода

Напор насоса для скважины, из которой вода будет подаваться непосредственно в дом, представляет собой сумму протяжённости вертикальных и горизонтальных расстояний, умноженную на сопротивление трубопровода — этот коэффициент является величиной постоянной, и равен 1,15.

  • Если же в системе водоснабжения присутствует накопительная ёмкость, то к сумме расстояний добавляется ещё и давление гидробака. Давление выражается в атмосферах, а каждая атмосфера приравнивается к 10 вертикальным метрам.
  • Рассмотрим, как будет выглядеть расчёт на конкретном примере. Допустим, у вас есть скважина с динамическим уровнем в 35 м. Находится она в 20м от двухэтажного дома высотой 7 м. При этом в доме установлен гидроаккумулятор ёмкостью 60л и давлением в 3 атм.

Расчёт напора будет выглядеть так: Н = (35+20+7+(3*10))*1,15 = 105 метров.

Если учесть небольшой запас, то можно купить насос с напорной характеристикой 110-115м. Как видите, особой сложности данный расчёт не представляет. Теперь поговорим о критериях подбора частотного преобразователя, сокращённо ЧП.

Подбор преобразователя

Что касается технических характеристик ЧП, то они должны соотноситься с типом и мощностью электродвигателя, к которому он будет подключаться. Далее, нужно учитывать необходимый диапазон регулирования, а так же уровень точности настройки и поддержания крутящего момента на валу мотора.

  • Конструктивные особенности инвертора, то есть, его габариты, конфигурация, встроенное или выносное управление, так же имеют значение. В подавляющем большинстве установлены асинхронные двигатели. К ним ЧП подбирается по мощности, и лучше, если эта характеристика у преобразователя будет на порядок выше, чем у насоса.

  • Существуют преобразователи с векторным управлением, которые позволяют поддерживать скорость вращения при переменных нагрузках, а так же работать, не снижая оборотов в нулевом диапазоне. Такие преобразователи наиболее точно контролируют крутящий момент и частоту вращения вала. Это особенно важно, когда в сети работает два насоса.
  • Вообще, частотные преобразователи имеют свою классификацию. Как и любое другое электрическое оборудование, они могут быть однофазными и трёхфазными. Вариант исполнения инверторов может быть бытовым, для сети 220В. Есть так же промышленные преобразователи, мощностью до 500В, и высоковольтные – до 6000В.
  • Степень защиты IP, тоже бывает разной. По типу управления, ЧП делятся на векторные и скалярные. Все ведущие производители насосного оборудования, предлагают потребителю и инверторные блоки. Обычно производители привязывают модели преобразователей к конкретным модификациям насосов, и дают рекомендации по их применению.

Покупателю и думать-то особо не надо над выбором: консультант-продавец укажет вам модель преобразователя, подходящую к данному насосу, и разъяснит вам, в чём заключаются особенности его использования.

Использование частотных преобразователей для управления насосами является в настоящее время необходимостью, а не роскошью. Благодаря частотному регулированию имеется возможность снизить потребление электроэнергии в моменты сниженного водопотребления, а также избавить от избыточного давления в сети, что, зачастую, является причиной аварий. Благодаря использованию частотных преобразователей появилась возможность поддержать постоянное давление воды у потребителя.

Каким же образом происходит преобразование частоты применительно к насосам?

Возьмем насос, который работает от двухполюсного двигателя со скоростью вращения вала 2800 оборотов в минуту, при этом на выходе насоса мы получаем номинальный напор и производительность. Теперь, при помощи частотного преобразователя , мы понизим частоту, что повлечет за собой понижение скорости вращения двигателя, а значит, изменится производительность насоса. При помощи датчика, информация о давлении в системе поступит в блок преобразователя частоты, и следовательно, на основании данных от датчика, изменится частота, подаваемая на электродвигатель.

Какие преобразователи частоты можно применять на насосные агрегаты?

Существуют различные производители, предлагающие специализированные частотные преобразователи для насосов , среди которых Vacon 100 Flow (новинка от финского производителя Vacon), INNOVERT VENT (Китай), и другие модели. Они отличаются компактностью, имеют удобный интерфейс и могут исполняться в различных степенях защиты (IP 21, IP 54, IP65). Самая высокая степень защиты- это IP 65, которая является влаго- и пылезащищенной, но при этом имеет более высокую цену.
Диапазон мощностей, в которых представлены преобразователи частоты, довольно широк: от 0,18 до 315 кВт и более, при питании 220 и 380В от сети 50-60Гц.

Применение частотных преобразователей для скважинных насосов

Для того, чтобы подобрать частотный преобразователь для скважинного насоса, необходимо учитывать глубину скважины. К примеру, при артезианской скважине более 100 м глубиной, необходимо использовать дроссели, которые позволяют увеличить износоустойчивость изоляции кабеля и уменьшить другие нежелательные эффекты.

АНС с частотным преобразователем

В рубрике «Насосы» рассмотрим автоматические насосные станции с частотным преобразователем. Данные станции предназначены для подачи в системах автономного водоснабжения чистой воды, не содержащей химически агрессивных веществ, механических и длинноволокнистых включений с постоянным заданным давлением. Частотный преобразователь (инвертор) плавно изменяя частоту вращения двигателя, обеспечивает постоянное давление в системе водоснабжения независимо от расхода воды, тем самым позволяет сэкономить электроэнергию, повысит КПД и осуществить основные защитные функции (полная защита двигателя, защита насоса от работы в режиме «сухой ход»), увеличивающие ресурс работы автоматической насосной станции. Автоматическая насосная станция с частотным преобразователем состоит из центробежного насоса, приводимого в действие асинхронным двигателем, частотного преобразователя и . Управляет работой частотного преобразователя датчик давления с аналоговым выходом, 4-20 мА который монтируется на напорном патрубке насоса.

Основные характеристики и конструкция

Основные характеристики насосных станций с преобразователями частоты:

  • Температура окружающей среды: от +1ºС до +40ºС;
  • Максимальная относительная влажность: 50% при температуре +40ºС (без конденсата)
  • Класс защиты: IP-54
  • Температура перекачиваемой жидкости: от +1ºС до +40ºС;
  • Вид перекачиваемой жидкости: вода, не содержащая химически агрессивных веществ и твердых взвесей;
  • Номинальная мощность двигателя: до 2.2 кВт (3 HP);
  • Входное напряжение преобразователя частоты:

Инвертор IMTP 2,2кВт х 1~(100-244)B /для насоса 3~(100-244)B (50-60 Гц);

Инвертор ITTP 2,2кВт х 3~(200-440)B/ для насоса 3~(200-440)B/ (50-60 Гц);

  • Выходное напряжение преобразователя частоты: в зависимости от входного напряжения и характеристик двигателя;
  • Частота на выходе частотного преобразователя: 0-55 Гц;
  • Номинальный электрический ток на входе преобразователя: 11 А для (IMTP), 6,5 А для (ITTP);
  • Номинальный электрический ток на выходе преобразователя: 10 А для (IMTP), 6,0 А для (ITTP);

Конструкция насосной станции с инвертором показана на (Рис 1). Она состоит из центробежного насоса, приводимого в действие асинхронным двигателем, частотного преобразователя, аналогового датчика давления, гидроаккумулятора (емкостью 19, 20 или 24 л. в стандартной комплектации), манометра, соединительной арматуры и электрических подключений.

  1. Насос – это основной элемент автоматической насосной станции.
  2. Гидроаккумулятор используется для корректной работы датчика давления и увеличения объёма запаса питьевой воды, регулирования количества включений и выключений насоса, а также служит основание для крепления насоса.
  3. Частотный преобразователь (инвертор) служит для плавного пуска и остановки асинхронного двигателя, осуществляет управление приводом насоса по заданному алгоритму работы, а также обеспечивает полную защиту двигателя. Регулировка числа оборотов электрического двигателя происходит за счет изменения частоты переменного тока и величины напряжения подводимого к двигателю. Крепится инвертор непосредственно на место штатной клеммной коробки электродвигателя насоса. Охлаждение инвертора происходит за счет воздуха подаваемого вентилятором двигателя.
  4. Пятерник используется для удобного и быстрого монтажа датчика давления, манометра и гибкого шланга.
  5. Гибкий шланг с уголком используется для подключения насосного оборудования к гидроаккумулятору
  6. Манометр используется для визуального контроля давления включения и выключения автоматической насосной станции.
  7. Подсоединительные кабели используются для подключения частотного преобразователя к сетевому питанию и подключения датчика давления к инвертору.

Монтаж, электрическое подключение и настройка

Перед монтажом станции необходимо правильно выбрать место установки. Рекомендуется монтировать станцию с инвертором в приямке, цокольном этаже или подвале на горизонтальной, ровной поверхности, в сухом, проветриваемом и защищенном от непогоды месте. Станция может быть подключена напрямую к водопроводной сети или производить забор воды из емкости. Необходимо убедится в том, что суммарное давление в водопроводной сети и максимальное давление создаваемое насосом не превышает значения максимального рабочего давления (номинального давления) самого насоса и гидроаккумулятора. На всасывающем и напорном трубопроводах непосредственно перед автоматической станцией необходимо установить отсечные краны и разъемные соединения, для удобства демонтажа и ремонта.

Всасывающий трубопровод:

  1. должен иметь такой же условный проход, что и всасывающий патрубок насоса, или, по возможности, на один типоразмер больше.
  2. должен быть как можно короче, без усечений диаметра и резких поворотов. Чем длиннее всасывающий трубопровод, тем большее сопротивление он создает, и тем с меньшей глубины насос может поднять воду на поверхность.
  3. должен быть расположен так, чтобы он всегда имел наклон вверх по направлению к насосу. Не допускать образования воздушных пробок во всасывающем трубопроводе.
  4. должен быть герметичным и не допускать утечек жидкости или подсоса воздуха. Все соединения необходимо тщательно проверять на герметичность.
  5. должен быть всегда установлен с сеточкой, чтобы предотвратить завоздушивание насоса и трубопровода после остановки насоса. Обратный клапан с сеточкой также защищает насос и расположенные далее по системе оборудование от крупных частиц, таких как листья, ветки и насекомые.

Напорный трубопровод:

Диаметр напорного трубопровода рассчитывается исходя из количества точек водоразбора и максимально возможного потребления воды.

Электрическое подключение:

Данные автоматические насосные станции с частотным преобразователем изготавливаются и настраиваются, как правило, по индивидуальному заказу и под конкретные задачи. Полная сборка монтаж и настройка станции происходит в сервисном центре. Из электрических подключений потребителю остается только включить вилку в розетку с заземлением, если частотный преобразователь монофазный IMTP, или подвести питание 380 В четырех жильным кабелем, если частотный преобразователь трех фазный ITTP. Электрические подключения частотного преобразователя ITTP показаны на (Рис. 2) силовая часть.

Частотный преобразователь имеет входной, фильтр благодаря которому, исключается возможные наводки в сети питания. Кроме того, инвертор оснащена встроенным предохранителем от перегрузки по току, гарантирующим абсолютную защиту двигателю, имеющую номинальную мощность, не превышающую номинальную мощность частотного преобразователя.

Монофазный частотный преобразователь IMTP устанавливается на асинхронные трехфазные двигатели с напряжением ~220 В, 50/60 Гц. Обмотки такого двигателя должны бить соединены по схеме «треугольник», если двигатель рассчитан на напряжение 230В в «треугольнике» / 400В в «звезде».

Трехфазный частотный преобразователь ITTP устанавливается на асинхронный трехфазный двигатель с напряжением ~200-440 В, 50/60 Гц. Обмотки такого двигателя должны бить соединены в «звезду», если двигатель рассчитаны на напряжение 230В в «треугольнике» / 400В в «звезде».

На (Рис.3) приведены схемы подключения двигателя по схеме «треугольник» и «звезда».

Инвертор может работать с насосами мощностью до 2,2 кВт (3HP) и частотой от 50 до 60 Гц. Частотный преобразователь оснащен защитой по выходному току; между инвертором и насосом нет необходимости устанавливать дополнительные устройства защиты для того, чтобы защитить двигатель в случае аварийной ситуации.

На (рис. 4) показаны разъемы для подключения управляющих сигналов: , или , а также разъем для подключения частотных преобразователей в каскад.

Станция с частотным преобразователем должна подключатся к сети электрического питания в соответствии с действующими нормам и правилами по технике безопасности. Место подключения оборудования необходимо оснастить ниже перечисленными компонентами:

  • Устройством защиты оборудования (УЗО) с номинальным током утечки 30 мА
  • Автоматическим выключателем с минимальным зазором между контактами 3 мм.
  • Заземлением

Настройка частотного преобразователя:

После сборки автоматической насосной станции с частотным преобразователем в сервисном центре, ее устанавливают на стенд для проведения гидравлических испытаний и настроек. Необходимо заполнить всасывающий патрубок и сам насос жидкостью и удалить весь воздух. Для автоматической настройки частотного преобразователя под параметры насоса необходимо отсоединить гидроаккумулятор, а на выходном патрубке за датчиком давления установить отсечной кран. Чтобы войти в настройки «ПАРАМЕТРЫ ДВИГАТЕЛЯ» необходимо сначала ввести ПАРОЛЬ. Затем нужно выставить номинальный ток двигателя, который указан на фирменной табличке. При первом запуске нужно проверить правильное направление вращения двигателя, наблюдая за вращением вентилятора. Направление вращения можно изменить, изменив значение параметра: «ПАРАМЕТРЫ ДВИГАТЕЛЯ», вращение с 0 на 1. При первом запуске частотный преобразователь определяет максимальные рабочие характеристики насоса. После проведения тестирования необходимо «СОХРАНИТЬ ДАННЫЕ». Для сохранения полученных при тестировании данных нужно выбрать ДА и подтвердить, нажав Enter. Затем выставляется желаемое рабочее давление «ЗАДАННОЕ ДАВЛЕНИЕ» при помощи кнопок (+) и (-).

  • Проверка останова двигателя при закрытой подаче: После того как были сохранены полученные данные при первом запуске, необходимо открыть запорный вентиль на подаче, нажать кнопку Start и подождать некоторое время необходимое для стабилизации давления, а затем медленно закрыть запорный вентиль и убедится, что двигатель остановился (через время примерно 5 – 10 секунд). При этом на дисплее появится сообщение «МИНИМАЛЬНЫЙ ПРОТОК». Это значение нужно точно отрегулировать для надежной остановки двигателя. Абсолютное значение мощности остановки двигателя отображается на дисплее.
  • Проверка функционирования насоса по сухому ходу: Для проверки остановки насоса по режиму «сухой ход», необходимо закрыть вентиль на подающем трубопроводе, чтобы насос поработал по «сухому ходу». По истечению примерно одной минуты (заводская настройка времени запаздывания) насос должен остановиться, сигнализируя на дисплее “СУХОЙ ХОД”. Если по истечению этого времени насос не остановился, нужно выставить более высокое значение параметра COS FI (значение по умолчанию 0.55).

На лицевой панели частотного преобразователя находятся светодиоды, дисплей и кнопки управления, назначение и описание светодиодов показаний дисплея и кнопок управления показано на (Рис. 5) .

С частотным преобразователем в комплекте находится инструкция по применению инвертора. В данном руководстве очень подробно расписано монтаж и подключение инвертора, запуск в эксплуатацию, настройки и аварийные состояния.

Перед вводом автоматической насосной станции с частотным преобразователем в эксплуатацию необходимо проверить давление в воздушной камере гидроаккумулятора, которое должно быть ниже давления включения насоса приблизительно на 0,2-0,3 бара (атм.) Контролировать уровень давления в гидроаккумуляторе можно с помощью обычного автомобильного манометра. Если давление недостаточно, его необходимо поднять до требуемого уровня при помощи насоса или компрессора. При давлении воздуха больше, чем необходимо, стравить излишки воздуха до нормы.

Эксплуатация, обслуживание и ремонт

При правильном монтаже и соблюдении условий эксплуатации автоматические насосные станции с частотным преобразователем практически не требуют обслуживания и ремонта. Для корректной работы датчика давления примерно раз в полгода необходимо произвести обслуживание гидроаккумулятора и проверить в нем давление воздуха. Как правильно проверить давление и настроить гидроаккумулятор, можно посмотреть . Если станция не будет использоваться в течение длительного времени (например, зимой), то рекомендуется отсоединить ее от системы водоснабжения, промыть чистой водой, затем полностью слить воду и установить в сухом, отапливаемом помещении. Перед началом эксплуатации станции необходимо всасывающий трубопровод и сам насос заполнить водой. Перед запуском автоматической насосной станции с частотным преобразователем в работу после длительного простоя необходимо убедится, что вал двигателя вращается свободно (не заклинен), провернув его за крыльчатку обдува.

И в заключение можно отметить следующее, первоначальные затраты на покупку насосной станции с частотным преобразователем значительные, но они окупаются с лихвой в процессе эксплуатации, за счет экономии электрической энергии.

Спасибо за внимание.

В системах жизнеобеспечения зданий используется множество насосов. Они выполняют самые разнообразные функции. Наиболее известный из них - циркуляционный насос для систем отопления. Помимо циркуляционных насосы в системах разного назначения используются:

  • насосные установки для повышения давления, необходимые для подачи воды в здание при недостаточном давлении в системе городского водоснабжения;
  • циркуляционный насос для систем отопления;
  • насосы для систем ГВС, обеспечивающие подачу горячей воды в любое время в любой кран;
  • насосы для отвода и дренажа сточных и грязных вод;
  • насосы для фонтанов и аквариумов;
  • насосы для противопожарного применения;
  • насосы для холодной воды и систем охлаждения;
  • насосные установки, использующие дождевую воду для туалетов, стиральных машин, уборки или полива;
  • скважинные насосы

Сегодня насос самый распространенный, который применяется практически повсеместно. Откройте смеситель, из него потечет вода, которую качает насос. В каждом автомобиле работает несколько насосов для масла, топлива, воды, охлаждающей жидкости. Велосипедист не отправится в путь, не накачав насосом шины. При изготовлении электронной лампы из нее, выкачивают воздух. Насосы накачивают, выкачивают, откачивают и перекачивают воздух, воду, нефть, молоко, бензин и даже цемент. От водопровода до ракеты, от вентилятора до атомной станции — таков диапазон применения насосов.

Но сам по себе насос работать не может. Для приведения его в действие нужен электродвигатель и устройство регулирования давления или разрежения для вакуумных насосов. Самым известным и распространенным способом регулирования в насосной системе является регулирование заслонкой, когда двигатель работает на полных оборотах, а регулирование давления в системе осуществляется с помощью запорной арматуры (задвижек, вентилей, отводов, шаровых кранов и т.д.). Если проводить параллели с управлением автомобилем, то регулирование заслонкой выглядит примерно так: водитель, нажав до упора педаль газа, регулирует скорость движения автомобиля педалью тормоза.

Более рационально и эффективно управлять насосами позволяют частотные преобразователи , с помощью которых на двигатель подается необходимое количество энергии для создания и поддержания необходимого уровня давления/разрежения в системе, например в трубопроводе. При этом достигается до 50% экономии потребления энергии, а если учесть, что в течение срока службы двигатель расходует электроэнергии на сумму, намного превосходящую его стоимость, то это показатель оказывается чрезвычайно актуальным. К примеру, в течение года работы по 8 часов в день двигатель мощностью 11 кВт израсходует электроэнергии на сумму около 85 тыс. руб. Частотный преобразователь при таких параметрах работы окупится в течение года, и в дальнейшем будет приносить предприятию прибыль.

Рассмотрим описанные выше методы регулирования давления в насосной системе более подробно.

На верхнем рисунке продемонстрирована типовая схема вычисления необходимой мощности насоса. Мощность насоса для конкретной системы всегда рассчитывается по уровню максимально потребления, то есть с определённым запасом. Синей линией показана кривая насоса — подающая часть системы водоснабжения, которая отражает зависимость давления нагнетания от величины расхода жидкости (протока). Красная линия – это кривая системы — потребляющая часть водоснабжения, так же отображающая взаимозависимость расхода и давления жидкости, но в зеркальном отображении. Пересечение этих кривых является точкой оптимума, когда насос обеспечивает необходимый проток и требуемый уровень давления.

Но фактически в таком режиме система работает крайне редко, лишь в моменты пикового потребления. В остальное время расчётная мощность насоса оказывается чрезмерной, и тогда в системах без регулирования или с применением заслонки происходит следующее: при снижении расхода насос создаёт избыточное давление, на создание которого расходуется дополнительная энергия. На рисунке ниже это наглядно показано.

Применение частотных преобразователей , за счёт снижения оборотов двигателя и как следствие подаваемой мощности позволяет изменить «кривую насоса» адаптировав её под «кривую системы»

Преимущества от работы системы водоснабжения с преобразователем частоты
Высокий КПД 90%
Малые затраты на электроэнергию,
постоянное давление в системе,
не нужна автоматика,
не нужно ее обслуживание,
не нужен расширительный бак,
не нужно его обслуживание,
не нужны краны, муфты и тройники для диагностики и слива расширительного бака и автоматики,
внедрение в любую систему МОДБАС, ИЗЕРНЕТ, ПРОФИВАС и т. д.
управление давлением, включением, по таймеру, ночной дневной режимы от любой панели, компьютера, данные всегда на экране перед глазами.
Контроль тока, напряжения, неисправностей, обрывов, замыканий двигателя насоса.

Управление насосами систем водоснабжения

Как известно, расход воды на хозяйственные и бытовые нужды очень сильно колеблется в течение суток, во время выходных и праздников. Множество людей принимают душ, стирают, моют посуду одновременно в определённые часы суток и почти не пользуются водой в другое время, например, ночью. Это создает условия для возникновения таких проблем, как плохой напор воды в утренние и вечерние часы, значительные суточные колебания давления в системе водоснабжения и, как следствие, ускоренный износ труб и запорной арматуры.

К счастью, сегодня стабилизация давления не является такой уж сложной задачей. Сегодня уже более актуален вопрос повышения общей эффективности управления системами водоснабжения, то есть достижение максимальных результатов при минимальном энергопотреблении и незначительных капиталовложениях в модернизацию оборудования. Использование преобразователей частоты на насосных станциях позволяет блестяще справиться с этой задачей. Статистика показывает, что преобразователь частоты способен снизить потребление энергии на насосных станциях от 30 до 50%, а срок их окупаемости составляет от одного до полутора лет.

На рисунке слева показан запуск двигателя насоса с помощью контактора.

На рисунке справа показан запуск насоса с преобразователем частоты.

Такая экономия достигается за счет того, что частотный преобразователь способен изменять частоту вращения электродвигателя плавно в широком диапазоне. Фактически, это обозначает, что электродвигатель насоса всегда будет потреблять ровно столько энергии, сколько необходимо для поддержания стабильного давления вне зависимости от текущего потребления системы водоснабжения в данный конкретный момент. Плавные пуск, останов и изменение частоты вращения двигателя позволяет также избежать гидравлических ударов в трубопроводах, сокращая потери воды и увеличивая срок безаварийной эксплуатации насоса, трубопровода, запорно-регулирующей арматуры и измерительных приборов.

На видео показан принцип работы частотного преобразователя в насосной станции

Выбор частотного преобразователя для насосов

Компания Контроль Системс предлагает частотные преобразователи для решения самых разнообразных задач управления насосами:

  • управление одиночными маломощными насосами,
  • каскадное управление группой насосов с заменой,

Мы работаем со многими производителями частотных преобразователей КЕБ, ОМРОН, ДЕЛЬТА, ВЕСПЕР, ОПТИМЭЛЕКТРО и поможем Вам подобрать частотный преобразователь, как для однофазного двигателя так и для трехфазного.

Рекомендуем почитать

Наверх