Тетраэдр. Задачи на построение сечений в тетраэдре

Инженерные системы 19.10.2019
Инженерные системы

Определение

Сечение - это плоская фигура, которая образуется при пересечении пространственной фигуры плоскостью и граница которой лежит на поверхности пространственной фигуры.

Замечание

Для построения сечений различных пространственных фигур необходимо помнить основные определения и теоремы о параллельности и перпендикулярности прямых и плоскостей, а также свойства пространственных фигур. Напомним основные факты.
Для более подробного изучения рекомендуется ознакомиться с темами “Введение в стереометрию. Параллельность” и “Перпендикулярность. Углы и расстояния в пространстве” .

Важные определения

1. Две прямые в пространстве параллельны, если они лежат в одной плоскости и не пересекаются.

2. Две прямые в пространстве скрещиваются, если через них нельзя провести плоскость.

4. Две плоскости параллельны, если они не имеют общих точек.

5. Две прямые в пространстве называются перпендикулярными, если угол между ними равен \(90^\circ\) .

6. Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости.

7. Две плоскости называются перпендикулярными, если угол между ними равен \(90^\circ\) .

Важные аксиомы

1. Через три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.

2. Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна.

3. Через две пересекающиеся прямые проходит плоскость, и притом только одна.

Важные теоремы

1. Если прямая \(a\) , не лежащая в плоскости \(\pi\) , параллельна некоторой прямой \(p\) , лежащей в плоскости \(\pi\) , то она параллельна данной плоскости.

2. Пусть прямая \(p\) параллельна плоскости \(\mu\) . Если плоскость \(\pi\) проходит через прямую \(p\) и пересекает плоскость \(\mu\) , то линия пересечения плоскостей \(\pi\) и \(\mu\) - прямая \(m\) - параллельна прямой \(p\) .


3. Если две пересекающиеся прямых из одной плоскости параллельны двум пересекающимся прямым из другой плоскости, то такие плоскости будут параллельны.

4. Если две параллельные плоскости \(\alpha\) и \(\beta\) пересечены третьей плоскостью \(\gamma\) , то линии пересечения плоскостей также параллельны:

\[\alpha\parallel \beta, \ \alpha\cap \gamma=a, \ \beta\cap\gamma=b \Longrightarrow a\parallel b\]


5. Пусть прямая \(l\) лежит в плоскости \(\lambda\) . Если прямая \(s\) пересекает плоскость \(\lambda\) в точке \(S\) , не лежащей на прямой \(l\) , то прямые \(l\) и \(s\) скрещиваются.


6. Если прямая перпендикулярна двум пересекающимся прямым, лежащим в данной плоскости, то она перпендикулярна этой плоскости.

7. Теорема о трех перпендикулярах.

Пусть \(AH\) – перпендикуляр к плоскости \(\beta\) . Пусть \(AB, BH\) – наклонная и ее проекция на плоскость \(\beta\) . Тогда прямая \(x\) в плоскости \(\beta\) будет перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна проекции.


8. Если плоскость проходит через прямую, перпендикулярную другой плоскости, то она перпендикулярна этой плоскости.

Замечание

Еще один важный факт, часто использующийся для построения сечений:

для того, чтобы найти точку пересечения прямой и плоскости, достаточно найти точку пересечения данной прямой и ее проекции на эту плоскость.


Для этого из двух произвольных точек \(A\) и \(B\) прямой \(a\) проведем перпендикуляры на плоскость \(\mu\) – \(AA"\) и \(BB"\) (точки \(A", B"\) называются проекциями точек \(A,B\) на плоскость). Тогда прямая \(A"B"\) – проекция прямой \(a\) на плоскость \(\mu\) . Точка \(M=a\cap A"B"\) и есть точка пересечения прямой \(a\) и плоскости \(\mu\) .

Причем заметим, что все точки \(A, B, A", B", M\) лежат в одной плоскости.

Пример 1.

Дан куб \(ABCDA"B"C"D"\) . \(A"P=\dfrac 14AA", \ KC=\dfrac15 CC"\) . Найдите точку пересечения прямой \(PK\) и плоскости \(ABC\) .

Решение

1) Т.к. ребра куба \(AA", CC"\) перпендикулярны \((ABC)\) , то точки \(A\) и \(C\) - проекции точек \(P\) и \(K\) . Тогда прямая \(AC\) – проекция прямой \(PK\) на плоскость \(ABC\) . Продлим отрезки \(PK\) и \(AC\) за точки \(K\) и \(C\) соответственно и получим точку пересечения прямых – точку \(E\) .


2) Найдем отношение \(AC:EC\) . \(\triangle PAE\sim \triangle KCE\) по двум углам (\(\angle A=\angle C=90^\circ, \angle E\) – общий), значит, \[\dfrac{PA}{KC}=\dfrac{EA}{EC}\]

Если обозначить ребро куба за \(a\) , то \(PA=\dfrac34a, \ KC=\dfrac15a, \ AC=a\sqrt2\) . Тогда:

\[\dfrac{\frac34a}{\frac15a}=\dfrac{a\sqrt2+EC}{EC} \Rightarrow EC=\dfrac{4\sqrt2}{11}a \Rightarrow AC:EC=4:11\]

Пример 2.

Дана правильная треугольная пирамида \(DABC\) с основанием \(ABC\) , высота которой равна стороне основания. Пусть точка \(M\) делит боковое ребро пирамиды в отношении \(1:4\) , считая от вершины пирамиды, а \(N\) – высоту пирамиды в отношении \(1:2\) , считая от вершины пирамиды. Найдите точку пересечения прямой \(MN\) с плоскостью \(ABC\) .

Решение

1) Пусть \(DM:MA=1:4, \ DN:NO=1:2\) (см. рисунок). Т.к. пирамида правильная, то высота падает в точку \(O\) пересечения медиан основания. Найдем проекцию прямой \(MN\) на плоскость \(ABC\) . Т.к. \(DO\perp (ABC)\) , то и \(NO\perp (ABC)\) . Значит, \(O\) – точка, принадлежащая этой проекции. Найдем вторую точку. Опустим перпендикуляр \(MQ\) из точки \(M\) на плоскость \(ABC\) . Точка \(Q\) будет лежать на медиане \(AK\) .
Действительно, т.к. \(MQ\) и \(NO\) перпендикулярны \((ABC)\) , то они параллельны (значит, лежат в одной плоскости). Следовательно, т.к. точки \(M, N, O\) лежат в одной плоскости \(ADK\) , то и точка \(Q\) будет лежать в этой плоскости. Но еще (по построению) точка \(Q\) должна лежать в плоскости \(ABC\) , следовательно, она лежит на линии пересечения этих плоскостей, а это – \(AK\) .


Значит, прямая \(AK\) и есть проекция прямой \(MN\) на плоскость \(ABC\) . \(L\) – точка пересечения этих прямых.

2) Заметим, что для того, чтобы правильно нарисовать чертеж, необходимо найти точное положение точки \(L\) (например, на нашем чертеже точка \(L\) лежит вне отрезка \(OK\) , хотя она могла бы лежать и внутри него; а как правильно?).

Т.к. по условию сторона основания равна высоте пирамиды, то обозначим \(AB=DO=a\) . Тогда медиана \(AK=\dfrac{\sqrt3}2a\) . Значит, \(OK=\dfrac13AK=\dfrac 1{2\sqrt3}a\) . Найдем длину отрезка \(OL\) (тогда мы сможем понять, внутри или вне отрезка \(OK\) находится точка \(L\) : если \(OL>OK\) – то вне, иначе – внутри).

а) \(\triangle AMQ\sim \triangle ADO\) по двум углам (\(\angle Q=\angle O=90^\circ, \ \angle A\) – общий). Значит,

\[\dfrac{MQ}{DO}=\dfrac{AQ}{AO}=\dfrac{MA}{DA}=\dfrac 45 \Rightarrow MQ=\dfrac 45a, \ AQ=\dfrac 45\cdot \dfrac 1{\sqrt3}a\]

Значит, \(QK=\dfrac{\sqrt3}2a-\dfrac 45\cdot \dfrac 1{\sqrt3}a=\dfrac7{10\sqrt3}a\) .

б) Обозначим \(KL=x\) .
\(\triangle LMQ\sim \triangle LNO\) по двум углам (\(\angle Q=\angle O=90^\circ, \ \angle L\) – общий). Значит,

\[\dfrac{MQ}{NO}=\dfrac{QL}{OL} \Rightarrow \dfrac{\frac45 a}{\frac 23a} =\dfrac{\frac{7}{10\sqrt3}a+x}{\frac1{2\sqrt3}a+x} \Rightarrow x=\dfrac a{2\sqrt3} \Rightarrow OL=\dfrac a{\sqrt3}\]

Следовательно, \(OL>OK\) , значит, точка \(L\) действительно лежит вне отрезка \(AK\) .

Замечание

Не стоит пугаться, если при решении подобной задачи у вас получится, что длина отрезка отрицательная. Если бы в условиях предыдущей задачи мы получили, что \(x\) – отрицательный, это как раз значило бы, что мы неверно выбрали положение точки \(L\) (то есть, что она находится внутри отрезка \(AK\) ).

Пример 3

Дана правильная четырехугольная пирамида \(SABCD\) . Найдите сечение пирамиды плоскостью \(\alpha\) , проходящей через точку \(C\) и середину ребра \(SA\) и параллельной прямой \(BD\) .

Решение

1) Обозначим середину ребра \(SA\) за \(M\) . Т.к. пирамида правильная, то высота \(SH\) пирамиды падает в точку пересечения диагоналей основания. Рассмотрим плоскость \(SAC\) . Отрезки \(CM\) и \(SH\) лежат в этой плоскости, пусть они пересекаются в точке \(O\) .


Для того, чтобы плоскость \(\alpha\) была параллельна прямой \(BD\) , она должна содержать некоторую прямую, параллельную \(BD\) . Точка \(O\) находится вместе с прямой \(BD\) в одной плоскости – в плоскости \(BSD\) . Проведем в этой плоскости через точку \(O\) прямую \(KP\parallel BD\) (\(K\in SB, P\in SD\) ). Тогда, соединив точки \(C, P, M, K\) , получим сечение пирамиды плоскостью \(\alpha\) .

2) Найдем отношение, в котором делят точки \(K\) и \(P\) ребра \(SB\) и \(SD\) . Таким образом мы полностью определим построенное сечение.

Заметим, что так как \(KP\parallel BD\) , то по теореме Фалеса \(\dfrac{SB}{SK}=\dfrac{SD}{SP}\) . Но \(SB=SD\) , значит и \(SK=SP\) . Таким образом, можно найти только \(SP:PD\) .

Рассмотрим \(\triangle ASC\) . \(CM, SH\) – медианы в этом треугольнике, следовательно, точкой пересечения делятся в отношении \(2:1\) , считая от вершины, то есть \(SO:OH=2:1\) .


Теперь по теореме Фалеса из \(\triangle BSD\) : \(\dfrac{SP}{PD}=\dfrac{SO}{OH}=\dfrac21\) .

3) Заметим, что по теореме о трех перпендикулярах \(CO\perp BD\) как наклонная (\(OH\) – перпендикуляр на плоскость \(ABC\) , \(CH\perp BD\) – проекция). Значит, \(CO\perp KP\) . Таким образом, сечением является четырехугольник \(CPMK\) , диагонали которого взаимно перпендикулярны.

Пример 4

Дана прямоугольная пирамида \(DABC\) с ребром \(DB\) , перпендикулярным плоскости \(ABC\) . В основании лежит прямоугольный треугольник с \(\angle B=90^\circ\) , причем \(AB=DB=CB\) . Проведите через прямую \(AB\) плоскость, перпендикулярную грани \(DAC\) , и найдите сечение пирамиды этой плоскостью.

Решение

1) Плоскость \(\alpha\) будет перпендикулярна грани \(DAC\) , если она будет содержать прямую, перпендикулярную \(DAC\) . Проведем из точки \(B\) перпендикуляр на плоскость \(DAC\) - \(BH\) , \(H\in DAC\) .

Проведем вспомогательные \(BK\) – медиану в \(\triangle ABC\) и \(DK\) – медиану в \(\triangle DAC\) .
Т.к. \(AB=BC\) , то \(\triangle ABC\) – равнобедренный, значит, \(BK\) – высота, то есть \(BK\perp AC\) .
Т.к. \(AB=DB=CB\) и \(\angle ABD=\angle CBD=90^\circ\) , то \(\triangle ABD=\triangle CBD\) , следовательно, \(AD=CD\) , следовательно, \(\triangle DAC\) – тоже равнобедренный и \(DK\perp AC\) .

Применим теорему о трех перпендикулярах: \(BH\) – перпендикуляр на \(DAC\) ; наклонная \(BK\perp AC\) , значит и проекция \(HK\perp AC\) . Но мы уже определили, что \(DK\perp AC\) . Таким образом, точка \(H\) лежит на отрезке \(DK\) .


Соединив точки \(A\) и \(H\) , получим отрезок \(AN\) , по которому плоскость \(\alpha\) пересекается с гранью \(DAC\) . Тогда \(\triangle ABN\) – искомое сечение пирамиды плоскостью \(\alpha\) .

2) Определим точное положение точки \(N\) на ребре \(DC\) .

Обозначим \(AB=CB=DB=x\) . Тогда \(BK\) , как медиана, опущенная из вершины прямого угла в \(\triangle ABC\) , равна \(\frac12 AC\) , следовательно, \(BK=\frac12 \cdot \sqrt2 x\) .

Рассмотрим \(\triangle BKD\) . Найдем отношение \(DH:HK\) .


Заметим, что т.к. \(BH\perp (DAC)\) , то \(BH\) перпендикулярно любой прямой из этой плоскости, значит, \(BH\) – высота в \(\triangle DBK\) . Тогда \(\triangle DBH\sim \triangle DBK\) , следовательно

\[\dfrac{DH}{DB}=\dfrac{DB}{DK} \Rightarrow DH=\dfrac{\sqrt6}3x \Rightarrow HK=\dfrac{\sqrt6}6x \Rightarrow DH:HK=2:1\]


Рассмотрим теперь \(\triangle ADC\) . Медианы треугольника точной пересечения делятся в отношении \(2:1\) , считая от вершины. Значит, \(H\) – точка пересечения медиан в \(\triangle ADC\) (т.к. \(DK\) – медиана). То есть \(AN\) – тоже медиана, значит, \(DN=NC\) .

Само же задание обычно звучит так: "построить натуральный вид фигуры сечения" . Конечно же, мы решили не оставлять этот вопрос в стороне и постараться по возможности объяснить, как происходит построение наклонного сечения.

Для того, чтобы объяснить, как строится наклонное сечение, я приведу несколько примеров. Начну конечно же с элементарного, постепенно наращивая сложность примеров. Надеюсь, что проанализировав эти примеры чертежей сечений, вы разберетесь в том, как это делается, и сможете сами выполнить свое учебное задание.

Рассмотрим "кирпичика" с размерами 40х60х80 мм произвольной наклонной плоскостью. Секущая плоскость разрезает его по точкам 1-2-3-4. Думаю, тут все понятно.

Перейдем к построению натурального вида фигуры сечения.
1. Первым делом проведем ось сечения. Ось следует чертить параллельно плоскости сечения - параллельно линии, в которую проецируется плоскость на главном виде - обычно именно на главном виде задают задание на построение наклонного сечения (Далее я всегда буду упоминать про главный вид, имея в виду что так бывает почти всегда в учебных чертежах).
2. На оси откладываем длину сечения. На моем чертеже она обозначена как L. Размер L определяется на главном виде и равен расстоянию от точки вхождения сечения в деталь до точки выхода из нее.
3. Из получившихся двух точек на оси перпендикулярно ей откладываем ширины сечения в этих точках. Ширину сечения в точке вхождения в деталь и в точке выхода из детали можно определить на виде сверху. В данном случае оба отрезка 1-4 и 2-3 равны 60 мм. Как видно из рисунка выше, края сечения прямые, поэтому просто соединяем два наших получившихся отрезка, получив прямоугольник 1-2-3-4. Это и есть - натуральный вид фигуры сечения нашего кирпичика наклонной плоскостью.

Теперь давайте усложним нашу деталь. Поставим кирпичик на основание 120х80х20 мм и дополним фигуру ребрами жесткости. Проведем секущую плоскость так, чтобы она проходила через все четыре элемента фигуры (через основание, кирпичик и два ребра жесткости). На рисунке ниже вы можете увидеть три вида и реалистичое изображение этой детали


Попробуем построить натуральный вид этого наклонного сечения. Начнем опять с оси сечения: проведем ее параллельно плоскости сечения обозначенного на главном виде. На ней отложим длину сечения равную А-Е. Точка А является точкой входа сечения в деталь, а в частном случае - точкой входа сечения в основание. Точкой выхода из основания является точка В. Отметим точку В на оси сечения. Аналогичным образом отметим и точки входа-выхода в ребро, в "кирпичик" и во второе ребро. Из точек А и В перпендикулярно оси отложим отрезки равные ширине основания (в каждую сторону от оси по 40, всего 80мм). Соединим крайние точки - получим прямоугольник, являющийся натуральным видом сечения основания детали.

Теперь настал черед построить кусочек сечения, являющийся сечением ребра детали. Из точек В и С отложим перпендикуляры по 5 мм в каждую сторону - получатся отрезки по 10 мм. Соединим крайние точки и получим сечение ребра.

Из точек С и D откладывем перпендикулярные отрезки равные ширине "кирпичика" - полностью аналогично первому примеру этого урока.

Отложив перпендикуляры из точек D и Е равные ширине второго ребра и соединив крайние точки получим натуральный вид его сечения.

Остается стереть перемычки между отдельными элементами получившегося сечения и нанести штриховку. Должно получиться что-то вроде этого:


Если же по заданному сечению произвести разделение фигуры, то мы увидим следующий вид:


Я надеюсь, что вас не запугали нудные абзацы описания алгоритма. Если вы прочли все вышенаписанное и еще не до конца поняли, как начертить наклонное сечение , я очень советую вам взять в руки лист бумаги и карандаш и попытаться повторить все шаги за мной - это почти 100% поможет вам усвоить материал.

Когда-то я пообещал продолжение данной статьи. Наконец-то я готов представить вам пошагового построения наклонного сечения детали, более приближенной к уровню домашних заданий. Более того, наклонное сечение задано на третьем виде (наклонное сечение задано на виде слева)


или запишите наш телефон и расскажите о нас своим друзьям - кто-то наверняка ищет способ выполнить чертежи

или создайте у себя на страничке или в блоге заметку про наши уроки - и кто-то еще сможет освоить черчение.

Да всё хорошо, только хотелось бы увидеть как делаеться тоже самое на более сложной детали, с фасками и конусовидным отверстием например.

Спасибо. А разве на разрезах ребра жесткости не штрихуются?
Именно. Именно они и не штрихуются. Потому что таковы общие правила выполнения разрезов. Однако их обычно штрихуют при выполнении разрезов в аксонометрических проекциях - изометрии, диметрии и т.д. При выполнении наклонных сечений, область относящаяся к ребру жесткости так же заштриховывается.

Спасибо,очень доступно.Скажите,а наклонное сечение можно выполнить на виде с верху,или на виде слева?Если да,то хотелось бы увидеть простейший пример.Пожалуйста.

Выполнить такие сечения можно. Но к сожалению у меня сейчас нет под рукой примера. И есть еще один интересный момент: с одной стороны, там ничего нового, а с другой стороны на практике такие сечения чертить реально сложнее. Почему-то в голове все начинает путаться и у большинства студентов возникают сложности. Но вы не сдавайтесь!

Да всё хорошо, только хотелось бы увидеть как делаеться тоже самое, но с отверстиями (сквозными и несквозными), а то в элипс они в голове так и не превращаются

помогите мне по комплексной задаче

Жаль, что вы именно тут написали. Написали бы в почту - может мы смогли бы успеть все обсудить.

Хорошо объясняете. Как быть если одна из сторон детали полукруглая? А также в детали есть отверстия.

Илья, используйте урок из раздела по начертательной геометрии "Сечение цилиндра наклонной плоскостью". С его помощью сможете разобраться, что делать с отверстиями (они же по сути тоже цилиндры) и с полукруглой стороной.

благодарю автора за статью!кратко и доступно пониманию.лет 20 назад сам грыз гранит науки,теперь сыну помогаю. многое забыл,но Ваша статья вернула фундаментальное понимание темы.Пойду с наклонным сечением цилиндра разбираться)

Добавьте свой комментарий.

1. Понятие о позиционной задаче. Напомним, что плоскость называется секущей плоскостью многогранника, если по обе стороны от этой плоскости имеются точки многогранника. Сечением многогранника плоскостью называется многоугольник, сторонами которого являются отрезки, по которым секущая плоскость пересекает грани многогранника.

На рис. 30 изображена треугольная призма . (На этом проекционном чертеже изображения точек обозначены теми же буквами, что и соответствующие точки-оригиналы). Представим, что нам необходимо отметить точки: а) М , лежащую на ребре ; б) N , лежащую в грани ; в) , лежащую внутри призмы.

Если мы изобразим эти точки так, как это сделано на рисунке а), то лишь про точку М можно условно сказать, что она лежит на ребре . Положение точек N и K по этому рисунку определить нельзя. Рисунок б) уже позволяет заключить, что точка N лежит в грани , а точка –


внутри призмы. За счет чего можно сделать эти выводы? Дело в том, что на втором рисунке мы задали проекции точек N и K на плоскость основания параллельно боковым ребрам призмы. Строго говоря, для того, чтобы быть уверенным, что и точка М лежит на ребре , одних зрительных восприятий также недостаточно. (В проектировании, с помощью которого выполнялось изображение призмы, точка М служит проекцией любой точки прямой, параллельной направлению проектирования и через нее проходящей.)


Если же указать, что при проектировании, параллельном боковым ребрам призмы, точка М проектируется на основание в точку А , то такая уверенность появляется.

Аналогичная ситуация показана на рис. 31. Здесь нужно отметить точки: а) М на боковом ребре SA ; б) N – в грани SАB ;
в) К – внутри пирамиды. Разница заключается в том, что на правом рисунке используется центральное проектирование отмечаемых точек на плоскость основания пирамиды из ее вершины S .

Для того чтобы сделать изображение наглядным, в рассмотренных примерах приходится использовать не одно проектирование, а два. Первое проектирование, с помощью которого выполнено изображение многогранника, называется внешним. Второе проектирование носит вспомогательный характер. Оно связано с самой фигурой, – это, как правило, проектирование на плоскость, содержащую одну из граней многогранника. Мы будем иметь дело только с призмами и пирамидами, а в качестве такой плоскости чаще всего выбирать плоскость их основания. Вспомогательное проектирование называется внутренним. Из рассмотренных примеров видно, что для призмы удобно использовать внутреннее параллельное проектирование, а для пирамиды – центральное.

Пусть F 0 – некоторая фигура в пространстве, которая параллельно проектируется на плоскость p (внешнее проектирование). Для того чтобы изображение фигуры было наглядным, мы выбираем в пространстве некоторую плоскость , отличную от плоскости p , и рассматриваем новое проектирование, параллельное или центральное, точек фигуры F 0 на эту плоскость (внутреннее проектирование).

Рассмотрим в пространстве точку М 0 и ее проекцию на плоскость p 0 ¢ при внутреннем проектировании. Обе эти точки спроектируем на плоскость p . При этом проекция М точки М 0 называется основной (или просто проекцией), а проекция М¢ точки – вторичной.

Если для точки М 0 фигуры F 0 известны ее проекция и вторичная проекция, то по изображению мы можем судить о положении этой точки на оригинале. В этом случае говорят, что точка М 0 , принадлежащая фигуре F 0 , является заданной на проекционном чертеже. Изображение фигуры F 0 , на котором каждая точка фигуры является заданной, называется полным.

На проекционных чертежах часто приходится решать задачи о нахождении пересечения различных фигур. Такие задачи называются позиционными. Если некоторое изображение является полным, то на этом изображении разрешима любая позиционная задача.

В заключение заметим следующее. Если M 0 ¢ , N 0 ¢, K 0 ¢, ... – образы точек M 0 , N 0 , K 0 , ... при внутреннем проектировании, то при внешнем проектировании (параллельном) образы MM¢ , NN ¢, KK ¢, ... параллельных прямых M 0 M 0 ¢, N 0 N 0 ¢, K 0 K 0 ¢, ... на плоскости p также будут параллельными. Если же M 0 ¢, N 0 ¢, K 0 ¢, ... – образы точек M 0 , N 0 , K 0 , ... при внутреннем центральном проектировании с центром S 0 , то образы MM ¢, NN ¢, KK ¢, ... прямых M 0 M 0 ¢, N 0 N 0 ¢, K 0 K 0 ¢, ... при внешнем проектировании пересекаются на плоскости p в одной точке S. Эта точка будет образом точки S 0 .

Среди позиционных задач нас будут интересовать только задачи, связанные с построением сечений многоугольников. Рассмотрим основные методы построения таких сечений. Обычно при решении стереометрических задач образы точек фигуры на проекционном чертеже обозначают теми же буквами, что и соответствующие им точки на фигуре-оригинале. Мы также в дальнейшем будем придерживаться этого правила.

2. Построения сечений, основанные на свойствах параллельных прямых и плоскостей. Данный способ особенно часто используется при построении сечений параллелепипедов. Это объясняется тем, что противоположные грани параллелепипеда параллельны. По теореме о пересечении параллельных плоскостей третьей плоскостью линии пересечения параллельных граней являются параллельными отрезками.

Задача 1. Основанием четырехугольной пирамиды SABCD является параллелограмм. Постройте сечение пирамиды плоскостью, проходящей через точку , лежащую на боковом ребре AS , параллельно диагонали BD основания.

Сколько таких плоскостей можно построить? Какие фигуры могут получаться в сечении?

Решение. В плоскости основания пирамиды проведем произвольную прямую a , параллельную диагонали BD . Через эту прямую и точку проходит плоскость a , и притом единственная. По признаку параллельности прямой и плоскости и, значит, плоскость a является искомой.

В плоскости основания существует бесконечно много прямых, параллельных прямой BD, поэтому существует бесконечно много плоскостей, удовлетворяющих условию задачи.


Вид многоугольника, получающегося в сечении, зависит от числа граней, которые пересекает плоскость a . Так как четырехугольная пирамида имеет пять граней, то в сечении могут получаться треугольники, четырехугольники и пятиугольники.

На рис. 32 показаны различные случаи расположения прямой a относительно параллелограмма ABCD . Очевидно, что в зависимости от этого расположения будет определяться вид многоугольника-сечения.

Слева на рис. 33 рассмотрен случай, когда прямая a 1 пересекает стороны AD , AB в точках M , N соответственно и лежит с точкой в одном полупространстве с границей BSD . Здесь сечением является треугольник MKN.

На правом рисунке показан случай, когда прямая a 3 лежит с точкой по разные стороны от плоскости BSD и пересекает стороны DC , BC основания в точках M , N соответственно. Обозначим через Х точку пересечения прямых AD и a 3 . Так как прямая AD лежит в плоскости грани ASD , то в этой грани лежит и точка Х . С другой стороны, точка Х принадлежит прямой a 3 , лежащей в секущей плоскости. Поэтому прямая будет линией пересечения секущей плоскости и плоскости грани ASD. Это позволяет найти точку R=SD ÇKX . Аналогично, точка позволяет построить вершину T ÎBS искомого сечения. В рассмотренном случае секущая плоскость пересекает все грани пирамиды и сечение является пятиугольником.

Остальные случаи взаимного расположения прямой a и основания пирамиды рассмотрите самостоятельно.

Рассмотрим специальные методы построения сечений.

4. Метод следов. Если секущая плоскость не параллельна грани многогранника, то она пересекает плоскость этой грани по прямой. Прямая, по которой секущая плоскость пересекает плоскость грани многогранника, называется следом секущей плоскости на плоскости этой грани. Один из методов построения сечений многогранников основан на использовании следа секущей плоскости на плоскости одной из его граней. Чаще всего при построении сечений призмы и усеченной пирамиды в качестве такой плоскости выбирается плоскость нижнего основания, а в случае пирамиды – плоскость ее основания.

Рассмотрим построение сечений методом следов на примерах.

Задача 2. Дано изображение четырехугольной призмы ABCDA 1 B 1 C 1 D 1 . Задать три точки, принадлежащие ее различным боковым граням, и построить сечение, проходящее через эти три точки.

Решение. Напомним, что для задания точки на проекционном чертеже необходимо задать ее основную и вторичную проекции. В случае призмы для задания вторичных проекций мы договорились использовать внутреннее параллельное проектирование. Поэтому, чтобы задать точку М , лежащую в грани АВВ 1 А 1 , указываем ее проекцию М 1 на плоскость основания параллельно боковым ребрам призмы. Аналогично задаются точки N и K , лежащие в гранях AD 1 DA 1 , CDD 1 C 1 соответственно (рис. 34). Построим след секущей плоскости на плоскости нижнего основания призмы. Параллельные прямые ММ 1 , лежат в одной плоскости и, значит, в общем случае прямые , пересекаются в некоторой точке Х . Так как прямая лежит в секущей плоскости, а прямая – в плоскости нижнего основания, то точка Х принадлежит следу секущей плоскости на плоскости нижнего основания призмы. Аналогично, точки K , N и их вторичные проекции K 1 , N 1 позволяют найти вторую точку Y , принадлежащую искомому следу.

Прямая АВ , лежащая в грани АВВ 1 А 1 , пересекает след XY в точке Z , поэтому прямая MZ лежит как в плоскости грани АВВ 1 А 1 , так и в секущей плоскости. Отрезок ТР , где T=MZ ÇAA 1 , P=MZ ÇBB 1 , будет стороной многоугольника-сечения. Далее последовательно строим его стороны TR и RQ , проходящие через данные точки N и K соответственно. Наконец, строим сторону PQ .

Задача 3. Дано изображение пятиугольной пирамиды SABCDE. Задать точки N и K , принадлежащие боковым ребрам SC , SD соответственно и точку М , лежащую в грани ASE. Построить сечение, проходящее через заданные точки.

Решение. Для задания точек K , N и М воспользуемся внутренним центральным проектированием с центром в вершине пирамиды. При этом проекциями точек K и N будут точки D и C , а проекцией точки М – точка (рис. 35).

Прямые и , лежащие в плоскости , в общем случае пересекаются в точке Х , лежащей в секущей плоскости. С другой стороны, точка Х лежит в плоскости основания, и, значит, она принадлежит следу секущей плоскости на плоскости основания. Второй точкой искомого следа будет точка . Прямая АЕ , лежащая в грани ASE пирамиды, пересекает след XY в точке Z . Проводя прямую , находим сторону LP многоугольника-сечения. Для того чтобы найти вершину сечения, строим точку , а затем прямую .

5. Метод внутреннего проектирования. Суть этого метода заключается в том, что здесь с помощью внутреннего проектирования точки сечения ищутся по их известным вторичным проекциям. Метод внутреннего проектирования особенно удобно применять в тех случаях, когда след секущей плоскости далеко удален от заданной фигуры. Этот метод незаменим и тогда, когда некоторые из прямых, содержащих стороны основания многогранника, пересекают след за пределами чертежа. Рассмотрим применение метода на примерах.

Задача 4. Дано изображение шестиугольной призмы и трех точек, лежащих в трех боковых гранях, никакие две из которых не являются смежными. Построить сечение призмы плоскостью, проходящей через заданные точки.

Решение. Пусть заданные точки М , L , K лежат в гранях , , , а ,, – их вторичные проекции
(рис. 36).

Найдем точку, в которой секущая плоскость пересекает боковое ребро . Для этого с помощью внутреннего проектирования для точки найдем основную проекцию Х , лежащую в секущей плоскости. Искомая точка Х является точкой пересечения прямой, проходящей через точку Х¢ параллельно боковым ребрам призмы, и прямой ML , лежащей в секущей плоскости. Точка Х позволяет построить вершину , а затем сторону QR сечения. Аналогично, используя точку , строим точку Y , прямую KY и находим вершину Р сечения. Далее строятся стороны PQ и PO сечения.

Оставшиеся построения выполняем в следующей последовательности:

1) строим точку Z¢=AK¢ ÇBD ;

2) находим точку Z (Z ÎPK );

3) проводим прямую OZ и находим вершину S (S ÎDD 1) сечения;

4) последовательно строим стороны SR , ST и TO сечения.

Задача 5. Дано изображение четырехугольной пирамиды и трех точек, лежащих на ее боковых ребрах. Построить сечение, проходящее через заданные точки.

Решение. Пусть SABCD – данная пирамида, а M , N , K – данные точки (рис. 37). Вторичными проекциями точек M , N , K во внутреннем центральном проектировании из вершины S на плоскость основания являются точки A , C и D соответственно. Заметим, что в данной задаче стороны и KN сечения сразу строятся. Остается найти только вершину сечения L , лежащую на боковом ребре SB . Для этого построим точку и «поднимем» ее в секущую плоскость с помощью внутреннего проектирования. Прообразом точки Х¢ при этом центральном проектировании будет точка Х=Х¢S ÇMN. Вершина L , принадлежащая ребру SB , лежит на прямой KX.

6. Комбинированный метод . Суть этого метода заключается в сочетании метода следов или метода внутреннего проектирования с построениями, выполняемыми на основе свойств параллельных прямых и плоскостей.

Рассмотрим следующий пример.

Задача 6. Точка М является серединой ребра AD куба ABCDA 1 B 1 C 1 D 1 . Построить сечение куба плоскостью, проходящей через точку М параллельно диагонали ВD основания и диагонали АВ 1 боковой грани АА 1 В 1 В .

Решение. Секущая плоскость a параллельна диагонали BD основания и проходит через точку М , также лежащую в основании, поэтому она пересекает основание по прямой
(рис. 38).

Прямая l будет следом плоскости a на плоскости нижнего основания куба. Обозначим . След m плоскости a на плоскости грани АВВ 1 А 1 строится аналогично. Этот след проходит через точку N , параллельно АВ 1 . Обозначим .

Можно продолжить построение сечения, не прибегая к специальным методам. Однако мы воспользуемся методом следов. Пусть прямая ВС пересекает след l в точке Х . Точки Х и искомой плоскости a лежат и в плоскости грани ВСС 1 В 1 . Обозначим через L точку пересечения прямой и ребра В 1 С 1 . Далее удобно воспользоваться теоремой о пересечении двух параллельных плоскостей третьей плоскостью. В силу этой теоремы , . Здесь R ÎDD 1 , P ÎC 1 D 1 .

Докажите, что полученный в сечении шестиугольник является правильным.

Изображение окружности

1. Эллипс и его свойства. При изображении цилиндра, конуса и шара (сферы) нам придется вычерчивать эллипсы. Эллипс можно определить различными способами. Приведем определение с помощью сжатия плоскости к прямой.


Эллипсом называется линия, которая является образом окружности при сжатии плоскости к прямой, проходящей через центр окружности (рис. 39).

Если заданы окружность, прямая, проходящая через ее центр, и коэффициент сжатия, с помощью приведенного определения легко построить образ любой точки заданной окружности. Выполнив построение нескольких точек-образов и соединив их плавной линией, можно вычертить эллипс, который является образом окружности.

Oxy так, чтобы ее ось Ox совпала с прямой сжатия l , а начало О было центром окружности w радиуса a (рис. 40). В этой системе координат окружность w определяется уравнением: или

Это значит, что любая точка , координаты которой удовлетворяют уравнению (1), принадлежит окружности w , а точка, координаты которой не удовлетворяют (1) – не принадлежит.

Пусть – коэффициент сжатия, – произвольная точка плоскости, а М 0 – ее проекция на прямую l . При сжатии к точка М переходит в точку такую, что . Так как прямая ММ 1 параллельна оси Oy , то , а проекция М 0 этих точек на прямую сжатия Ox определяется координатами .

Отсюда , . Поэтому формулы сжатия имеют вид

Обратно, формулы (2) определяют сжатие плоскости к оси Ox с коэффициентом сжатия , в котором точка переходит в точку .

Из этих формул , . Подставляя x и y в уравнение (1), получим: . Значит, координаты точки М 1 , являющейся образом точки окружности, удовлетворяют уравнению

где . Это уравнение в системе Oxy определяет эллипс g , который получается при сжатии окружности w к оси Ox . Напомним, что уравнение (3) называется каноническим уравнением эллипса.

Используя каноническое уравнение эллипса, можно изучать его геометрические свойства. Вспомним некоторые понятия, связанные с эллипсом, и его свойства.

Пусть эллипс g задан в прямоугольной системе координат каноническим уравнением (3). Так как x и y входят в это уравнение во второй степени, то можно сделать следующие выводы.

Если , то Îg (рис. 41). Отсюда следует, что начало координат О является центром симметрии эллипса. Центр симметрии эллипса называется его центром .

Если , то , . Отсюда следует, что прямые Ox и Oy являются осями симметрии эллипса. Оси симметрии эллипса называются его осями . Каждая из осей пересекает эллипс в двух точках. Ось Ox имеет уравнение , поэтому из уравнения (3) для абсцисс точек А 1 , А 2 пересечения имеем . Отсюда А 1 (a ;0), А 2 (–a ;0). Аналогично находим, что ось Oy пересекает эллипс в точках В 1 (0;b ) и В 2 (0;–b ). Точки пересечения эллипса с его осями называются вершинами эллипса. Отрезки А 1 А 2 и В 1 В 2 также называются осями эллипса . Центр эллипса О является общей серединой каждого из этих отрезков.



Отрезок, концы которого принадлежат эллипсу,называется хордой этого эллипса. Хорда эллипса, проходящая через его центр, называется диаметром эллипса . Значит, оси эллипса являются его взаимно перпендикулярными диаметрами.

Заметим, что при , имеем . В этом случае A 1 A 2 >B 1 B 2 и отрезки A 1 A 2 , B 1 B 2 называются соответственно большой и малой осями эллипса. При этом числа , называются соответственно большой и малой полуосями эллипса. При , наоборот, . Здесь названия осей меняются соответствующим образом.

Рассмотрим параметрические уравнения эллипса и основанный на них способ построения точек эллипса.

Пусть отрезки А 1 А 2 и В 1 В 2 являются осями эллипса. Построим на них, как на диаметрах, концентрические окружности w 1 и w 2 соответственно (рис. 42). Рассмотрим луч h с началом в точке О . Этот луч пересекает окружности w 1 и w 2 в точках М 1 и М 2 . Через точку М 1 проведем прямую, параллельную малой оси В 1 В 2 , а через точку М 2 – прямую, параллельную большой оси А 1 А 2 . Покажем, что точка М пересечения этих прямых принадлежит эллипсу с заданными осями.

Выберем прямоугольную систему координат Oxy с началом в точке О . Пусть в этой системе точка М имеет координаты (x ;y ). Далее, пусть луч h образует с лучом ОА 1 угол t. Если , то , . Поскольку точки М и М 1 имеют равные абсциссы, а точки М и М 2 – равные ординаты,

Из равенств (4) , , поэтому в силу основного тригонометрического тождества имеем , т.е. построенная точка принадлежит эллипсу с полуосями a и b .

Для любого значения t Î}

Рекомендуем почитать

Наверх