Космический мусор превысил критическую массу, уверяют эксперты. Почему космические исследования важны для каждого из нас Контроль знаний учащихся

Водоёмы 04.03.2024
Водоёмы
Станислав ВЕНИАМИНОВ,

научно-исследовательский испытательный центр (г. Москва) Центрального научно-исследовательского института Войск воздушно-космической обороны, действительный член Meждyнapoднoй академии астронавтики и аэронавтики, член экспертной рабочей группы по космическим угрозам, член Meждyнapoднoгo комитета пo проблемам засорения космического пространства и Комитета пo проблемам загрязнения космоса Haциoнaльнoгo исследовательского совета CШA, доктор технических наук, профессор.

По материалам доклада «Техногенное засорение космоса и некоторые его военные аспекты»

«МУСОРНАЯ» СТАТИСТИКА

После запуска первого спутника Земли космические державы осуществили более 5000 запусков. За весь период освоения космоса в околоземное космическое пространство выведено свыше 30 тысяч крупных (размером более 10-20 см) космических объектов (КО). Зарегистрированных гораздо больше (порядка 35 тысяч) - ввиду произошедшей фрагментации некоторых крупных космических объектов. Более двух третей из них всё ещё остаются на орбитах и контролируются наземными и космическими средствами наблюдения. На сегодня официально каталогизировано свыше 17 тысяч КО.

Однако системы контроля космического пространства (СККП) США и РФ отслеживают свыше 23 тысяч космических объектов размером более 10 см. При этом 95 % каталога космических объектов составляет космический мусор (КМ). Подчёркиваю: приведённые количественные характеристики касаются только крупных космических объектов, а с учётом гигантских космических скоростей их движения и с точки зрения представляемой ими угрозы (которая пропорциональна квадрату скорости) их следует расценивать как очень крупные. Понятно, что столкновение с любым из них реального космического аппарата будет катастрофическим. Но не только с ними.

На сегодняшний день космических объектов размером более 5 см - порядка 100 тысяч. Кроме них на орбитах находится огромное количество мелкого КМ: по разным оценкам более 500-600 тысяч размером от 1 до 10 см до сотен миллионов размером от 1 мм до 1 см. Количество более мелкого КМ исчисляется миллиардами и триллионами (см. рис. 1) . И почти все они представляют опасность при столкновении, хотя и в разной степени.

Почему-то принято считать (даже в кругах некоторых специалистов), что катастрофическую угрозу для космического аппарата представляют столкновения с космическим объектом размером более 1 см. Но решающими факторами здесь являются относительная скорость атакующей частицы, место космического аппарата, в которое она ударит, и направление её вектора скорости относительно поверхности космического аппарата в точке соприкосновения. Так что смертельно опасными могут оказаться и пылинки космического мусора.

И это не гипербола. Ярким примером служит случай с российским метрологическим спутником «Блиц». Он, имея диаметр всего 17 см, 22 января 2013 года столкнулся с частицей массой менее 0,08 г и раскололся, по крайней мере, на два фрагмента, которые были обнаружены и каталогизированы.


Однако существующими средствами можно относительно надёжно зафиксировать лишь космический объект размером 10-20 см, то есть большинство (> 99,97 %) потенциально опасного космического мусора не контролируется. Из каждых 10 000 потенциально опасных космических объектов наблюдаются только три. И в этом состоит главная проблема контроля космического мусора, масштабы которой наглядно иллюстрирует рисунок 1.


Любой космический мусор в разной степени опасен для космической деятельности и не только для неё. Самый крупный космический мусор при входе в плотную атмосферу несёт угрозу для наземных объектов и людей. Что касается самого мелкого космического мусора, то астрономы давно уже заметили, что за последние десятилетия прозрачность среды околоземного космического пространства ощутимо снизилась, что мешает вести астрономические наблюдения.

Кроме того, он сильно повреждает чувствительные поверхности бортовых приборов, например оптику. Так что важно контролировать любой космический мусор.

Прогрессирующий рост засорённости ОКП наглядно характеризуют следующие два графика (см. рис. 2 и 3), причём каждый по-своему. Рисунок 3 показывает неуклонный рост средней плотности техногенного засорения ОКП, а скачки на рисунке 2, на котором отражена история количественного изменения состава каталога космических объектов по годам, иллюстрируют скачкообразный рост опасности столкновений с космическим мусором. (На рисунке 3 их нет, так как скачкообразно изменяется только количество космических объектов после катастрофических разрушений, а не их суммарная масса.)



Из осуществлённых человеком более 5000 запусков ИСЗ на интервале около 60 лет только 10 из них породили одну треть сегодняшнего каталога космических объектов. Причём из этой десятки шесть приходятся на последние 10 лет!

С усилением засорения ОКП растёт и количество столкновений космических аппаратов с космическим мусором и космического мусора между собой. На рисунке 4 показан полученный с помощью модели НАСА LEGEND прогноз роста количества столкновений крупных космических объектов на ближайшие 100 лет для нескольких сценариев освоения космоса.

На рисунке 5 приведён аналогичный прогноз на 200 лет с помощью российской модели А. И. Назаренко.


Павел ВИНОГРАДОВ,

Космонавт, совершивший семь выходов в открытый космос, Герой РФ. Общая продолжительность его работы в открытом космосе на 2014 год - 38 часов 25 минут.

Количество космических объектов на орбите Земли столь велико, что все угрозы из космоса абсолютно реальны. Если на Землю прилетит объект диаметром 2 или 2,5 километра, то всё живое на Земле может погибнуть.

КАСКАДНЫЙ ЭФФЕКТ

В обоих предсказаниях, полученных на независимых моделях, экспоненциальный характер роста числа столкновений крупных космических объектов и общего количества мелкого космического мусора при умеренном росте количества крупных космических объектов - это уже признак каскадного эффекта. Аналогичные неутешительные перспективы предсказывают и другие модели.

Наиболее мрачная перспектива нашего космического будущего - это возникновение и развитие каскадного эффекта (синдрома Кесслера) в ОКП, то есть стремительно расширяющегося цепного процесса образования вторичных осколков. В этой самой трагической фазе процесса засорения ОКП космический мусор приобретает уже некий агрессивный характер, которому уже мало что можно противопоставить. Общий характер каскадного эффекта такой же, как и у ядерной цепной реакции. Разница лишь во временном масштабе развития процесса.

Вероятность столкновений зависит в первую очередь от количества космических объектов в данной орбитальной области, а не от их суммарной массы. Но именно общая масса космического мусора (точнее, суммарная кинетическая энергия космического мусора) определяет в перспективе скорость и интенсивность развития каскадного эффекта.

Многие учёные считают, что каскадный эффект уже начался в некоторых орбитальных областях и для некоторых классов космического мусора (например, на высотах 900-1000 км и 1500 км) (см. рис. 6) .


УГРОЗЫ СТОЛКНОВЕНИЯ

Рост вероятности столкновения космического аппарата с космическим мусором наглядно демонстрирует история учёта угрозы космического мусора работе Международной космической станции (МКС). На рисунке 7 представлена диаграмма изменения количества манёвров уклонения МКС от столкновения с космическим мусором по годам (по данным ЦУПа).

В области геостационарной орбиты (ГСО) столкновение с космическим мусором не так опасно, как на низких орбитах, поскольку там скорость движения космических объектов обычно не превышает 3 км/с, кроме того, космические объекты в геостационарном поясе движутся в основном в одну сторону (в отличие от области низких орбит). Поэтому средняя относительная скорость при столкновении и того меньше - 0,5 км/с.

Если удары мелкого космического мусора не вызывают серьёзных структурных повреждений, создаваемые ими сколы, кратеры, пробоины, царапины, эрозии, мелкие трещины приводят к постепенной деградации поверхности космического аппарата, ослабляя её и делая более уязвимой для воздействия внешней среды и последующих столкновений с космическим мусором.

Геннадий ПАДАЛКА,

Российский космонавт, полковник ВВС, Герой РФ. Занимает первое место по суммарной продолжительности нахождения в космосе - 878 дней.

В каждом из пяти моих полётов манёвры по уклонению от столкновения с космическим мусором выполнялись по нескольку раз.

В течение последних десятилетий многократно наблюдались внезапные выходы из строя космических аппаратов военного назначения, причины которых так и не удалось официально установить ни с помощью наблюдений, ни посредством телеметрии. Остаются два возможных объяснения - незарегистрированное столкновение с космическим мусором или «происки» вероятного космического противника. А это уже политически опасная дилемма.

Таким образом, на сегодняшний день существующая популяция космического мусора (КМ), с точки зрения воздушно-космической обороны, представляет собой мощную неуправляемую орбитальную группировку, создающую угрозу как военным, так и гражданским космическим аппаратам (КА), а также наземным объектам (в частности, оборонного назначения и государственным стратегическим объектам) независимо от их государственной принадлежности. Этот факт означает появление нового своеобразного игрока на космическом театре военных действий в отличие от наземного, морского и воздушного театров.


Cуществующая популяция космического мусора (КМ), с точки зрения воздушно-космической обороны, представляет собой мощную неуправляемую орбитальную группировку, создающую угрозу как военным, так и гражданским космическим аппаратам (КА), а также наземным объектам (в частности, оборонного назначения и государственным стратегическим объектам) независимо от их государственной принадлежности. Этот факт означает появление нового своеобразного игрока на космическом театре военных действий в отличие от наземного, морского и воздушного театров.

Особенностью этого игрока является его абсолютная независимость. Степень опасности нового игрока определяется прежде всего следующими тремя факторами: длительное время орбитального существования космического мусора, высокая скорость движения, трудность его утилизации.

Следствием этих факторов (особенно второго) является то, что даже самый мелкий космический мусор (размерами менее 1 см) может представлять серьёзную опасность для космического аппарата.

Особенно опасен мелкий космический мусор в низкоорбитальной области (основной тактической и оперативной зоне космического театра военных действий), где относительные скорости космических аппаратов и космического мусора могут превышать 15 км/с, а в перигейной области высокоэллиптических орбит - 17 км/с. А при таких скоростях столкновение космического аппарата даже с мельчайшим мусором может не только повредить солнечные панели, иллюминаторы и оптические поверхности бортовых наблюдательных инструментов, но и уничтожить космический аппарат, как это было в случае с КА «Блиц».

Особая политическая опасность, которую несёт появление такой независимой группировки в ОКП, состоит в том, что непредсказуемое воздействие этой группировки на космический аппарат (особенно военного назначения) может спровоцировать политический или даже вооружённый конфликт между космическими державами. Не всегда страна-собственник космического аппарата, подвергнутого воздействию космического мусора, может оперативно определить действительную причину его выхода из строя (или потери эффективности его функционирования).

ЛИТЕРАТУРА:

1. Вениаминов С. С. Космический мусор - угроза человечеству. 2-е издание, исправ. и доп. М.: ИКИ РАН, 2013. (Сер. Механика, управление, информатика).

2. Аксёнов О., Олейников И. и др. Анализ заселённости ОКП объектами техногенного происхождения // Полёт. Общероссийский научно-технический журнал. 2014. № 9. С. 8-14.

3. Orbital Debris Quarterly News. NASA, USA, Jan. 2015. V. 19. Iss. 1.

4. Liou J.-C. An Updated Assessment of the Orbital Debris Environment in Leo // Orbital Debris Quarterly News. January 2010. V. 14. Iss. 1.

5. Potter A. Early detection of Collisional cascading // Proceedings of the 1st European Conference on Space Debris, ESA/ESOC, Darmstadt, Germany, 1993.

6. Назаренко А. Прогноз засорённости ОКП на 200 лет и синдром Кесслера [Электрон. текст]. Метод доступа:

7. Nazarenko A. Space Debris Status for 200 years ahead & Kessler effect // 29th IADC Meeting, Berlin, Germany, 2011.

8. Kessler D. et al. The Kessler syndrome: Implications to Future Space Operations // 33rd Annual American Astronautical Society, Rocky Mountain Section, Guidance and Control Conference, Breckinridge, Colorado, USA, 2010.

9. Small Satellite Possibly Hit by Even Smaller Object // Orbital Debris Quarterly News. NASA, USA, April 2013. V. 17. Iss. 2.

10. Orbital Debris Quarterly News. NASA, USA, January 2014. V. 18. Iss. 1. Р. 10.

11. Orbital Debris. A Technical Assessment // NRC. National Academy Press, Washington, D.C. 1995.

14.09.2017

Автор статьи полковник Оляндер Лафарг Константиновича, будучи лейтенантом, участвовал в составе радиолокационного поста в работах по обнаружению и слежению за полётом Первого спутника Земли, а затем и полёта Ю.А. Гагарина.
После окончания Артиллерийской радиотехнической Академии ПВО в 1966 году был направлен для прохождения службы в Центре контроля космического пространства (ЦККП). где в течение последних 12 лет командовал отделом Главного каталога космических объектов.
После выхода на пенсию, 25 лет работал в МАК "Вымпел". Автор ряда книг, посвященных созданию и работе ЦККП и отдельных его частей. В настоящее время работает инженером в ЦККП.

Проблема контроля космоса возникла не только в Советском Союзе, она была характерна и для других стран, в частности, США, Западной Европы, Китая. Поэтому работы по организации контроля космического пространства в основных странах начались практически одновременно. Собственных специализированных средств наблюдения за космическим пространством в стране, да и в мире в целом, в то время не было. Еще в 1956 г. советское правительство своим постановлением обязало АН СССР создать сеть наблюдательных станций и организовать подготовку наблюдателей. Созданием сети наблюдательных станций от АН СССР руководил академик М.В.Келдыш, а непосредственную ответственность нес Астросовет АН СССР в лице заместителя председателя А.Г.Масевич. Для решения поставленной задачи было решено использовать находящиеся в системе АН СССР, а также в высших учебных заведениях страны астрономические приборы. Имевшиеся в крупных обсерваториях телескопы для слежения за низкоорбитальными космическими объектами не могли быть использованы из-за больших угловых скоростей космических объектов. В результате на базе Астрономического совета АН СССР и высших учебных заведений была создана сеть из более 100 станций оптического наблюдения (СОН), которые осуществляли обнаружение и слежение (по целеуказаниям) за полетом космических объектов (1 октября 1957 г. к работе были готовы 66 станций). Необходимо было в короткие сроки научиться обнаруживать космические объекты, распознавать и сопровождать их с требуемой точностью на фоне звездного неба.
В мае-августе 1957 г. в г. Ашхабаде проходили сборы по обучению наблюдателей искусству обнаружения и сопровождению искусственных космических тел. Руководителем этих занятий стал руководитель Звенигородской станции А.М.Лозинский.
Вот как об этом пишет профессор А.Г.Масевич: «Летом 1957 года все руководители станций прошли специальную подготовку на курсах, созданных при Ашхабадской астрофизической обсерватории. Занятия проводили работники Астрономического совета и Ашхабадской обсерватории, хотя и имеющие большой опыт в наблюдениях звезд, планет и метеоров, но никогда еще (как, впрочем, и все население земного шара) не имевшие дела с искусственными космическими объектами. Много было тогда еще не ясно, и слушатели вместе с преподавателями дружно старались воссоздать, хотя бы приблизительно условия видимости будущего спутника, чтобы научиться наблюдать его по возможности точно. Так большим успехом пользовалась следующая «имитация», предложенная А.М.Лозинским. Один из участников с длинным шестом, к концу которого был прикреплен зажженный фонарь, взбирался вечером на гору и быстро шагал, стараясь не очень раскачивать фонарь. Внизу, в саду обсерватории, наблюдатели на фоне звездного неба видели движущийся яркий огонек и определяли его положение с помощью биноклей или небольших астрономических «спутниковых» трубок, специально созданных для этих целей. Впоследствии, когда началась подготовка наблюдателей на станциях, было проведено несколько учебных тренировок. Самолеты с имитирующими спутник огнями пролетали над станциями, создавая более совершенную иллюзию искусственного спутника. Основным инструментом на станциях были созданные по заказу Астросовета трубки АТ-1. Это небольшие широкоугольные телескопы с диаметром входного зрачка 50 мм, шестикратным увеличением и полем зрения 11°»
В августе 1957 г. поступило распоряжение: доложить о готовности сети к работе. До запуска первого спутника Земли оставалось два месяца.
Началась повседневная, кропотливая работа по организации и проведению наблюдений за искусственными спутниками Земли и использованию этих наблюдений для исследований в области космической геодезии, геодинамики и геофизики. Первоначально обработка координатной информации проводилась сотрудниками Астросовета с использованием вычислительных мощностей академии наук. При этом следует отметить, что часть наблюдательных станций находилась за пределами СССР, на территории социалистических стран, а также в ряде государств в Африке, Азии и Южной и Центральной Америки, что сказывалось на оперативности получения результатов наблюдений в центре обработки информации и планирования.

Основным организатором всех работ была Алла Генриховна Масевич - одна из выдающихся ученых нашей страны и мира, которые начинали дело контроля космоса. Она в течение 35 лет была заместителем председателя Астросовета. Благодаря ее энергии Астрономический Совет взял на себя весь груз ответственности по налаживанию работ создаваемых станций оптического наблюдения. Она болела душой за качество труда первых наблюдателей, в основном, из числа студентов астрономических и физических факультетов высших учебных заведений.
Особо следует отметить роль руководителя одной из лучших станций оптического наблюдения при Рязанском педагогическом институте доктора физико-математических наук, профессора В.И.Курышева, который руководил одной из самых лучших станций. Одним из первых организаторов слежения за космическими объектами был руководитель Звенигородской станции А.М.Лозинский. Ученый, талантливый экспериментатор, наблюдатель наивысшей квалификации, он объединил вокруг себя большую группу единомышленников, среди которых особенно выделялся молодой ученый Н.С.Бахтигараев, сменивший Александра Марковича на посту руководителя станции. В наши дни Н.С.Бахтигараев много сил и энергии отдает делу организации слежения за космическими объектами, особенно, когда речь заходит о геостационарной области космического пространства. Скромный, обаятельный человек, он всю свою сознательную жизнь посвятил служению контролю космического пространства. Звенигородская обсерватория и сегодня играет существенную роль в обнаружении и сопровождении геостационарных космических аппаратов. Серьезные исследования проводит коллектив этой станции в области загрязнения космического пространства космическим мусором. Станции оптического наблюдения под руководством А.М.Лозинского и В.И.Курышева на протяжении всего периода работы с ЦККП были в числе лучших станций.
Впоследствии приборы АТ-1 были заменены модернизированными приборами БМТ-110М (бинокулярная морская труба). Модернизация приборов наблюдения производилась на Казанском оптико-механическом заводе. Получила развитие высокочувствительная телевизионная аппаратура. Такая установка, присоединенная к телескопу с диаметром зеркала 500мм, позволяла не только сфотографировать автоматические лунные и межпланетные станции на расстоянии до 80000км, но и следить за их движением на протяжении нескольких часов. Велись работы по разработке спутниковых лазерных дальномеров по программе «Интеркосмос». Они позволили бы измерять расстояния до спутников с точностью 10-20 см в полном автоматическом режиме и наблюдать космические объекты на высотах до 20000 км. Использование на отечественных космических аппаратах лазерных отражателей повысило точность измерений параметров КА Интеркосмос-17» (ошибка составляла всего 2-3 м).
В 1959 г. вблизи г. Звенигорода Московской области распоряжением Президиума АН СССР было создана Звенигородская экспериментальная станция Астросовета (в настоящее время Звенигородская обсерватория Института астрономии РАН), как основная базовая станция Астросовета АН СССР. Уже в 1961-62 гг. было получено с использованием камеры «Нафа-3с/25 около 4000 фотографий космических объектов, а применение камеры АФУ-75 (1968-1986гг.)– более 10000 снимков.
В 1964 году началось строительство лабораторного корпуса и трех астрономических башен, в одной из которых (самой большой) была смонтирована «Высокоточная астрономическая установка» (ВАУ), вступившая в строй в 1971 году. ВАУ по своим характеристикам превосходила все имеющиеся на тот момент времени камеры наблюдения, в том числе и знаменитую американскую камеру «Бейкер-Нанн». Она представляет собой автоматическую зеркально-линзовую систему Мусатова-Соболева. Основной задачей ВАУ было наблюдение космических объектов, находящихся на высокоэллиптических, высоких и геостационарных орбитах. Начиная с 1975 года с помощью ВАУ было получено около 3000 астронегативов, на которых обнаружено около 14000 изображений геостационарных спутников (ГСС), вычислено свыше 5000 точных их положений. По результатам обработки были составлены каталоги точных положений ГСС. В каталогах наблюдения были распределены в хронологическом порядке. Для каждой даты ГСС располагались в порядке возрастания долготы подспутниковой точки. При этом данные каталогов отличались высокой точностью как по времени (0.01 с), так по положению (0.1 угловой секунды).
Значение среднеквадратичной ошибки определения одного положения геостационарного объекта, полученное уравниванием ряда близких положений ГСС, на камере АФУ-75 составляло порядка 4с, а на ВАУ – около 1с. Еще одна ВАУ была установлена в Гиссарской обсерватории на территории Таджикистана.
Второй по значению в деле контроля космоса стала Симеизская научная база Астросовета, расположенная в 25 километрах от Ялты вблизи курортного поселка Симеиз. С 1973 года на этой базе начались систематические наблюдения космических объектов (в основном геостационарных) в соответствии с решением Президиума АН СССР. Коллектив стации активно участвует в проведении различных международных программах. Широкое применение получила разработанная в ГДР на предприятии «Карл Цейсс» камера СБГ, установленная на многих станциях наблюдения, в том числе и в Звенигороде и Симеизе.
Станции оптического наблюдения выполняли большой объем визуальных и фотографических, а позднее и лазерных наблюдений ИСЗ для решения задач геодезии, геофизики, эфемеридной службы и контроля космического пространства. Достаточно сказать, что за 10 лет работы станций оптического наблюдения было получено свыше 900 000 измерений более, чем по 500 советских и иностранных спутников и ракет-носителей (из этого числа более 400000 измерений прислано из-за рубежа, в том числе из Болгарии, Польши, Голландии, Финляндии, Италии и других стран). Это позволило утверждать, что уже на заре космической эры служба контроля космического пространства успешно справлялась с поставленными перед ней задачами.
Большая заслуга в организации работы системы слежения за космическими объектами принадлежит докторам физико-математических наук А.Г.Масевич и В.И.Курышеву (заведующий кафедрой Рязанского педагогического института).
Первый запуск искусственного спутника Земли в СССР произвел небывалый подъем гордости за свою страну и сильный удар по престижу США. Отрывок из публикации «Юнайтед пресс»: «90 процентов разговоров об искусственных спутниках Земли приходилось на долю США. Как оказалось, 100 процентов дела пришлось на Россию…». И несмотря на ошибочные представления о технической отсталости СССР, первым спутником Земли стал именно советский аппарат, к тому же его сигнал мог отслеживаться любым радиолюбителем. Полет первого спутника Земли ознаменовал начало космической эры и запустил космическую гонку между Советским Союзом и США.
Спустя всего 4 месяца, 1-го февраля 1958-го года США запустили свой спутник «Эксплорер-1», который был собран командой ученого Вернера фон Брауна. И хотя он был в несколько раз легче ПС-1 и содержал 4,5 кг научной аппаратуры, он все же был вторым и уже не так повлиял на общественность. Основным организатором всех работ была Алла Генриховна Масевич - одна из выдающихся ученых нашей страны и мира, которые начинали дело контроля космоса. Она в течение 35 лет была заместителем председателя Астросовета. Благодаря ее энергии Астрономический Совет взял на себя весь груз ответственности по налаживанию работ создаваемых станций оптического наблюдения. Она болела душой за качество труда первых наблюдателей, в основном, из числа студентов астрономических и физических факультетов высших учебных заведений.
Особо следует отметить роль руководителя одной из лучших станций оптического наблюдения при Рязанском педагогическом институте доктора физико-математических наук, профессора В.И.Курышева, который руководил одной из самых лучших станций. Василий Иванович внедрил много новшеств в работу своего детища. Так, например, чтобы наблюдатели более эффективно использовали время наблюдений, не переутомляясь, он в течение всей ночи по местной радиотрансляционной сети велел передавать мелодии легкой музыки. Это была не современная громоподобная музыка. Из репродукторов, расположенных непосредственно на наблюдательной площадке звучала тихая музыка. Как отличный психолог, он понимал, что этот прием дает людям возможность психологически отдыхать, и, как следствие, более эффективно работать. Он выпустил учебник по организации оптических наблюдений, который стал на долгие годы настольной книгой не только наблюдателей на СОН, но и для офицеров ЦККП. Изложенный в книге доступным языком материал позволял в короткие сроки людям, даже не имевшим солидной математической подготовки, осваивать основные принципы производства наблюдений за космическими объектами. На протяжении многих лет он руководил теоретической и практической подготовкой начальников ПОН ВПВО (Пункты оптического наблюдения Войск Противовоздушной обороны), проводимой на сборах вначале на ПОН в подмосковном поселке Мамонтовка, а позднее - в 12 учебном центре. Он искренне болел за качество подготовки начальников пунктов оптического наблюдения, старался за короткое время сборов (одна неделя) научить их не только качественно осуществлять руководство людьми при организации сеансов наблюдений за космическими объектами, но и самим осваивать искусство работы на оптических средствах.
В.И.Курышев стремился передать офицерам весь свой богатый опыт наблюдателя - теоретика и практика. На вооружении первых станций оптического наблюдения находились оптические приборы: АТ-1 (астрономическая трубка) и ТЗК (трубка зенитная командира). Это были приборы, позволявшие наблюдать космические тела, яркость свечения которых не превышала десятой звездной величины. Для справки: видимые человеческим глазом звезды имеют яркость не более шестой звездной величины, последняя звезда созвездия Большой Медведицы, именуемая Полярной звездой, светится, как звезда второй звездной величины. В.И.Курышев требовал от наблюдателей отличного знания карты звездного неба, устраивал своего вида контрольные занятия, когда его слушатели должны были безошибочно находить на небосклоне, или в звездном атласе необходимое созвездие или звезду, а их в атласе было зарегистрировано около 200 тысяч штук.
Одним из первых организаторов слежения за космическими объектами был руководитель Звенигородской станции А.М.Лозинский. Ученый, талантливый экспериментатор, наблюдатель наивысшей квалификации, он объединил вокруг себя большую группу единомышленников, среди которых особенно выделялся молодой ученый Н.С.Бахтигараев, сменивший Александра Марковича на посту руководителя станции. В наши дни Н.С.Бахтигараев много сил и энергии отдает делу организации слежения за космическими объектами, особенно, когда речь заходит о геостационарной области космического пространства. Скромный, обаятельный человек, он всю свою сознательную жизнь посвятил служению контролю космического пространства. Звенигородская обсерватория и сегодня играет существенную роль в обнаружении и сопровождении геостационарных космических аппаратов. Серьезные исследования проводит коллектив этой станции в области загрязнения космического пространства космическим мусором. Станции оптического наблюдения под руководством А.М.Лозинского и В.И.Курышева на протяжении всего периода работы с ЦККП были в числе лучших станций.
Впоследствии приборы АТ-1 были заменены модернизированными приборами БМТ-110М (большая морская труба). Модернизация приборов наблюдения производилась на Казанском оптико-механическом заводе. Однако эффективность работы СОН не в полной мере отвечала требованиям военных, так как наблюдателями были студенты, квалификация которых была недостаточно высокой. Наряду со своей основной задачей (наблюдения космических объектов) станции оптического наблюдения под руководством Астросовета участвовали во многих международных программах.
Для изучения влияния коротко-периодических проявлений солнечной активности на точность определения параметров орбит космических объектов необходимо было проводить наблюдения движения спутников по специальной программе на коротких промежутках времени. Такая международная программа наблюдений и исследований, получившая название «Интеробс», стала проводится в СССР в сотрудничестве с другими странами, начиная с 1963 года. Полученные квазисинхронные наблюдения низких спутников таких, как ракета-носитель «Космоса-54» и других объектов позволили определять периоды обращения с хорошей точностью на коротких (1-2 суток) интервалах времени и выполнить исследования их зависимости от вспышек на Солнце и магнитных бурь на Земле.
В конце 60-х годов оптические средства приступили к осуществлению программы «Атмосфера», основной целью которой уточнение навигационной привязки спутников. Фотографические наблюдения таких космических аппаратов, как «Полет-1», «Ореол-1» и «Интеркосмос» позволили повысить точность навигационной привязки примерно в 6-8 раз. Это имело большое значение при решении задач привязки научных экспериментов на спутниках.
В начале 70-х годов начались экспериментальные наблюдения автоматических межпланетных станций «Марс-1», «Луна-4», «Зонд-3» «Луна-7» на расстояниях от 100000 км до 150000 км. Для этого использовался телескоп Крымской астрофизической обсерватории АН СССР. Диаметр зеркала этого прибора составлял 2.6м. Получила развитие высокочувствительная телевизионная аппаратура. Такая установка, присоединенная к телескопу с диаметром зеркала 500мм, позволяла не только сфотографировать автоматические лунные и межпланетные станции на расстоянии до 80000км, но и следить за их движением на протяжении нескольких часов.
С начала 60- годов осуществлялись пробные работы по синхронным наблюдениям космических аппаратов с целью уточнения данных геодезической привязки наземных объектов методом космической триангуляции. Основным условием проведения этих работ было использование так называемой базы наблюдений (расстояние между пунктами, проводящих синхронные работы) от 3000-4000 км до 100000 км. Итогом было получение точных данных привязки наземных объектов, составлявших несколько десятков метров. Нет необходимости утверждать, насколько это было важно для обороноспособности страны.
Велись работы по разработке спутниковых лазерных дальномеров по программе «Интеркосмос». Они позволили бы измерять расстояния до спутников с точностью 10-20 см в полном автоматическом режиме и наблюдать космические объекты на высотах до 20000 км. Использование на отечественных космических аппаратах лазерных отражателей повысило точность измерений параметров КА «Интеркосмос-17» (ошибка составляла всего 2-3 м). В 1975 году с помощью фотографической камеры «АФУ-75» Симеизкой станции ВАУ Звенигородской обсерватории впервые были получены фотографии геостационарных спутников.
Прошло 60 лет со дня этого знаменательного события - запуска в Советском Союзе первого в мире Искусственного спутника Земли. И сегодня мы преисполнены гордостью за нашу советскую науку, доказавшую на деле, что наши ученые смогли сделать то, что оказалось не по силам зарубежным странам, в том числе и США. СЛАВА НАШЕЙ НАУКЕ, СЛАВА НАШИМ УЧЕНЫМ, КОНСТРУКТОРАМ!
Полковник Оляндер Л.К.,член совета ветеранов ККП и Постоянной комиссии ЦС СВКВ по социальной и правовой защите.

Урок 45

КОСМИЧЕСКИЕ ВОЙСКА, ИХ СОСТАВ И ПРЕДНАЗНАЧЕНИЕ

Предмет: ОБЖ.

Модуль 3. Обеспечение военной безопасности государства.

Раздел 5. Основы обороны государства.

Глава 14. Виды и рода войск Вооружённых Сил Российской Федерации.

Урок №45. Космические войска, их состав и предназначение.

Дата проведения: «____» _____________ 20___ г.

Урок провёл: учитель ОБЖ Хаматгалеев Э. Р.

Цель: рассмотреть состав и предназначение Космических войск.

Ход уроков

    Организация класса.

Приветствие. Проверка списочного состава класса.

    Сообщение темы и цели урока.

    Актуализация знаний.

    Для выполнения каких боевых задач предназначены Воздушно-десантные войска?

    Какие боевые возможности Воздушно-десантных войск вы можете перечислить?

    Какие известные подразделения входят в состав Воздушно-десантных войск?

    Как вы понимаете девиз ВДВ «Никто, кроме нас!»? Поясните свой ответ.

    Проверка домашнего задания.

Заслушивание ответов нескольких учеников на домашнее задание (по выбору учителя).

    Работа над новым материалом.

Космические войска – это принципиально новый самостоятельный род войск, который предназначен для:

    вскрытия начала ракетного нападения на Российскую Федерацию и её союзников;

    борьбы с баллистическими ракетами противника, атакующими обороняемый район;

    поддержания в установленном составе орбитальных группировок космических аппаратов военного и двойного назначения и обеспечения применения космических аппаратов по целевому назначению;

    контроля космического пространства;

    обеспечения выполнения Федеральной космической программы России, программ международного сотрудничества и коммерческих космических программ.

В состав Космических войск входят: объединение ракетно-космической обороны (РКО), Государственные испытательные космодромы Министерства обороны Российской Федерации «Байконур», «Плесецк» и «Свободный», Главный испытательный центр испытаний и управления космическими средствами имени Г. С. Титова, управление по вводу средств РКО, военно-учебные заведения и части обеспечения. Объединение РКО включает соединения предупреждения о ракетном нападении, противоракетной обороны и контроля космического пространства.

СИЛЫ И СРЕДСТВА РАКЕТНО-КОСМИЧЕСКОЙ ОБОРОНЫ

На систему предупреждения о ракетном нападении (СПРН) возлагаются задачи получения и выдачи информации предупреждения о ракетном нападении на пункты государственного и военного управления, формирования необходимой информации для системы противоракетной обороны и выдачи данных о космических объектах на систему контроля космического пространства.

Система противоракетной обороны осуществляет обнаружение целей и поражение боевых блоков межконтинентальных баллистических ракет (МБР) противоракетами с исключением детонации их зарядов.

Система контроля космического пространства (ККП) является уникальной. Контролировать космос могут только две державы – Россия и США. В главном каталоге системы ККП Российской Федерации содержится информация почти о 9 тыс. космических объектов.

Силы и средства ККП во взаимодействии с информационными средствами систем ПРН, ПРО и другими информационными системами выполняют задачи контроля космического пространства и выдачи информации о космической обстановке на пункты управления государственного и военного руководства. Системой определяются характеристики и назначение всех космических аппаратов, а также состав орбитальных группировок космических систем России и иностранных государств с их распознаванием.

В условиях возрастания роли космического пространства в решении мирных и военных задач у системы ККП появляются новые задачи: информационное обеспечение поддержки реализации Россией своих прав по использованию космического пространства; информационное обеспечение противодействия средствам космической разведки, в том числе для сохранения мобильной группировки стратегических ядерных сил (СЯС); экологический мониторинг космического пространства; контроль за испытаниями и возможным развёртыванием элементов системы ПРО космического базирования.

Космические войска оснащены ракетами-носителями, командно-измерительными системами, радиолокационными станциями, оптико-электронными комплексами.

ГОСУДАРСТВЕННЫЕ ИСПЫТАТЕЛЬНЫЕ КОСМОДРОМЫ МИНИСТЕРСТВА ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ

Космодром «Байконур» основан в июне 1955 г. Отсюда 12 апреля 1961 г. стартовал первый космонавт планеты Ю. А. Гагарин.

После распада СССР космодром стал собственностью Республики Казахстан. В соответствии с Договором аренды комплекса «Байконур» между Правительствами Российской Федерации и Республикой Казахстан 1994 г. его использование осуществляется Российской Федерацией. Срок аренды комплекса «Байконур» - 20 лет с возможностью его дальнейшего продления.

Общая координация работ, проводимых на космодроме, возложена на Министерство обороны Российской Федерации (Космические войска), а реализация Федеральной космической программы России и программ международного сотрудничества – на Российское авиационно-космическое агентство.

Космодром «Плесецк» является самым северным космодромом в мире (он находится в Архангельской области) и осуществляет запуски космических аппаратов по программам военного, социально-экономического и научного назначения, а также по программам международного сотрудничества.

Космодром «Свободный» создан в соответствии с Указом Президента Российской Федерации Б. Н. Ельцина 1 марта 1996 г.

Благоприятное географическое расположение космодрома «Свободный» в Амурской области позволяет осуществлять запуски космических аппаратов в широком диапазоне наклонений орбит, в том числе на полярные и солнечно-синхронные, более эффективно использовать энергетические возможности ракет-носителей.

    Выводы.

    Космические войска – новый род войск, входящий в Вооружённые Силы Российской Федерации.

    Космические войска обеспечивают контроль космического пространства.

    В основные задачи Космических войск входит уничтожение баллистических ракет противника, атакующих объекты и войска в обороняемых районах.

    Космические войска выполняют разведывательные функции, собирая необходимую информацию для противоракетной обороны нашей страны.

    Вопросы.

    В чём состоит основное предназначение Космических войск?

    Какие космодромы Министерства обороны Российской Федерации вы можете назвать?

    Что входит в задачи Космических войск?

    Почему контроль космического пространства с использованием сил и средств Космических войск так важен для Российской Федерации? Обоснуйте свой ответ.

    Задания.

    Подготовьте сообщение о силах и средствах ракетно-космической обороны страны.

    Используя специальную литературу, подготовьте сообщение об одном из космодромов, используемых Космическими войсками Российской Федерации.

    Напишите реферат об одном из советских или российских лётчиков-космонавтов.

    Дополнительные материалы к §45.

Главный испытательный центр испытаний и управления космическими средствами им. Г. С. Титова

Отправной точкой создания Главного центра испытаний и управления космическими средствами им. Г. С. Титова (ГИЦИУ КС) по праву можно считать Постановление Совета министров СССР от 30 января 1956 г., определившее программу разработки и запусков первых искусственных спутников Земли.

Специалисты ГИЦИУ КС и подчинённых воинских частей совместно с Центром управления полётами обеспечивают все космические программы, начиная с запуска первого искусственного спутника Земли 4 октября 1957 г. Люди в погонах отвечают за состояние практически всех отечественных орбитальных систем – военных, научных, пилотируемых и др. Космическая служба Земли – это спутники связи, навигации, метеопрогноза, картографии, телевещания, ретрансляции и др.

Силы и средства ГИЦИУ КС дислоцированы практически на всей территории Российской Федерации – от Санкт-Петербурга до Камчатки.

Ракета на полигоне

    Окончание урока.

    Домашнее задание. Подготовить к пересказу §45 «Космические войска, их состав и предназначение»; выполнить задания 1-3 (рубрика «Задания», с. 236).

    Выставление и комментирование оценок.


Главная Структура Вооруженные Cилы РФ Воздушно-космические силы К 50-летию ракетно-космической обороны России Контроль космического пространства

Основной задачей системы контроля космического пространства является разведка военно-космических систем вероятных противников, обнаружение военных действий в космосе и из космоса, а также доведение информации о космической обстановке до руководства страны и Вооруженных Сил Российской Федерации и информационное обеспечение безопасности космической деятельности Российской Федерации.

Системой определяются характеристики и назначение всех космических аппаратов на высотах более 50 000 километров, состав орбитальных группировок космических систем России и иностранных государств с их распознаванием, а также признаки начала боевых действий в космосе и из космоса.

Наиболее эффективные средства СККП - это оптико-электронный комплекс «Окно», способный автономно в автоматическом режиме решать задачи контроля космических объектов на высотах от 2 000 км до 50 000 км, сбора по ним информации и ее выдачи на командные пункты, и радиооптический комплекс распознавания космических объектов «Крона».

По внешним целеуказаниям комплекс «Окно» также способен обеспечить контроль низкоорбитальных космических объектов с высотами полета от 120 до 2 000 км. Кроме того, комплекс может использоваться для экологического мониторинга космического пространства.

В свою очередь, комплекс «Крона» осуществляет обнаружение и фиксацию параметров траекторий объектов на низкой околоземной орбите, каталогизацию их характеристик и распознавание новых искусственных спутников Земли.

Основные задачи, решаемые Системой контроля космического пространства:

  1. Оперативная оценка и прогнозирование опасных изменений в околоземном космическом пространстве путем непрерывного контроля космического пространства, определения состава и состояния группировок военно-космических средств иностранных государств; контроля испытаний таких средств и развертывания противоспутниковых, противоракетных и ударных группировок.
  2. Ведение Главного каталога космических объектов - распознавание космических объектов, в том числе селекция, идентификация и определение их целевого назначения и государственной принадлежности. Автоматическое установление фактов запуска, маневра и схода космических объектов с орбиты, определение и систематическое уточнение параметров их орбит.
  3. Оценка обстановки на трассах полета отечественных космических аппаратов, прогнозирование опасных для них ситуаций, создаваемых различными космическими объектами и средствами противокосмической обороны. Оценка состояния отечественных космических аппаратов в аварийных ситуациях.
  4. Формирование и выдача на командные пункты информации о космических объектах, состоянии и изменениях космической обстановки.
  5. Обеспечение Системы предупреждения о ракетном нападении информацией о каталогизированных космических объектах в интересах снижения вероятности формирования ложной информации предупреждения о ракетном нападении.

Боевое дежурство средств СККП является выполнением боевой задачи государственной важности и несется круглосуточно. Профессионализм, высокое чувство ответственности за порученное дело, верность традициям старших поколений лежат в основе безусловного и надежного выполнения боевой задачи личным составом дежурных смен.

История создания системы контроля космического пространства

На заре активного освоения космического пространства возникла необходимость создания специальных средств наблюдения и обработки измерительной информации, которые позволяли бы определять орбиты иностранных и отечественных космических аппаратов (КА) с отказавшей или отработавшей свой ресурс бортовой аппаратурой, а также фрагменты ракет-носителей, вышедшие на орбиту. В совокупности эти средства и стали называться системой контроля космического пространства

В 1962 г. ЦК КПСС и СМ СССР приняли Постановление «О создании отечественной службы контроля космического пространства».

Первыми специализированными средствами контроля космического пространства стали радиолокационные станции «Днестр» системы предупреждения о ракетном нападении, размещенные в Казахстане (близ озера Балхаш) и Сибири (в районе Иркутска). Их общая работа позволяла создать линию наблюдения протяженностью в 5 000 км на высотах до 3 000 км. Впоследствии всего было задействовано восемь таких РЛС.

В январе 1970 г. Центр контроля космического пространства (ЦККП) заступил на боевое дежурство. В ту пору возможности ЦККП позволяли сопровождать до 500 космических объектов на высотах до 1500 км - это составляло лишь 10-15% от числа спутников, находящихся на околоземных орбитах.

В последующие годы принимались меры по расширению радиолокационного поля, модернизации РЛС и созданию в интересах Центра специализированных средств разведки и распознавания космических объектов.

По мере усложнения обстановки в космосе были развернуты активные работы по совершенствованию ЦККП и его преобразованию в командный пункт системы контроля космического пространства.

На первом этапе, в 1974 году, для этого была обеспечена связь ЦККП с информационными средствами систем предупреждения о ракетном нападении (ПРН) и противоракетной обороны (ПРО). Зона контролируемого космического пространства резко расширилась - к 1976 г. ЦККП уже сопровождал более полутора тысяч космических объектов, что составляло 30% от их общего количества.

При этом значительно повысилась достоверность информации, формируемой системой ПРН, так как появилась возможность ведения полного каталога космических объектов, пролетающих над территорией страны, который позволил значительно снизить вероятность ложного предупреждения путем отбраковки траекторий полета снижающихся и сгорающих в плотных слоях атмосферы космических объектов.

Кроме того, появились реальные возможности своевременной и надежной выдачи соответствующих целеуказаний комплексу противокосмической обороны в целях перехвата космических аппаратов, атакующих территорию страны.

В дальнейшем степень контроля объектов, находящихся в космическом пространстве, непрерывно возрастала - к 1980 г. ЦККП получил возможность прогнозирования мест падения космических объектов и сопровождал более половины всех орбитальных объектов.

Тогда же, в 1980 году, было принято решение о дальнейшем развитии Системы ККП с поэтапным вводом в ее состав специализированных средств контроля космического пространства: оптико-электронных и радио-оптических комплексов распознавания космических объектов, а также средств пеленгации излучения космических аппаратов. Создание специализированных средств ККП позволило существенно улучшить оперативность и эффективность распознавания космических аппаратов.

Оптико-электронная станция из состава ОЭК «Окно»

В 1986 г. средствами СККП сопровождалось уже более 4 тысяч космических аппаратов и их элементов на высотах до 3500 км.

В 1988 г. было образовано соединение контроля космического пространства, призванное обеспечить оперативное управление всеми силами и средствами, позволяющими всеобъемлюще контролировать космическое пространство, и своевременно обнаружить начало военных действий в космосе.

Соединение ККП имеет в своем составе командный пункт, Центр контроля космического пространства, специализированные радиолокационные и оптико-электронные комплексы. На Центр контроля космического пространства возлагается задача непрерывного ведения Главного каталога космической обстановки и выдача оперативных данных о ней на главные командные пункты страны.

В 1999 году была поставлена в опытную эксплуатацию первая очередь оптико-электронного комплекса «Окно» (г. Нурек, Таджикистан). В 2000 году завершены испытания и сдана в эксплуатацию войскам первая очередь радиооптического комплекса «Крона» (ст. Зеленчукская, Карачаево-Черкесская Республика).

В настоящее время работы по совершенствованию Системы контроля космического пространства продолжаются.

Слова, вынесенные в заголовок, могут кому-то показаться странными. Разве в космосе воюют? Разве ударные средства космического базирования не запрещены? Да, к счастью, боевых ракет и лазерных пушек на орбитах пока нет. Однако, как показывает опыт последних лет, приготовления к военному конфликту или крупномасштабным маневрам начинаются с перегруппировки космических аппаратов разведки и связи. Так что за космосом нужен глаз да глаз.

Объекты комплекса оптико-электронного слежения за космической обстановкой, расположенного в районе города Нурек (Таджикистан).

Олег Макаров

В наши дни иметь оперативную информацию об изменении космической обстановки не менее важно, чем располагать средствами раннего предупреждения о ракетном нападении. И хотя космические державы в соответствии с международными договорами оповещают друг друга о запусках космических аппаратов, их назначение далеко не всегда до конца «прозрачно».

Вот пример: одно из государств запускает искусственный спутник Земли, который, как официально объявляется, будет использован для мониторинга поверхности нашей планеты, скажем, в интересах службы погоды. Но далее с аппаратом происходят странные метаморфозы: спутник разделяется на три отдельных блока, которые расходятся по разным орбитам, образуя в небе равносторонний треугольник, и начинают работу, результаты которой скорее окажутся интересными не метеорологам, а военным. Тут, как говорится, доверяй, но проверяй. А чем это можно проверить?


Объекты комплекса оптико-электронного слежения за космической обстановкой, расположенного в районе города Нурек (Таджикистан).

В ожидании битв на орбите

У нашей страны такие средства есть. 25 лет назад, тогда еще в составе ПВО СССР, был образован Корпус контроля космического пространства. В те годы тема противодействия ударным средствам, создававшимся в рамках американской Стратегической оборонной инициативы, рассматривалась как весьма актуальная, а потому в задачи корпуса входил не только контроль окружающего космоса, но и организация противодействия космическим силам вероятного противника. В рамках корпуса была создана специальная часть, на вооружении которой должны были находиться истребители спутников (ИС): эта система прошла испытания и успешно поразила восемь учебных целей на орбите. Затем настали иные времена, холодная война завершилась, и согласно соответствующим договорам между СССР и США от ИСов пришлось отказаться, что, однако, не сделало орбитальный мониторинг менее важной задачей. Корпус, дислоцированный в Подмосковье, в районе Ногинска, был преобразован в дивизию, а затем в Главный центр разведки космической обстановки. Разумеется, отдельные инструменты наблюдения за ближним космосом существуют у нескольких стран, однако всеобъемлющие системы контроля космического пространства есть только у России и, как нетрудно догадаться, у США. Эффективность таких систем напрямую зависит как от качества и количества средств наблюдения, так и от географии их расположения.


Обеспечение безопасности воздушного и космического пространства требует круглосуточного внимания и сложнейшей аналитической работы.

По последнему пункту нам с американцами соперничать трудно: имея базы и зависимые территории по всему земному шару, США способны обеспечить мониторинг в непрерывном режиме большего количества секторов околоземного пространства. Интересно, что одним из важнейших элементов американской системы стала создававшаяся еще с начала 1960-х годов так называемая космическая изгородь (space fence). «Изгородь» представляла собой ряды излучающих и принимающих УКВ-антенн, протянувшиеся через всю территорию Соединенных Штатов — от Калифорнии до Джорджии примерно на широте 33 градуса. В минувшем августе это уникальное сооружение было отключено по команде американского правительства, которое решило, что «изгородь», способная различать объекты с поперечником 10 см на высоте до 30 000 км, слишком дорого обходится американским налогоплательщикам. Правда, это вовсе не означает, что США отказались от космической разведки: во‑первых, у них есть другие средства, а во-вторых, начиная с 2009 года ведущие американские компании в сфере «оборонки» уже получили $500 млн на разработку «изгороди» нового поколения. А что же есть у нас?


Ближе к звездам

Главный центр разведки космической обстановки войск воздушно-космической обороны РФ действует круглосуточно и производит около 70 000 измерений в день. В его каталоге около 10 000 объектов — от МКС до наноспутников и мелких фрагментов «космического мусора». Данные поступают в Центр как от собственных средств, так и от других служб, ведущих наблюдение за небом. Среди них первым делом стоит отметить систему предупреждения о ракетном нападении (СПРН), включающую в себя РЛС «Воронеж», «Волга», «Днепр», «Дарьял». Также в Центр приходит информация от радиолокационных средств позиционного района ПРО, созданного вокруг Москвы, — к ним относятся РЛС «Дон-2Н» и «Дунай-3У». Используются данные со станций слежения за космическим пространством, построенных на базе квантово-оптической системы «Сажень-Т». Она представляет собой телескоп, оснащенный оборудованием для лазерных измерений наклонной дальности и угловых координат по отраженному солнечному излучению. Центр получает информацию и от учреждений Российской академии наук.


Чем больше всевозможных технических средств находится в распоряжении войск воздушно-космической обороны РФ, тем больше информации о космической обстановке можно получить в реальном времени. Главный центр РКО использует данные не только собственных средств, но и РЛС системы предупреждения о ракетном нападении. На фото строительство загоризонтной РЛС нового поколения типа «Воронеж-М».

Собственные средства Главного центра РКО — инструменты оптические, радиолокационные, а также радиотехнические, которые позволяют прослушивать космос в пассивном режиме. Оптические и радиолокационные средства дают возможность прежде всего следить за перемещениями объектов на околоземных орбитах, а радиотехнические помогают узнать нечто о функционировании космических аппаратов.

«Благодаря радиотехническим средствам, — говорит начальник Центра полковник Александр Логвиненко, — мы можем судить о состоянии космического аппарата — включен он или выключен. Предположим, официальные инстанции некоего государства объявляют: такой-то спутник выведен в резерв. Мы слушаем его в радиодиапазоне, и оказывается, что аппарат включен на полную мощность. Значит, нам что-то недоговаривают».

Уникальный радиотехнический комплекс «Момент», работающий в интересах Центра, расположен здесь же, в Подмосковье, а вот оптические и радиолокационные средства, нацеленные на экваториальную область (орбита любого космического аппарата неизбежно проходит через экватор), стоят ближе к югу, в горах, где ночами темное небо, редко бывают дожди и воздух необыкновенно прозрачен. Один из комплексов оптического и радиолокационного наблюдения расположен в Карачаево-Черкесии, в районе станицы Зеленчукская. Установленное здесь оборудование позволяет вести наблюдение за небом в оптическом диапазоне даже при свете дня. Другой комплекс работает на Памире в районе города Нурек (Таджикистан). После распада СССР объект перешел в собственность нового независимого государства, однако с 2005 года станции и командный пункт переданы России, а земля под ними сдается российским военным за символическую арендную плату.


Конечно, для повышения эффективности работы Центра количество и географию средств наблюдения необходимо расширять. Ведь чем больше секторов неба находится под наблюдением, тем чаще в их поле зрения попадает тот или иной космический аппарат. Как рассказал полковник Логвиненко, в период до 2020 года специалисты по разведке космической обстановки рассчитывают получить более компактные и эффективные квантово-оптические инструменты. Цепь таких станций протянется через всю страну от Калининграда до Находки. С их помощью можно будет смотреть вглубь космоса не на 40 000 км, как сейчас, а на 70−80 тысяч.

На боевом дежурстве

Командный пункт Главного центра разведки космической обстановки похож на центр управления полетами в миниатюре. Те же сосредоточенные лица людей за мониторами, те же большие экраны на стене: на них показаны траектории космических аппаратов. Работа здесь идет семь дней в неделю и 24 часа в сутки, но это не означает, разумеется, что ежесекундно каждый космический объект размером больше футбольного мяча находится под пристальным вниманием. Обычно офицерам Центра выдается задание отследить передвижения каких-то конкретных объектов, интересующих те или иные инстанции. Это могут быть иностранные разведывательные аппараты или ракетно-космические эксперименты Северной Кореи. Отдельный интерес представляет бурно развивающаяся китайская космическая программа.

Правда, есть объект, который находится под постоянным контролем. Это Международная космическая станция. Чтобы не подвергать риску экипажи МКС, необходимо своевременно обнаруживать угрозы станции со стороны «космического мусора» и выдавать рекомендации по корректировке ее траектории. По‑настоящему серьезные угрозы возникают не так часто (примерно раз в несколько месяцев), однако права на ошибку у «космических разведчиков» нет. В частности, в прошлом году всерьез рассматривался вариант экстренной эвакуации экипажа с МКС ввиду вероятного столкновения станции с фрагментом отработанной ракетной техники. Однако специалистами Центра были проведены расчеты, которые показали: станция в безопасности, столкновения не будет. Бывают и курьезные случаи. Однажды средства наблюдения обнаружили вблизи МКС объект непонятного происхождения. Он возник как бы ниоткуда, его приближения к станции никто не заметил. Вскоре эту тайну удалось разгадать: в роли НЛО выступил ящик, потерянный космонавтами во время работ в открытом космосе. Из-за разницы масс орбиты станции и ящика слегка разошлись, и оба объекта продолжили полет на некотором расстоянии друг от друга.


Еще одно приоритетное направление для Центра — контроль за схождением с орбиты крупных космических объектов, представляющих потенциальную опасность. Например, с ноября 2011 года по январь 2012-го проводился повитковый контроль и анализ состояния неудачно запущенного космического зонда «Фобос-Грунт» (несшего 8 т ядовитого топлива). В итоге был дан точный прогноз даты и места падения космического аппарата.

Аналитическое подразделение Главного центра РКО выглядит совсем как офис какой-нибудь фирмы: столы, перегородки, дисплеи с клавиатурой и мышью. Но именно здесь происходит самое главное: офицеры-аналитики высочайшей квалификации оценивают в онлайн-режиме изменения космической обстановки и докладывают свои выводы вышестоящему начальству. Разумеется, аналитикам помогает вычислительная техника. Местный ВЦ, построенный, по утверждению сотрудников Центра, полностью на отечественной элементной базе (используется платформа «Эльбрус»), оснащен специальным ПО, которое обрабатывает большой массив поступающих данных в автоматическом режиме. Но для окончательной оценки событий на околоземной орбите обязательно требуется постоянное присутствие опытных офицеров-аналитиков.

Эти люди, несмотря на сугубо интеллектуальный характер работы, находятся на боевом дежурстве и даже носят оружие. Приказ на выдачу срочной оценки космической обстановки в том или ином регионе может поступить в любое время дня и ночи. Например, минувшим летом руководством Министерства обороны РФ была объявлена внезапная проверка боеготовности войск Восточного военного округа. Столь же внезапно Центру была выдана команда провести оценку изменения активности иностранных космических аппаратов в связи с беспрецедентными в новой российской истории учениями. В ответ на вопрос о том, что же удалось увидеть в космосе в ходе выполнения приказа, помощник начальника Главного центра РКО полковник Алексей Руденко сообщил следующее: «Могу лишь сказать, что территория Российской Федерации в течение практически 100% времени находится под контролем иностранных разведывательных систем космического базирования. Что касается нашей работы в ходе учений в Восточном округе, то все задачи, поставленные перед Центром, были успешно выполнены. Подробности относятся к закрытой информации».

Рекомендуем почитать

Наверх