Электронная конфигурация n 3. Электронная конфигурация атома -схемы и модели

Элементы декора 25.09.2019
Элементы декора

Электронные конфигурации атомов элементов Периодической системы.

Распределение электронов по различным АО называют электронной конфигурацией атома . Электронная конфигурация с наименьшей энергией соответствует основному состоянию атома, остальные конфигурации относятся к возбужденным состояниям .

Электронную конфигурацию атома изображают двумя способами – в виде электронных формул и электронографических диаграмм. При написании электронных формул используют главное и орбитальное квантовые числа. Подуровень обозначают с помощью главного квантового числа (цифрой) и орбитального квантового числа (соответствующей буквой). Число электронов на подуровне характеризует верхний индекс. Например, для основного состояния атома водорода электронная формула: 1s 1 .

Более полно строение электронных уровней можно описать с помощью электронографических диаграмм, где распределение по подуровням представляют в виде квантовых ячеек. Орбиталь в этом случае принято условно изображать квадратом, около которого проставлено обозначение подуровня. Подуровни на каждом уровне должны быть немного смещены по высоте, так как их энергия несколько различается. Электроны изображаются стрелками или ↓ в зависимости от знака спинового квантового числа. Электронографическая диаграмма атома водорода:

Принцип построения электронных конфигураций многоэлектронных атомов состоит в добавлении протонов и электронов к атому водорода. Распределение электронов по энергетическим уровням и подуровням подчиняются рассмотренным ранее правилам: принципу наименьшей энергии, принципу Паули и правилу Хунда.

С учетом структуры электронных конфигураций атомов все известные элементы в соответствии со значением орбитального квантового числа последнего заполняемого подуровня можно разбить на четыре группы: s -элементы, p -элементы, d -элементы, f -элементы.

В атоме гелия Не (Z=2) второй электрон занимает 1s -орбиталь, его электронная формула: 1s 2 . Электронографическая диаграмма:

Гелием заканчивается первый самый короткий период Периодической системы элементов. Электронную конфигурацию гелия обозначают .

Второй период открывает литий Li (Z=3), его электронная формула: Электронографическая диаграмма:

Далее приведены упрощенные электронографические диаграммы атомов элементов, орбитали одного энергетического уровня которых расположены на одной высоте. Внутренние, полностью заполненные подуровни, не показаны.

После лития следует бериллий Ве (Z=4), в котором дополнительный электрон заселяет 2s -орбиталь. Электронная формула Ве: 2s 2

В основном состоянии следующий электрон бора В (z=5) занимает 2р -орбиталь, В:1s 2 2s 2 2p 1 ; его электронографическая диаграмма:

Следующие пять элементов имеют электронные конфигурации:

С (Z=6): 2s 2 2p 2 N (Z=7): 2s 2 2p 3

O (Z=8): 2s 2 2p 4 F (Z=9): 2s 2 2p 5

Ne (Z=10): 2s 2 2p 6

Приведенные электронные конфигурации определяются правилом Хунда.

Первый и второй энергетические уровни неона полностью заполнены. Обозначим его электронную конфигурацию и будем использовать в дальнейшем для краткости записи электронных формул атомов элементов.

Натрий Na (Z=11) и Mg (Z=12) открывают третий период. Внешние электроны занимают 3s -орбиталь:

Na (Z=11): 3s 1

Mg (Z=12): 3s 2

Затем, начиная с алюминия (Z=13), заполняется 3р -подуровень. Третий период заканчивается аргоном Ar (Z=18):

Al (Z=13): 3s 2 3p 1

Ar (Z=18): 3s 2 3p 6

Элементы третьего периода отличаются от элементов второго тем, что у них имеются свободные 3d -орбитали, которые могут участвовать в образовании химической связи. Это объясняет проявляемые элементами валентные состояния.

В четвертом периоде, в соответствии с правилом (n +l ), у калия К (Z=19) и кальция Са (Z=20) электроны занимают 4s -подуровень, а не 3d .Начиная со скандия Sc (Z=21) и кончая цинком Zn (Z=30), происходит заполнение3d -подуровня:

Электронные формулы d -элементов можно представить в ионном виде: подуровни перечисляются в порядке возрастания главного квантового числа, а при постоянном n – в порядке увеличения орбитального квантового числа. Например, для Zn такая запись будет выглядеть так: Обе эти записи эквивалентны, но приведенная ранее формула цинка правильно отражает порядок заполнения подуровней.

В ряду 3d -элементов у хрома Сr (Z=24) наблюдается отклонение от правила (n +l ). В соответствии с этим правилом конфигурация Сr должна выглядеть так: Установлено, что его реальная конфигурация - Иногда этот эффект называют «провалом» электрона. Подобные эффекты объясняются повышенной устойчивостью наполовину (p 3 , d 5 , f 7) и полностью (p 6 , d 10 , f 14) заполненных подуровней.

Отклонения от правила (n +l ) наблюдаются и у других элементов (табл. 6). Это связано с тем, что с увеличение главного квантового числа различия между энергиями подуровней уменьшаются.

Далее происходит заполнение 4p -подуровня (Ga - Kr). В четвертом периоде содержится всего 18 элементов. Аналогично происходит заполнение 5s -, 4d - и 5p - подуровней у 18-ти элементов пятого периода. Отметим, что энергия 5s - и 4d -подуровней очень близки, и электрон с 5s -подуровня может легко переходить на 4d -подуровень. На 5s -подуровне у Nb, Mo, Tc, Ru, Rh, Ag находится только один электрон. В основном состоянии 5s -подуровень Pd не заполнен. Наблюдается «провал» двух электронов.

В шестом периоде после заполнения 6s -подуровня у цезия Cs (Z=55) и бария Ba (Z=56) следующий электрон, согласно правилу (n +l ), должен занять 4f -подуровень. Однако у лантана La (Z=57) электрон поступает на 5d -подуровень. Заполненный на половину (4f 7) 4f -подуровень обладает повышенной устойчивостью, поэтому у гадолиния Gd (Z=64), следующего за европием Eu (Z=63), на 4f -подуровне сохраняется прежнее количество электронов (7), а новый электрон поступает на 5d -подуровень, нарушая правило (n +l ). У тербия Tb (Z=65) очередной электрон занимает 4f -подуровень и происходит переход электрона с 5d -подуровня (конфигурация 4f 9 6s 2). Заполнение 4f -подуровня заканчивается у иттербия Yb (Z=70). Следующий электрон атома лютеция Lu занимает 5d -подуровень. Его электронная конфигурация отличается от конфигурации атома лантана только полностью заполненным 4f -подуровнем.

Таблица 6

Исключения из (n +l ) – правила для первых 86 элементов

Элемент Электронная конфигурация
по правилу (n +l ) фактическая
Cr (Z=24) Cu (Z=29) Nb (Z=41) Mo (Z=42) Tc (Z=43) Ru (Z=44) Rh (Z=45) Pd (Z=46) Ag (Z=47) La (Z=57) Ce (Z=58) Gd (Z=64) Ir (Z=77) Pt (Z=78) Au (Z=79) 4s 2 3d 4 4s 2 3d 9 5s 2 4d 3 5s 2 4d 4 5s 2 4d 5 5s 2 4d 6 5s 2 4d 7 5s 2 4d 8 5s 2 4d 9 6s 2 4f 1 5d 0 6s 2 4f 2 5d 0 6s 2 4f 8 5d 0 6s 2 4f 14 5d 7 6s 2 4f 14 5d 8 6s 2 4f 14 5d 9 4s 1 3d 5 4s 1 3d 10 5s 1 4d 4 5s 1 4d 5 5s 1 4d 6 5s 1 4d 7 5s 1 4d 8 5s 0 4d 10 5s 1 4d 10 6s 2 4f 0 5d 1 6s 2 4f 1 5d 1 6s 2 4f 7 5d 1 6s 0 4f 14 5d 9 6s 1 4f 14 5d 9 6s 1 4f 14 5d 10

В настоящее время в Периодической системе элементов Д.И. Менделеева под скандием Sc и иттрием Y располагаются иногда лютеций (а не лантан) как первый d -элемент, а все 14 элементов перед ним, включая лантан, вынося в особую группу лантаноидов за пределы Периодической системы элементов.

Химические свойства элементов определяются, главным образом, структурой внешних электронных уровней. Изменение числа электронов на третьем снаружи 4f -подуровне слабо отражается на химических свойствах элементов. Поэтому все 4f -элементы схожи по своим свойствам. Затем в шестом периоде происходит заполнение 5d -подуровня (Hf – Hg) и 6p -подуровня (Tl – Rn).

В седьмом периоде 7s -подуровень заполняется у франция Fr (Z=87) и радия Ra (Z=88). У актиния наблюдается отклонение от правила (n +l ), и очередной электрон заселяет 6d -подуровень, а не 5f . Далее следует группа элементов (Th – No) с заполняющимся 5f -подуровнем, которые образуют семейство актиноидов . Отметим, что 6d - и 5f - подуровни имеют столь близкие энергии, что электронная конфигурация атомов актиноидов часто не подчиняется правилу (n +l ). Но в данном случае значение точной конфигурации 5f т 5d m не столь важно, поскольку она довольно слабо влияет на химические свойства элемента.

У лоуренсия Lr (Z=103) новый электрон поступает на 6d -подуровень. Этот элемент иногда помещают в Периодической системе под лютецием. Седьмой период не завершен. Элементы 104 – 109 неустойчивы и их свойства малоизвестны. Таким образом, с ростом заряда ядра периодически повторяются сходные электронные структуры внешних уровней. В связи с этим следует ожидать и периодического изменения различных свойств элементов.

Отметим, что описанные электронные конфигурации относятся к изолированным атомам в газовой фазе. Конфигурация атома элемента может быть совершенно иной, если атом находится в твердом теле или растворе.

Лекция 2. Электронная конфигурация элемента

В конце прошлой лекции нами на основании правил Клечковского был построен порядок заполнения электронами энергетических подуровней

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 5d1 4f14 5d9 6p6 7s2 6d1 5f14 6d9 7p6 …

Распределение электронов атома по энергетическим подуровням называется электронной конфигурацией. В первую очередь, при взгляде на ряд заполнения бросается в глаза некая периодичность-закономерность.

Заполнение электронами энергетических орбиталей в основном состоянии атома подчиняется принципу наименьшей энергии: вначале заполняются более выгодные низколежащие орбитали, а затем последовательно более высоколежащие орбитали согласно порядку заполнения.

Проанализируем последовательность заполнения.

Если в составе атома присутствует ровно 1 электрон, он попадает на самую низколежащую 1s -АО (АО – атомная орбиталь). Следовательно, возникающая электронная конфигурация может быть представлена записью 1s1 или графически (См. ниже – стрелочка в квадратике).

Нетрудно понять, что если электронов в атоме больше одного, они последовательно занимают сначала 1s, а затем 2s и, наконец, переходят на 2p-подуровень. Однако уже для шести электронов (атом углерода в основном состоянии) возникают две возможности: заполнение 2p-подуровня двумя электронами с одинаковым спином или с противоположным.

Приведем простую аналогию: предположим, что атомные орбитали являются своеобразными «комнатами» для «жильцов», в роли которых выступают электроны. Из практики хорошо известно, что жильцы предпочитают по возможности занимать каждый отдельную комнату, а не тесниться в одной.

Аналогичное поведение характерно и для электронов, что находит отражение в правиле Гунда:

Правило Гунда : устойчивому состоянию атома соответствует такое распределение электронов в пределах энергетического подуровня, при котором суммарный спин максимален.

Состояние атома с минимальной энергией называется основным, а все остальные – возбужденными состояниями атома.

Лекция 2. Электронная конфигурация

Атомы элементов I и II периодов

1 электрон

2 электрона

3 электрона

4 электрона

5 электронов

6 электронов

7 электронов

8 электронов

9 электронов

10Ne

10 электронов

Элемент всего e-

электронная конфигурация

распределение электронов

Тогда, на основании правила Гунда, для азота основное состояние предполагает наличие трех неспаренных p -электронов (электронная конфигурация …2p3 ). В атомах кислорода, фтора и неона происходит последовательное спаривание электронов и заполнение 2p-подуровня.

Обратим внимание, что третий период Периодической системы начинает атом натрия,

конфигурация которого (11 Na … 3s1 ) очень похожа на конфигурацию лития (3 Li … 2s1 )

за тем исключением, что главное квантовое число n равно трем, а не двум.

Заполнение электронами энергетических подуровней в атомах элементов III периода в точности аналогично наблюдавшемуся для элементов II периода: у атома магния завершается заполнение 3s-подуровня, затем от алюминия до аргона электроны последовательно размещаются на 3p-подуровне согласно правилу Гунда: сначала на АО размещаются отдельные электроны (Al, Si, P), затем происходит их спаривание.

Атомы элементов III периода

11Na

12Mg

13Al

14Si

17Cl

18Ar

сокращенная

распределение e-

Лекция 2. Электронная конфигурация

Четвертый период Периодической системы начинается с заполнения электронами 4s-подуровня в атомах калия и кальция. Как следует из порядка заполнения, затем наступает очередь 3d -орбиталей.

Таким образом, можно заключить, что заполнение электронами d -АО «опаздывает» на 1 период: вIV периоде заполняется 3(!) d -подуровень).

Итак, от Sc до Zn происходит заполнение электронами 3d -подуровня (10 электронов), затем от Ga до Kr заполняется 4p -подуровень.

Атомы элементов IV периода

20Ca

21Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

4s2 3d1

1s2 2s2 2p6 3s2 3p6 4s2 3d2

22Ti

4s2 3d2

30Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10

4s2 3d10

31Ga

1s 2s 2p 3s 3p 4s 3d

36Kr

1s 2s 2p 3s 3p 4s 3d

сокращенная

распределение e-

Заполнение электронами энергетических подуровней в атомах элементов V периода в точности аналогично наблюдавшемуся для элементов IV периода

(разобрать самостоятельно)

В шестом периоде сначала заполняется электронами 6s-подуровень (атомы55 Cs и

56 Ba), а затем один электрон располагается на 5d -орбитали лантана (57 La 6s2 5d1 ).

У следующих 14 элементов (с 58 по 71) заполняется 4f -подуровень, т.е. заполнение f- орбиталей «опаздывает» на 2 периода, при этом электрон на 5d -подуровне сохраняется. Например, следует записать электронную конфигурацию церия

58 Ce 6s2 5d 1 4 f 1

Начиная с 72-элемента (72 Hf) и до 80 (80 Hg) происходит «дозаполнение» 5d -подуровня.

Следовательно, электронные конфигурация гафния и ртути имеют вид

72 Hf 6s2 5d 1 4 f 14 5d 1 или допустима запись72 Hf 6s2 4 f 14 5d 2 80 Hg 6s2 5d 1 4 f 14 5d 9 или80 Hg 6s2 4 f 14 5d 10

Лекция 2. Электронная конфигурация

Аналогичным образом происходит заполнение электронами энергетических подуровней в атомах элементов VII периода.

Определение квантовых чисел из электронной конфигурации

Что такое квантовые числа, как они появились и зачем нужны – см. Лекция 1.

Дано: запись электронной конфигурации «3p 4 »

Главное квантовое число n – первая цифра в записи, т.е. «3». n = 3 «3 p4 », главное квантовое число;

Побочное (орбитальное, азимутальное) квантовое число l закодировано буквенным обозначением подуровня. Букваp соответствует числуl = 1.

форма облака

l = 1 «3p 4 »,

«гантеля»

Распределение электронов в пределах подуровня согласно принципу Паули и правилу Гунда

m Є [-1;+1] – орбитали одинаковы (вырождены) по энергииn = 3, l = 1, m Є [-1;+1] (m = -1); s = + ½

n = 3, l = 1, m Є [-1;+1] (m = 0); s = + ½n = 3, l = 1, m Є [-1;+1] (m = +1); s = + ½ n = 3, l = 1, m Є [-1;+1] (m = -1); s = - ½

Валентный уровень и валентные электроны

Валентным уровнем называется набор энергетических подуровней, которые участвуют в образовании химических связей с другими атомами.

Валентными называются электроны, располагающиеся на валентном уровне.

Элементы ПСХЭ делятся на 4 группы

s -элементы . Валентные электроны ns x . Два s -элемента находятся в начале каждого периода.

p -элементы . Валентные электроны ns 2 np x . Шесть p -элементов располагаются в конце каждого периода (кроме первого и седьмого).

Лекция 2. Электронная конфигурация

d -элементы. Валентные электроны ns 2 (n-1)d x . Десять d -элементов образуют побочные подгруппы, начиная с IV периода и находятся междуs- и p- элементами.

f -элементы. Валентные электроны ns 2 (n-1)d 1 (n-2)f x . Четырнадцать f -элементов образуют ряды лантаноидов (4f ) и актиноидов (5f ), которые расположены под таблицей.

Электронные аналоги – это частицы, для которых характерны сходные электронные конфигурации, т.е. распределение электронов по подуровням.

Например

H 1s1 Li … 2s1 Na … 3s1 K … 4s1

Электронные аналоги обладают сходными электронными конфигурациями, поэтому их химические свойства похожи – и они располагаются в Периодической системе элементов в одной подгруппе.

Электронный «провал» (или электронный «проскок»)

Квантовая механика предсказывает, что наименьшей энергией обладает такое состояние частицы, когда все уровни заполнены электронами либо полностью, либо наполовину.

Поэтому для элементов подгруппы хрома (Cr, Mo, W, Sg) иэлементов подгруппы меди (Cu, Ag, Au) происходит перемещение 1 электрона сs - на d- подуровень.

24 Cr 4s2 3d4 24 Cr 4s1 3d5 29 Cu 4s2 3d9 29 Cu 4s1 3d10

Это явление получило название электронный «провал», его следует запомнить.

Подобное явление характерно также и для f -элементов, однако их химия выходит за рамки нашего курса.

Обратите внимание: для p-элементов электронный провал НЕ наблюдается!

Подводя итоги, следует заключить, что количество электронов в атоме определяется составом его ядра, а их распределение (электронная конфигурация) – наборами

Лекция 2. Электронная конфигурация

квантовых чисел. В свою очередь, электронная конфигурация определяет химические свойства элемента.

Поэтому, очевидно, что Свойства простых веществ, а также свойства соединений

элементов находятся в периодической зависимости от величины заряда ядра

атома (порядкового номера).

Периодический закон

Основные свойства атомов элементов

1. Радиус атома – расстояние от центра ядра до внешнего энергетического уровня. В

периоде по мере увеличения заряда ядра радиус атома уменьшается; в группе,

наоборот, по мере числа энергетических уровней, радиус атома растет.

Следовательно, в ряду O2- , F- , Ne, Na+ , Mg2+ - радиус частицы уменьшается, хотя их конфигурация одинакова 1s2 2s2 2p6 .

Для неметаллов говорят о ковалентном радиусе, для металлов – о металлическом радиусе, для ионов – об ионном радиусе.

2. Потенциал ионизации – это энергия, которую нужно истратить на отрыв от атома 1

электрона. По принципу наименьшей энергии в первую очередь отрывается последний по заполнению электрон (для s и p -элементов) и электрон внешнего энергетического уровня (дляd и f -элементов)

В периоде по мере роста заряда ядра потенциал ионизации растет – в начале периода находится щелочной металл с низким потенциалом ионизации, в конце периода – инертный газ. В группе потенциалы ионизации ослабевают.

Энергия ионизации, эВ

3. Сродство к электрону – энергия, выделяющаяся при присоединении к атому электрона, т.е. при образовании аниона.

4. Электроотрицательность (ЭО) – это способность атомов притягивать к себе электронную плотность. В отличие от потенциала ионизации, за которым стоит конкретная измеряемая физическая величина, ЭО – это некоторая величина, которая может быть только рассчитана , измерить её нельзя. Иными словами, ЭО придумали люди, для того, чтобы с её помощью объяснять те или иные явления.

Для наших учебных целей требуется запомнить качественный порядок изменения

электроотрицательности: F > O > N > Cl > … > H > … > металлы.

ЭО – способность атома смещать к себе электронную плотность, – очевидно,

возрастает в периоде (так как увеличивается заряд ядра – сила притяжения электрона и уменьшается радиус атома) и, напротив, ослабевает в группе.

Нетрудно понять, что раз период начинается электроположительным металлом,

а заканчивается типичным неметаллом VII группы (инертные газы в расчет не принимаем), то степень изменения ЭО в периоде больше, чем в группе.

Лекция 2. Электронная конфигурация

5. Степень окисления – это условный заряд атома в химическом соединении,

вычисленный в приближении, что все связи образованы ионами. Минимальная степень окисления определяется тем, сколько электронов атом способен принять на

отображают последовательность соединения атомов друг с другом. Рассмотрим по отдельности каждую пару атомов и обозначим стрелочкой смещение электронов к тому атому из пары, ЭО которого больше (б). Следовательно, электроны сместились – и образовались заряды – положительные и отрицательные:

на конце каждой стрелочки заряд (-1), соответствующий добавлению 1 электрона;

на основании стрелочки заряд (+1), соответствующий удалению 1 электрона.

Получившиеся заряды и есть степень окисления того или иного атома.

H +1

H +1

На этом на сегодня все, спасибо за внимание.

Литература

1. С.Г. Барам, М.А. Ильин. Химия в Летней школе. Учеб. пособие / Новосиб. гос.

ун-т, Новосибирск, 2012. 48 с.

2. А.В. Мануйлов, В.И. Родионов. Основы химии для детей и взрослых. – М.:

ЗАО Издательство Центрполиграф, 2014. – 416 с. – см. с. 29-85. http://www.hemi.nsu.ru/

Химическими веществами называют то, из чего состоит окружающий нас мир.

Свойства каждого химического вещества делятся на два типа: это химические, которые характеризуют его способность образовывать другие вещества, и физические, которые объективно наблюдаются и могут быть рассмотрены в отрыве от химических превращений. Так, например, физическими свойствами вещества являются его агрегатное состояние (твердое, жидкое или газообразное), теплопроводность, теплоемкость, растворимость в различных средах (вода, спирт и др.), плотность, цвет, вкус и т.д.

Превращения одних химических веществ в другие вещества называют химическими явлениями или химическими реакциями. Следует отметить, что существуют также и физические явления, которые, очевидно, сопровождаются изменением каких-либо физических свойств вещества без его превращения в другие вещества. К физическим явлениям, например, относятся плавление льда, замерзание или испарение воды и др.

О том, что в ходе какого-либо процесса имеет место химическое явление, можно сделать вывод, наблюдая характерные признаки химических реакций, такие как изменение цвета, образование осадка, выделение газа, выделение теплоты и (или) света.

Так, например, вывод о протекании химических реакций можно сделать, наблюдая:

Образование осадка при кипячении воды, называемого в быту накипью;

Выделение тепла и света при горении костра;

Изменение цвета среза свежего яблока на воздухе;

Образование газовых пузырьков при брожении теста и т.д.

Мельчайшие частицы вещества, которые в процессе химических реакций практически не претерпевают изменений, а лишь по-новому соединяются между собой, называются атомами.

Сама идея о существовании таких единиц материи возникла еще в древней Греции в умах античных философов, что собственно и объясняет происхождение термина «атом», поскольку «атомос» в буквальном переводе с греческого означает «неделимый».

Тем не менее, вопреки идее древнегреческих философов, атомы не являются абсолютным минимумом материи, т.е. сами имеют сложное строение.

Каждый атом состоит из так называемых субатомных частиц – протонов, нейтронов и электронов, обозначаемых соответственно символами p + , n o и e − . Надстрочный индекс в используемых обозначениях указывает на то, что протон имеет единичный положительный заряд, электрон – единичный отрицательный заряд, а нейтрон заряда не имеет.

Что касается качественного устройства атома, то у каждого атома все протоны и нейтроны сосредоточены в так называемом ядре, вокруг которого электроны образуют электронную оболочку.

Протон и нейтрон обладают практически одинаковыми массами, т.е. m p ≈ m n , а масса электрона почти в 2000 раз меньше массы каждого из них, т.е. m p /m e ≈ m n /m e ≈ 2000.

Поскольку фундаментальным свойством атома является его электронейтральность, а заряд одного электрона равен заряду одного протона, из этого можно сделать вывод о том, что количество электронов в любом атоме равно количеству протонов.

Так, например, в таблице ниже представлен возможный состав атомов:

Вид атомов с одинаковым зарядом ядер, т.е. с одинаковым числом протонов в их ядрах, называют химическим элементом. Таким образом, из таблицы выше можно сделать вывод о том, что атом1 и атом2 относятся в одному химическому элементу, а атом3 и атом4 — к другому химическому элементу.

Каждый химический элемент имеет свое название и индивидуальный символ, который читается определенным образом. Так, например, самый простой химический элемент, атомы которого содержат в ядре только один протон, имеет название «водород» и обозначается символом «Н», что читается как «аш», а химический элемент с зарядом ядра +7 (т.е. содержащий 7 протонов) — «азот», имеет символ «N» , который читается как «эн».

Как можно заметить из представленной выше таблицы, атомы одного химического элемента могут отличаться количеством нейтронов в ядрах.

Атомы, относящиеся к одному химическому элементу, но имеющие разное количество нейтронов и, как следствие массу, называют изотопами.

Так, например, химический элемент водород имеет три изотопа – 1 Н, 2 Н и 3 Н. Индексы 1, 2 и 3 сверху от символа Н означают суммарное количество нейтронов и протонов. Т.е. зная, что водород – это химический элемент, который характеризуется тем, что в ядрах его атомов находится по одному протону, можно сделать вывод о том, что в изотопе 1 Н вообще нет нейтронов (1-1=0), в изотопе 2 Н – 1 нейтрон (2-1=1) и в изотопе 3 Н – два нейтрона (3-1=2). Поскольку, как уже было сказано, нейтрон и протон имеют одинаковые массы, а масса электрона по сравнению с ними пренебрежимо мала, это значит, что изотоп 2 Н практически в два раза тяжелее изотопа 1 Н, а изотоп 3 Н — и вовсе в три раза. В связи с таким большим разбросом масс изотопов водорода изотопам 2 Н и 3 Н даже были присвоены отдельные индивидуальные названия и символы, что не характерно больше ни для одного другого химического элемента. Изотопу 2 Н дали название дейтерий и присвоили символ D, а изотопу 3 Н дали название тритий и присвоили символ Т.

Если принять массу протона и нейтрона за единицу, а массой электрона пренебречь, фактически верхний левый индекс помимо суммарного количества протонов и нейтронов в атоме можно считать его массой, в связи с чем этот индекс называют массовым числом и обозначают символом А. Поскольку за заряд ядра любого атома отвечают протоны, а заряд каждого протона условно считается равным +1, количество протонов в ядре называют зарядовым числом (Z). Обозначив количество нейтронов в атоме буквой N, математически взаимосвязь между массовым числом, зарядовым числом и количеством нейтронов можно выразить как:

Согласно современным представлениям, электрон имеет двойственную (корпускулярно-волновую) природу. Он обладает свойствами как частицы, так и волны. Подобно частице, электрон имеет массу и заряд, но в то же время поток электронов, подобно волне, характеризуется способностью к дифракции.

Для описания состояния электрона в атоме используют представления квантовой механики, согласно которым электрон не имеет определенной траектории движения и может находиться в любой точке пространства, но с разной вероятностью.

Область пространства вокруг ядра, где наиболее вероятно нахождение электрона, называется атомной орбиталью.

Атомная орбиталь может обладать различной формой, размером и ориентацией. Также атомную орбиталь называют электронным облаком.

Графически одну атомную орбиталь принято обозначать в виде квадратной ячейки:

Квантовая механика имеет крайне сложный математический аппарат, поэтому в рамках школьного курса химии рассматриваются только лишь следствия квантово-механической теории.

Согласно этим следствиям, любую атомную орбиталь и находящийся на ней электрон полностью характеризуют 4 квантовых числа.

  • Главное квантовое число – n — определяет общую энергию электрона на данной орбитали. Диапазон значений главного квантового числа – все натуральные числа, т.е. n = 1,2,3,4, 5 и т.д.
  • Орбитальное квантовое число — l – характеризует форму атомной орбитали и может принимать любые целочисленные значения от 0 до n-1, где n, напомним, — это главное квантовое число.

Орбитали с l = 0 называют s -орбиталями . s-Орбитали имеют сферическую форму и не обладают направленностью в пространстве:

Орбитали с l = 1 называются p -орбиталями . Данные орбитали обладают формой трехмерной восьмерки, т.е. формой, полученной вращением восьмерки вокруг оси симметрии, и внешне напоминают гантель:

Орбитали с l = 2 называются d -орбиталями , а с l = 3 – f -орбиталями . Их строение намного более сложное.

3) Магнитное квантовое число – m l – определяет пространственную ориентацию конкретной атомной орбитали и выражает проекцию орбитального момента импульса на направление магнитного поля. Магнитное квантовое число m l соответствует ориентации орбитали относительно направления вектора напряженности внешнего магнитного поля и может принимать любые целочисленные значения от –l до +l, включая 0, т.е. общее количество возможных значений равно (2l+1). Так, например, при l = 0 m l = 0 (одно значение), при l = 1 m l = -1, 0, +1 (три значения), при l = 2 m l = -2, -1, 0, +1, +2 (пять значений магнитного квантового числа) и т.д.

Так, например, p-орбитали, т.е. орбитали с орбитальным квантовым числом l = 1, имеющие форму «трехмерной восьмерки», соответствуют трем значениям магнитного квантового числа (-1, 0, +1), что, в свою очередь, соответствует трем перпендикулярным друг другу направлениям в пространстве.

4) Спиновое квантовое число (или просто спин) — m s — условно можно считать отвечающим за направление вращения электрона в атоме, оно может принимать значения. Электроны с разными спинами обозначают вертикальными стрелками, направленными в разные стороны: ↓ и .

Совокупность всех орбиталей в атоме, имеющих одно и то же значение главного квантового числа, называют энергетическим уровнем или электронной оболочкой. Любой произвольный энергетический уровень с некоторым номером n состоит из n 2 орбиталей.

Множество орбиталей с одинаковыми значениями главного квантового числа и орбитального квантового числа представляет собой энергетический подуровень.

Каждый энергетический уровень, которому соответствует главное квантовое число n, содержит n подуровней. В свою очередь, каждый энергетический подуровень с орбитальным квантовым числом l, состоит из (2l+1) орбиталей. Таким образом, s-подуровень состоит из одной s-орбитали, p-подуровень – трех p-орбиталей, d-подуровень – пяти d-орбиталей, а f-подуровень — из семи f-орбиталей. Поскольку, как уже было сказано, одна атомная орбиталь часто обозначается одной квадратной ячейкой, то s-, p-, d- и f-подуровни можно графически изобразить следующим образом:

Каждой орбитали соответствует индивидуальный строго определенный набор трех квантовых чисел n, l и m l .

Распределение электронов по орбиталям называют электронной конфигурацией.

Заполнение атомных орбиталей электронами происходит в соответствии с тремя условиями:

  • Принцип минимума энергии : электроны заполняют орбитали, начиная с подуровня с наименьшей энергией. Последовательность подуровней в порядке увеличения их энергий выглядит следующим образом: 1s<2s<2p<3s<3p<4s≤3d<4p<5s≤4d<5p<6s…;

Для того чтобы проще запомнить данную последовательность заполнения электронных подуровней, весьма удобна следующая графическая иллюстрация:

  • Принцип Паули : на каждой орбитали может находиться не более двух электронов.

Если на орбитали находится один электрон, то он называется неспаренным, а если два, то их называют электронной парой.

  • Правило Хунда : наиболее устойчивое состояние атома является такое, при котором в пределах одного подуровня атом обладает максимально возможным числом неспаренных электронов. Такое наиболее устойчивое состояние атома называется основным состоянием.

Фактически вышесказанное означает то, что, например, размещение 1-го, 2-х, 3-х и 4-х электронов на трех орбиталях p-подуровня будет осуществляться следующим образом:

Заполнение атомных орбиталей от водорода, имеющего зарядовое число равное 1, до криптона (Kr) с зарядовым числом 36 будет осуществляться следующим образом:

Подобное изображение порядка заполнения атомных орбиталей называется энергетической диаграммой. Исходя из электронных диаграмм отдельных элементов, можно записать их так называемые электронные формулы (конфигурации). Так, например, элемент с 15ю протонами и, как следствие, 15ю электронами, т.е. фосфор (P), будет иметь следующий вид энергетической диаграммы:

При переводе в электронную формулу атома фосфора примет вид:

15 P = 1s 2 2s 2 2p 6 3s 2 3p 3

Цифрами нормального размера слева от символа подуровня показан номер энергетического уровня, а верхними индексами справа от символа подуровня показано количество электронов на соответствующем подуровне.

Ниже приведены электронные формул первых 36 элементов периодической системы Д.И. Менделеева.

период № элемента символ название электронная формула
I 1 H водород 1s 1
2 He гелий 1s 2
II 3 Li литий 1s 2 2s 1
4 Be бериллий 1s 2 2s 2
5 B бор 1s 2 2s 2 2p 1
6 C углерод 1s 2 2s 2 2p 2
7 N азот 1s 2 2s 2 2p 3
8 O кислород 1s 2 2s 2 2p 4
9 F фтор 1s 2 2s 2 2p 5
10 Ne неон 1s 2 2s 2 2p 6
III 11 Na натрий 1s 2 2s 2 2p 6 3s 1
12 Mg магний 1s 2 2s 2 2p 6 3s 2
13 Al алюминий 1s 2 2s 2 2p 6 3s 2 3p 1
14 Si кремний 1s 2 2s 2 2p 6 3s 2 3p 2
15 P фосфор 1s 2 2s 2 2p 6 3s 2 3p 3
16 S сера 1s 2 2s 2 2p 6 3s 2 3p 4
17 Cl хлор 1s 2 2s 2 2p 6 3s 2 3p 5
18 Ar аргон 1s 2 2s 2 2p 6 3s 2 3p 6
IV 19 K калий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1
20 Ca кальций 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2
21 Sc скандий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1
22 Ti титан 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 2
23 V ванадий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 3
24 Cr хром 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5 здесь наблюдается проскок одного электрона с s на d подуровень
25 Mn марганец 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5
26 Fe железо 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6
27 Co кобальт 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 7
28 Ni никель 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 8
29 Cu медь 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10 здесь наблюдается проскок одного электрона с s на d подуровень
30 Zn цинк 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10
31 Ga галлий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 1
32 Ge германий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 2
33 As мышьяк 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 3
34 Se селен 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 4
35 Br бром 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5
36 Kr криптон 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6

Как уже было сказано, в основном своем состоянии электроны в атомных орбиталях расположены согласно принципу наименьшей энергии. Тем не менее, при наличии пустых p-орбиталей в основном состоянии атома, нередко, при сообщении ему избыточной энергии атом можно перевести в так называемое возбужденное состояние. Так, например, атом бора в основном своем состоянии имеет электронную конфигурацию и энергетическую диаграмму следующего вида:

5 B = 1s 2 2s 2 2p 1

А в возбужденном состояниии (*), т.е. при сообщении некоторой энергии атому бора, его электронная конфигурация и энергетическая диаграмма будут выглядеть так:

5 B* = 1s 2 2s 1 2p 2

В зависимости от того, какой подуровень в атоме заполняется последним, химические элементы делят на s, p, d или f.

Нахождение s, p, d и f-элементов в таблице Д.И. Менделеева:

  • У s-элементов последний заполняемый s-подуровень. К данным элементам относятся элементы главных (слева в ячейке таблицы) подгрупп I и II групп.
  • У p-элементов заполняется p-подуровень. К p-элементам относят последние шесть элементов каждого периода, кроме первого и седьмого, а также элементы главных подгрупп III-VIII групп.
  • d-Элементы расположены между s – и p-элементами в больших периодах.
  • f-Элементы называют лантаноидами и актиноидами. Они вынесены вниз таблицы Д.И. Менделеева.

Электронная конфигурация атома - это численное представление его электронных орбиталей. Электронные орбитали - это области различной формы, расположенные вокруг атомного ядра, в которых математически вероятно нахождение электрона. Электронная конфигурация помогает быстро и с легкостью сказать читателю, сколько электронных орбиталей есть у атома, а также определить количество электронов, находящихся на каждой орбитали. Прочитав эту статью, вы освоите метод составления электронных конфигураций.

Шаги

Распределение электронов с помощью периодической системы Д. И. Менделеева

    Найдите атомный номер вашего атома. Каждый атом имеет определенное число электронов, связанных с ним. Найдите символ вашего атома в таблице Менделеева . Атомный номер - это целое положительное число, начинающееся от 1 (у водорода) и возрастающее на единицу у каждого последующего атома. Атомный номер - это число протонов в атоме, и, следовательно, это еще и число электронов атома с нулевым зарядом.

    Определите заряд атома. Нейтральные атомы будут иметь столько же электронов, сколько показано в таблице Менделеева. Однако заряженные атомы будут иметь большее или меньшее число электронов - в зависимости от величины их заряда. Если вы работаете с заряженным атомом, добавляйте или вычитайте электроны следующим образом: добавляйте один электрон на каждый отрицательный заряд и вычитайте один на каждый положительный.

    • Например, атом натрия с зарядом -1 будет иметь дополнительный электрон в добавок к своему базовому атомному числу 11. Иначе говоря, в сумме у атома будет 12 электронов.
    • Если речь идет об атоме натрия с зарядом +1, от базового атомного числа 11 нужно отнять один электрон. Таким образом, у атома будет 10 электронов.
  1. Запомните базовый список орбиталей. По мере того, как у атома увеличивается число электронов, они заполняют различные подуровни электронной оболочки атома согласно определенной последовательности. Каждый подуровень электронной оболочки, будучи заполненным, содержит четное число электронов. Имеются следующие подуровни:

    Разберитесь в записи электронной конфигурации. Электронные конфигурации записываются для того, чтобы четко отразить количество электронов на каждой орбитали. Орбитали записываются последовательно, причем количество атомов в каждой орбитали записывается как верхний индекс справа от названия орбитали. Завершенная электронная конфигурация имеет вид последовательности обозначений подуровней и верхних индексов.

    • Вот, например, простейшая электронная конфигурация: 1s 2 2s 2 2p 6 . Эта конфигурация показывает, что на подуровне 1s имеется два электрона, два электрона - на подуровне 2s и шесть электронов на подуровне 2p. 2 + 2 + 6 = 10 электронов в сумме. Это электронная конфигурация нейтрального атома неона (атомный номер неона - 10).
  2. Запомните порядок орбиталей. Имейте в виду, что электронные орбитали нумеруются в порядке возрастания номера электронной оболочки, но располагаются по возрастанию энергии. Например, заполненная орбиталь 4s 2 имеет меньшую энергию (или менее подвижна), чем частично заполненная или заполненная 3d 10 , поэтому сначала записывается орбиталь 4s. Как только вы будете знать порядок орбиталей, вы сможете с легкостью заполнять их в соответствии с количеством электронов в атоме. Порядок заполнения орбиталей следующий: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p.

    • Электронная конфигурация атома, в котором заполнены все орбитали, будет иметь следующий вид: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 10 7p 6
    • Обратите внимание, что приведенная выше запись, когда заполнены все орбитали, является электронной конфигурацией элемента Uuo (унуноктия) 118, атома периодической системы с самым большим номером. Поэтому данная электронная конфигурация содержит все известные в наше время электронные подуровни нейтрально заряженного атома.
  3. Заполняйте орбитали согласно количеству электронов в вашем атоме. Например, если мы хотим записать электронную конфигурацию нейтрального атома кальция, мы должны начать с поиска его атомного номера в таблице Менделеева. Его атомный номер - 20, поэтому мы напишем конфигурацию атома с 20 электронами согласно приведенному выше порядку.

    • Заполняйте орбитали согласно приведенному выше порядку, пока не достигнете двадцатого электрона. На первой 1s орбитали будут находится два электрона, на 2s орбитали - также два, на 2p - шесть, на 3s - два, на 3p - 6, и на 4s - 2 (2 + 2 + 6 +2 +6 + 2 = 20.) Иными словами, электронная конфигурация кальция имеет вид: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 .
    • Обратите внимание: орбитали располагаются в порядке возрастания энергии. Например, когда вы уже готовы перейти на 4-й энергетический уровень, то сначала записывайте 4s орбиталь, а затем 3d. После четвертого энергетического уровня вы переходите на пятый, на котором повторяется такой же порядок. Это происходит только после третьего энергетического уровня.
  4. Используйте таблицу Менделеева как визуальную подсказку. Вы, вероятно, уже заметили, что форма периодической системы соответствует порядку электронных подуровней в электронных конфигурациях. Например, атомы во второй колонке слева всегда заканчиваются на "s 2 ", а атомы на правом краю тонкой средней части оканчиваются на "d 10 " и т.д. Используйте периодическую систему как визуальное руководство к написанию конфигураций - как порядок, согласно которому вы добавляете к орбиталям соответствует вашему положению в таблице. Смотрите ниже:

    • В частности, две самые левые колонки содержат атомы, чьи электронные конфигурации заканчиваются s-орбиталями, в правом блоке таблицы представлены атомы, чьи конфигурации заканчиваются p-орбиталями, а в нижней части атомы заканчиваются f-орбиталями.
    • Например, когда вы записываете электронную конфигурацию хлора, размышляйте следующим образом: "Этот атом расположен в третьем ряду (или "периоде") таблицы Менделеева. Также он располагается в пятой группе орбитального блока p периодической системы. Поэтому, его электронная конфигурация будет заканчиваться на...3p 5
    • Обратите внимание: элементы в области орбиталей d и f таблицы характеризуются энергетическими уровнями, которые не соответствуют периоду, в котором они расположены. Например, первый ряд блока элементов с d-орбиталями соответствует 3d орбиталям, хотя и располагается в 4 периоде, а первый ряд элементов с f-орбиталями соответствует орбитали 4f, несмотря на то, что он находится в 6 периоде.
  5. Выучите сокращения написания длинных электронных конфигураций. Атомы на правом краю периодической системы называются благородными газами. Эти элементы химически очень устойчивы. Чтобы сократить процесс написания длинных электронных конфигураций, просто записывайте в квадратных скобках химический символ ближайшего благородного газа с меньшим по сравнению с вашим атомом числом электронов, а затем продолжайте писать электронную конфигурацию последующих орбитальных уровней. Смотрите ниже:

    • Чтобы понять эту концепцию, полезно будет написать пример конфигурации. Давайте напишем конфигурацию цинка (атомный номер 30), используя сокращение, включающее благородный газ. Полная конфигурация цинка выглядит так: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 . Однако мы видим, что 1s 2 2s 2 2p 6 3s 2 3p 6 - это электронная конфигурация аргона, благородного газа. Просто замените часть записи электронной конфигурации цинка химическим символом аргона в квадратных скобках (.)
    • Итак, электронная конфигурация цинка, записанная в сокращенном виде, имеет вид: 4s 2 3d 10 .
    • Учтите, если вы пишете электронную конфигурацию благородного газа, скажем, аргона, писать нельзя! Нужно использовать сокращение благородного газа, стоящего перед этим элементом; для аргона это будет неон ().

    С помощью периодической таблицы ADOMAH

    1. Освойте периодическую таблицу ADOMAH. Данный метод записи электронной конфигурации не требует запоминания, однако требует наличия переделанной периодической таблицы, поскольку в традиционной таблице Менделеева, начиная с четвертого периода, номер периода не соответствует электронной оболочке. Найдите периодическую таблицу ADOMAH - особый тип периодической таблицы, разработанный ученым Валерием Циммерманом. Ее легко найти посредством короткого поиска в интернете.

      • В периодической таблице ADOMAH горизонтальные ряды представляют группы элементов, такие как галогены, инертные газы, щелочные металлы, щелочноземельные металлы и т.д. Вертикальные колонки соответствуют электронным уровням, а так называемые "каскады" (диагональные линии, соединяющие блоки s,p,d и f) соответствуют периодам.
      • Гелий перемещен к водороду, поскольку оба этих элемента характеризуются орбиталью 1s. Блоки периодов (s,p,d и f) показаны с правой стороны, а номера уровней приведены в основании. Элементы представлены в прямоугольниках, пронумерованных от 1 до 120. Эти номера являются обычными атомными номерами, которые представляют общее количество электронов в нейтральном атоме.
    2. Найдите ваш атом в таблице ADOMAH. Чтобы записать электронную конфигурацию элемента, найдите его символ в периодической таблице ADOMAH и вычеркните все элементы с большим атомным номером. Например, если вам нужно записать электронную конфигурацию эрбия (68), вычеркните все элементы от 69 до 120.

      • Обратите внимание на номера от 1 до 8 в основании таблицы. Это номера электронных уровней, или номера колонок. Игнорируйте колонки, которые содержат только вычеркнутые элементы. Для эрбия остаются колонки с номерами 1,2,3,4,5 и 6.
    3. Посчитайте орбитальные подуровни до вашего элемента. Смотря на символы блоков, приведенные справа от таблицы (s, p, d, and f), и на номера колонок, показанные в основании, игнорируйте диагональные линии между блоками и разбейте колонки на блоки-колонки, перечислив их по порядку снизу вверх. И снова игнорируйте блоки, в которых вычеркнуты все элементы. Запишите блоки-колонки, начиная от номера колонки, за которым следует символ блока, таким образом: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 6s (для эрбия).

      • Обратите внимание: Приведенная выше электронная конфигурация Er записана в порядке возрастания номера электронного подуровня. Ее можно также записать в порядке заполнения орбиталей. Для этого следуйте по каскадам снизу вверх, а не по колонкам, когда вы записываете блоки-колонки: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 12 .
    4. Посчитайте электроны для каждого электронного подуровня. Подсчитайте элементы, в каждом блоке-колонке которые не были вычеркнуты, прикрепляя по одному электрону от каждого элемента, и запишите их количество рядом с символом блока для каждого блока-колонки таким образом: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 12 5s 2 5p 6 6s 2 . В нашем примере это электронная конфигурация эрбия.

    5. Учитывайте неправильные электронные конфигурации. Существует восемнадцать типичных исключений, относящихся к электронным конфигурациям атомов в состоянии с наименьшей энергией, также называемом основным энергетическим состоянием. Они не подчиняются общему правилу только по последним двум-трем положениям, занимаемым электронами. При этом действительная электронная конфигурация предполагает нахождение электронов в состоянии с более низкой энергией в сравнении со стандартной конфигурацией атома. К атомам-исключениям относятся:

      • Cr (..., 3d5, 4s1); Cu (..., 3d10, 4s1); Nb (..., 4d4, 5s1); Mo (..., 4d5, 5s1); Ru (..., 4d7, 5s1); Rh (..., 4d8, 5s1); Pd (..., 4d10, 5s0); Ag (..., 4d10, 5s1); La (..., 5d1, 6s2); Ce (..., 4f1, 5d1, 6s2); Gd (..., 4f7, 5d1, 6s2); Au (..., 5d10, 6s1); Ac (..., 6d1, 7s2); Th (..., 6d2, 7s2); Pa (..., 5f2, 6d1, 7s2); U (..., 5f3, 6d1, 7s2); Np (..., 5f4, 6d1, 7s2) и Cm (..., 5f7, 6d1, 7s2).
      • Чтобы найти атомный номер атома, когда он записан в форме электронной конфигурации, просто сложите все числа, которые идут за буквами (s, p, d, и f). Это работает только для нейтральных атомов, если вы имеете дело с ионом, то ничего не получится - вам придется добавить или вычесть количество дополнительных или потерянных электронов.
      • Число, идущее за буквой - это верхний индекс, не сделайте ошибку в контрольной.
      • "Стабильности полузаполненного" подуровня не существует. Это упрощение. Любая стабильность, которая относится к "наполовину заполненным" подуровням, имеет место из-за того, что каждая орбиталь занята одним электроном, поэтому минимизируется отталкивание между электронами.
      • Каждый атом стремится к стабильному состоянию, а самые стабильные конфигурации имеют заполненные подуровни s и p (s2 и p6). Такая конфигурация есть у благородных газов, поэтому они редко вступают в реакции и в таблице Менделеева расположены справа. Поэтому, если конфигурация заканчивается на 3p 4 , то для достижения стабильного состояния ей необходимо два электрона (чтобы потерять шесть, включая электроны s-подуровня, потребуется больше энергии, поэтому потерять четыре легче). А если конфигурация оканчивается на 4d 3 , то для достижения стабильного состояния ей необходимо потерять три электрона. Кроме того, полузаполненные подуровни (s1, p3, d5..) являются более стабильными, чем, например, p4 или p2; однако s2 и p6 будут еще более устойчивыми.
      • Когда вы имеете дело с ионом, это значит, что количество протонов не равно количеству электронов. Заряд атома в этом случае будет изображен сверху справа (как правило) от химического символа. Поэтому атом сурьмы с зарядом +2 имеет электронную конфигурацию 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 1 . Обратите внимание, что 5p 3 изменилось на 5p 1 . Будьте внимательны, когда конфигурация нейтрального атома заканчивается на подуровни, отличные от s и p. Когда вы забираете электроны, вы можете забрать их только с валентных орбиталей (s и p орбиталей). Поэтому, если конфигурация заканчивается на 4s 2 3d 7 и атом получает заряд +2, то конфигурация будет заканчиваться 4s 0 3d 7 . Обратите внимание, что 3d 7 не меняется, вместо этого теряются электроны s-орбитали.
      • Существуют условия, когда электрон вынужден "перейти на более высокий энергетический уровень". Когда подуровню не хватает одного электрона до половинной или полной заполненности, заберите один электрон из ближайшего s или p- подуровня и переместите его на тот подуровень, которому необходим электрон.
      • Имеется два варианта записи электронной конфигурации. Их можно записывать в порядке возрастания номеров энергетических уровней или в порядке заполнения электронных орбиталей, как было показано выше для эрбия.
      • Также вы можете записывать электронную конфигурацию элемента, записав лишь валентную конфигурацию, которая представляет собой последний s и p подуровень. Таким образом, валентная конфигурация сурьмы будет иметь вид 5s 2 5p 3 .
      • Ионы не то же самое. С ними гораздо сложнее. Пропустите два уровня и действуйте по той же схеме в зависимости от того, где вы начали, и от того, насколько велико количество электронов.

Электронная конфигурация атома – это формула описывающая расположение электронов по различным электронным оболочкам атома химического элемента. Количество электронов в нейтральном атоме числено равно заряду ядра, а, следовательно, порядковому номеру в периодической таблице.

По мере того, как у атома увеличивается число электронов, они заполняют различные подуровни электронной оболочки атома. Каждый подуровень электронной оболочки, будучи заполненным, содержит четное число электронов:

- s-подуровень содержит единственную орбиталь, которая, согласно Паули, может содержать максимум два электрона.

- p-подуровень содержит три орбитали, и поэтому может содержать максимум 6 электронов.

- d-подуровень содержит 5 орбиталей, поэтому в нем может быть до 10 электронов.

- f-подуровень содержит 7 орбиталей, поэтому в нем может быть до 14 электронов.

Электронные орбитали нумеруются в порядке возрастания главного квантового числа (номера уровня), которое совпадает с номером периода. Заполняются орбитали по возрастанию энергии (принцип минимума энергии): 1s , 2s , 2p , 3s , 3p , 4s , 3d , 4p , 5s , 4d , 5p , 6s , 4f , 5d , 6p , 7s , 5f , 6d , 7p .Если знать порядок заполнения орбиталей и понимать, что у каждого последующего атома элемента в периодической таблице на один электрон больше, чем у предыдущего, легко заполнять их, в соответствии с количеством электронов в атоме.

В химических превращениях участвуют только электроны внешнего уровня атома – валентные электроны. Элементы, завершающие периоды периодической таблицы, инертные газы, имеющие полностью заполненные электронные орбитали, химически очень устойчивы. Чтобы записать краткую электронную конфигурацию атома А, достаточно записать в квадратных скобках химический символ ближайшего инертного газа с меньшим по сравнению с атомом А числом электронов, а затем добавить конфигурацию последующих орбитальных подуровней.

Графическое изображение электронной конфигурации демонстрирует расположение электронов по квантовым ячейкам. Квантовые ячейки следует располагать относительно друг друга, учитывая энергию орбиталей. Ячейки энергетически вырожденных орбиталей располагаются на одном уровне, более энергетически выгодные – ниже, менее выгодные – выше. В таблице изображена электронная конфигурация атома мышьяка. Заполненные, как и наполовину заполненные d- подуровни, имеют более низкую энергию орбиталей, чем s- подуровни, поэтому нарисованы ниже. В таблице 2 представлена конфигурация для атома мышьяка.

Таблица 2. Электронная конфигурация атома мышьяка As


Существуют исключения электронных конфигураций атомов в основным энергетическим состоянием, например: Cr (3d 5 4s 1); Cu (3d 10 4s 1); Mo (4d 5 5s 1); Ag (4d 10 5s 1); Au (4f 14 5d 10 6s 1 .

Химическая связь

Свойства вещества определяются его химическим составом, порядком соединения атомов в молекулы и кристаллические решетки и их взаимным влиянием. Электронное строение каждого атома предопределяет механизм образования химических связей, ее тип и характеристики.

Рекомендуем почитать

Наверх