Какие два вида солей образует сернистая кислота. Химические свойства серной кислоты

Ландшафтный дизайн и планировка 20.09.2019
Ландшафтный дизайн и планировка

Диоксид (двуокись) серы SO 2 образуется при сжигании серы в воздухе или кислороде. Он получается также при прокаливании на воздухе («обжигании») сульфидов металлов, например железного колчедана:

По этой реакции диоксид серы получают обычно в промышленности (о других промышленных способах получения SO 2 см, 9 § 131).

Диоксид серы - бесцветный газ («сернистый газ») с резким запахом горячей серы. Он довольно легко конденсируется в бесцветную жидкость, кипящую при -10.0°C. При испарении жидкого SO 2 происходит сильное понижение температуры (до -50°C).

Диоксид серы хорошо растворяется в воде (около 40 объемов в 1 объеме воды при 20°C); при этом частично происходит реакция с водой и образуется сернистая кислота:

Таким образом, диоксид серы является ангидридом сернистой кислоты. При нагревании растворимость SO 2 уменьшается и равновесие смещается влево; постепенно весь диоксид серы снова выделяется из раствора.

Молекула SO 2 построена аналогично молекуле озона. Ядра составляющих ее атомов образуют равнобедренный треугольник:

Здесь атом серы, как и центральный атом кислорода в молекуле озона, находится в состоянии sp 2 -гибридизации и угол OSO близок к 120°. Ориентированная перпендикулярно к плоскости молекулы p z -орбиталь атома серы не участвует в гибридизации. За счет этой орбитали и аналогично ориентированных p z -орбиталей атомов кислорода образуется трехцентровая?-связь; осуществляющая ее пара электронов принадлежит всем трем атомам молекулы.

Диоксид серы применяют для получения серной кислоты, а также (в значительно меньших количествах) для беления соломы, шерсти, шелка и как дезинфицирующее средство (для уничтожения плесневых грибков в подвалах, погребах, винных бочках, бродильных чанах).

Сернистая кислота H 2 SO 3 - очень непрочное соединение. Она известна только в водных растворах. При попытках выделить сернистую кислоту она распадается на SO 2 и воду. Например, при действии концентрированной серной кислоты на сульфит натрия вместо сернистой кислоты выделяется диоксид серы:

Раствор сернистой кислоты необходимо предохранять от доступа воздуха, иначе она, поглощая из воздуха кислород, медленно окисляется в серную кислоту:

Сернистая кислота - хороший восстановитель. Например, свободные галогены восстанавливаются ею в галогеноводороды:

Однако при взаимодействии с сильными восстановителями сернистая кислота может играть роль окислителя. Так, реакция ее с сероводородом в основном протекает согласно уравнению:

Будучи двухосновной (K 1 ? 2·10 -2 , K 2 = 6.3·10 -8), сернистая кислота образует два ряда солей. Средние ее соли называются сульфитами, кислые - гидросульфитами.

Как и кислота, сульфиты и гидросульфиты являются восстановителями. При их окислении получаются соли серной кислоты.

Сульфиты наиболее активных металлов при прокаливании разлагаются с образованием сульфидов и сульфатов (реакция самоокисления - самовосстановления):

Сульфиты калия и натрия применяются для отбеливания некоторых материалов, в текстильной промышленности при крашении тканей, в фотографии. Раствор Ca(HSO 3)2 (эта соль существует только в растворе) применяется для переработки древесины в так называемую сульфитную целлюлозу, из которой потом получают бумагу.

<<< Назад
Вперед >>>











Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Воспитывающая:

Создать условия для нравственного и эстетического воспитания учащихся к окружающей среде, умения работать в парах при самоанализе контрольных срезов, тестов.

Развивающая:

развивать умение работать в атмосфере поиска, творчества, дать каждому учащемуся возможность достичь успеха; умение давать самооценку деятельности на уроке;

Общеобразовательная:

организовать деятельность учащихся на усвоение:

  • знаний
  • : химические свойства и способы получения сернистого газа и сернистой кислоты;
  • умений
  • : записывать уравнения химических реакций, характеризующих химические свойства сернистой кислоты и её солей в ионном и окислительно-восстановительном виде.

Ход урока

I. Оргмомент.

II. Изучение нового материала:

1. Строение:

SO 2 (сернистый газ, оксид серы (IV)), молекулярная формула

Структурная формула

2. Физические свойства

  1. Бесцветный газ с резким запахом, ядовит.
  2. Хорошо растворим в воде (в 1 V H 2 O растворяется 40 V SO 2 при н.у.)
  3. Тяжелее воздуха, ядовит.

3. Получение

1. В промышленности: обжиг сульфидов.

FeS 2 + O 2 → Fe 2 O 3 + SO 2

а) Составить электронный баланс (ОВР).

2. В лабораторных условиях: взаимодействие сульфитов с сильными кислотами:

Na 2 SO 3 + 2HCl → 2NaCl + SO 2 + H 2 O

3. При окислении металлов концентрированной серной кислотой:

Cu + H 2 SO 4(конц) → CuSO 4 + SO 2 + H 2 O

б) Составить электронный баланс (ОВР).

4. Химические свойства SO 2

1. Взаимодействие с водой

При растворении в воде образуется слабая и неустойчивая сернистая кислота H 2 SO 3 (существует только в водном растворе).

SO 2 + H 2 O ↔ H 2 SO 3

2. Взаимодействие со щелочами:

Ba(OH) 2 + SO 2 → BaSO 3 ↓(сульфит бария) + H 2 O

Ba(OH) 2 + 2SO 2 (избыток) → Ba(HSO 3) 2 (гидросульфит бария)

3. Взаимодействие с основными оксидами (образуется соль):

SO 2 + CaO = CaSO 3

4. Реакции окисления, SO 2 – восстановитель:

SO 2 + O 2 → SO 3 (катализатор – V 2 O 5)

в) Составить электронный баланс (ОВР)

SO 2 + Br 2 + H 2 O → H 2 SO 4 + HBr

г) Составить электронный баланс (ОВР)

SO 2 + KMnO 4 + H 2 O → K 2 SO 4 + MnSO 4 + H 2 SO 4

д) Составить электронный баланс (ОВР)

5. Реакции восстановления, SO 2 - окислитель

SO 2 + С → S + СO 2 (при нагревании)

е) Составить электронный баланс (ОВР)

SO 2 + H 2 S → S + H 2 O

ж) Составить электронный баланс (ОВР)

5. Химические свойства H 2 SO 3

1. Сернистая кислота диссоциирует ступенчато:

H 2 SO 3 ↔ H + + HSO 3 - (первая ступень, образуется гидросульфит – анион)

HSO 3 - ↔ H+ + SO 3 2- (вторая ступень, образуется анион сульфит)

H 2 SO 3 образует два ряда солей:

Средние (сульфиты)

Кислые (гидросульфиты)

2. Раствор сернистой кислоты H 2 SO 3 обладает восстановительными свойствами:

H 2 SO 3 + I 2 + H 2 O = H 2 SO 4 + НI

з) Составить электронный баланс (ОВР)

III. Самоконтроль.

Осуществите превращения по схеме:

S → H 2 S → SO 2 → Na 2 SO 3 → BaSO 3 → SO 2

Уравнения реакций ионного обмена напишите в полном и кратком ионном виде.

Ответы для самопроверки выводятся на экране.

IV. Рефлексия.

Ответьте на вопросы в таблице “Вопросы к ученику” (Приложение 1).

V. Домашнее задание (дифференцированно)

Сделать задания выделенные красным шрифтом:

Уравнения а, в, е, ж – “3”

Уравнения а – е – “4”

Уравнения а – з – “5”

Приложение 1

Вопросы к ученику

Дата ___________________ Класс ______________________

Постарайся точно вспомнить то, что слышал на уроке и ответь на поставленные вопросы:

№ п/п Вопросы
1 Какова была тема урока?
2 Какая цель стояла перед тобой на уроке?
3 Каков вывод урока?
4 Как работали на уроке твои одноклассники?
5 Как работал ты на уроке?
6 Как ты думаешь, ты справишься с домашним заданием, полученном на уроке?

ОПРЕДЕЛЕНИЕ

Безводная серная кислота представляет собой тяжелую, вязкую жидкость, которая легко смешивается с водой в любой пропорции: взаимодействие характеризуется исключительно большим экзотермическим эффектом (~880 кДж/моль при бесконечном разбавлении) и может привести к взрывному вскипанию и разбрызгиванию смеси, если воду добавлять к кислоте; поэтому так важно всегда использовать обратный порядок в приготовлении растворов и добавлять кислоту в воду, медленно и при перемешивании.

Некоторые физические свойства серной кислоты приведены в таблице.

Безводная H 2 SO 4 — замечательное соединение с необычно высокой диэлектрической проницаемостью и очень высокой электропроводностью, которая обусловлена ионной автодиссоциацией (автопротолизом) соединения, а также эстафетным механизмом проводимости с переносом протона, обеспечивающим протекание электрического тока через вязкую жидкость с большим числом водородных связей.

Таблица 1. Физические свойства серной кислоты.

Получение серной кислоты

Серная кислота — самый важный промышленный химикат и самая дешевая из производимых в большом объеме кислот влюбой стране мира.

Концентрированную серную кислоту («купоросное масло») сначала получали нагреванием «зеленого купороса» FeSO 4 ×nH 2 O и расходовали в большом количестве на получение Na 2 SO 4 и NaCl.

В современном процессе получения серной кислоты используется катализатор, состоящий из оксида ванадия(V) с добавкой сульфата калия на носителе из диоксида кремния или кизельгура. Диоксид серы SO 2 получают сжиганием чистойсеры или при обжиге сульфидной руды (прежде всего пирита или руд Си, Ni и Zn) в процессе извлечения этихметаллов.Затем SO 2 окисляют до триоксида, а потом путем растворения в воде получают серную кислоту:

S + O 2 → SO 2 (ΔH 0 — 297 кДж/моль);

SO 2 + ½ O 2 → SO 3 (ΔH 0 — 9,8 кДж/моль);

SO 3 + H 2 O → H 2 SO 4 (ΔH 0 — 130 кДж/моль).

Химические свойства серной кислоты

Серная кислота - сильная двухосновная кислота. По первой ступени в растворах невысокой концентрации она диссоциирует практически нацело:

H 2 SO 4 ↔H + + HSO 4 — .

Диссоциация по второй ступени

HSO 4 — ↔H + + SO 4 2-

протекает в меньшей степени. Константа диссоциации серной кислоты по второй ступени, выраженная через активности ионов, K 2 = 10 -2 .

Как кислота двухосновная, серная кислота образует два ряда солей: средние и кислые. Средние соли серной кислоты называются сульфатами, а кислые - гидросульфатами.

Серная кислота жадно поглощает пары воды и поэтому часто применяется для осушения газов. Способностью поглощать воду объясняется и обугливание многих органических веществ, особенно относящихся к классу углеводов (клетчатка, сахар и т.д.), при действии на них концентрированной серной кислоты. Серная кислота отнимает от углеводов водород и кислород, которые образуют воду, а углерод выделяется в виде угля.

Концентрированная серная кислота, особенно горячая, — энергичный окислитель. Она окисляет HI и HBr (но не HCl) до свободных галогенов, уголь - до CO 2 , серу - до SO 2 . Указанные реакции выражаются уравнениями:

8HI + H 2 SO 4 = 4I 2 + H 2 S + 4H 2 O;

2HBr + H 2 SO 4 = Br 2 + SO 2 + 2H 2 O;

C + 2H 2 SO 4 = CO 2 + 2SO 2 + 2H 2 O;

S + 2H 2 SO 4 = 3SO 2 + 2H 2 O.

Взаимодействие серной кислоты с металлами протекает различно в зависимости от её концентрации. Разбавленная серная кислота окисляет своим ионом водорода. Поэтому она взаимодействует только с теми металлами, которые стоят в ряду напряжений только до водорода, например:

Zn + H 2 SO 4 = ZnSO 4 + H 2 .

Однако свинец не растворяется в разбавленной кислоте, поскольку образующаяся соль PbSO 4 нерастворима.

Концентрированная серная кислота является окислителем за счет серы (VI). Она окисляет металлы, стоящие в ряду напряжений до серебра включительно. Продукты её восстановления могут быть различными в зависимости от активности металла и от условий (концентрация кислоты, температура). При взаимодействии с малоактивными металлами, например с медью, кислота восстанавливается до SO 2:

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O.

При взаимодействии с более активными металлами продуктами восстановления могут быть как диоксид, так и свободная сера и сероводород. Например, при взаимодействии с цинком могут протекать реакции:

Zn + 2H 2 SO 4 = ZnSO 4 + SO 2 + 2H 2 O;

3Zn + 4H 2 SO 4 = 3ZnSO 4 + S↓ + 4H 2 O;

4Zn + 5H 2 SO 4 = 4ZnSO 4 + H 2 S + 4H 2 O.

Применение серной кислоты

Применение серной кислоты меняется от страны к стране и от десятилетия к десятилетию. Так, например в США в настоящее время главная область потребления H 2 SO 4 — производство удобрений (70%), за ним следуют химическое производство, металлургия, очистка нефти (~5% в каждой области). В Великобритании распределение потребления по отраслям иное: только 30% производимой H 2 SO 4 используется в производстве удобрений, зато 18% идет на краски, пигменты и полупродукты производства красителей, 16% на химическое производство, 12% на получение мыла и моющих средств, 10% на производство натуральных и искусственных волокон и 2,5% применяется в металлургии.

Примеры решения задач

ПРИМЕР 1

Задание Определите массу серной кислоты, которую можно получить из одной тонны пирита, если выход оксида серы (IV) в реакции обжига составляет 90%, а оксида серы (VI) в реакции каталитического окисления серы (IV) - 95% от теоретического.
Решение Запишем уравнение реакции обжига пирита:

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 .

Рассчитаем количество вещества пирита:

n(FeS 2) = m(FeS 2) / M(FeS 2);

M(FeS 2) = Ar(Fe) + 2×Ar(S) = 56 + 2×32 = 120г/моль;

n(FeS 2) = 1000 кг / 120 = 8,33 кмоль.

Поскольку в уравнении реакции коэффициент при диоксиде серы в два раза больше, чем коэффициент при FeS 2 , то теоретически возможное количество вещества оксида серы (IV) равно:

n(SO 2) theor = 2 ×n(FeS 2) = 2 ×8,33 = 16,66 кмоль.

А практически полученное количество моль оксида серы (IV) составляет:

n(SO 2) pract = η × n(SO 2) theor = 0,9 × 16,66 = 15 кмоль.

Запишем уравнение реакции окисления оксида серы (IV) до оксида серы (VI):

2SO 2 + O 2 = 2SO 3 .

Теоретически возможное количество вещества оксида серы (VI) равно:

n(SO 3) theor = n(SO 2) pract = 15 кмоль.

А практически полученное количество моль оксида серы (VI) составляет:

n(SO 3) pract = η × n(SO 3) theor = 0,5 × 15 = 14,25 кмоль.

Запишем уравнение реакции получения серной кислоты:

SO 3 + H 2 O = H 2 SO 4 .

Найдем количество вещества серной кислоты:

n(H 2 SO 4) = n(SO 3) pract = 14,25 кмоль.

Выход реакции составляет 100%. Масса серной кислоты равна:

m(H 2 SO 4) = n(H 2 SO 4) × M(H 2 SO 4);

M(H 2 SO 4) = 2×Ar(H) + Ar(S) + 4×Ar(O) = 2×1 + 32 + 4×16 = 98 г/моль;

m(H 2 SO 4) = 14,25 × 98 = 1397 кг.

Ответ Масса серной кислоты равна 1397 кг

Российский Университет Дружбы Народов

Факультет иностранных языков и общеобразовательных дисциплин

Сера. Ее использование в медицине.

Выполнила

студентка группы СВ-53

Руководитель семинаров по химии

Кафедры химии

Профессор В.Ф. Захаров

Москва, 2002

    Нахождение серы в природе.

    Физические свойства серы.

    Химические свойства серы и ее соединений.

1) Свойства простого вещества.

    Свойства оксидов:

    оксид серы (IV);

    оксид серы (VI).

    Свойства кислот и их солей:

    сернистая кислота и ее соли;

    сероводород и сульфиды;

    серная кислота и ее соли.

    Использование серы в медицине.

Общая характеристика подгруппы кислорода

В подгруппу кислорода входят пять элементов: кислород, сера, селен, теллур и полоний (полоний – радиоактивный элемент). Это p-элементыVI группы периодической системы Д.И. Менделеева. Они имеют групповое название – халькогены, что означает «образующие руды».

Свойства элементов подгруппы кислорода

Свойства

Порядковый номер

Валентные электроны

Энергия ионизации атома, эВ

Относительная электроотрицательность

Степень окисления в соединениях

Радиус атома, нм

У атомов халькогенов одинаковое строение внешнего энергетического уровня – ns 2 np 4 . Этим объясняется сходство их химических свойств. Все халькогены в соединениях с водородом и металлами проявляют степень окисления –2, а в соединениях с кислородом и другими активными неметаллами – обычно +4 и +6. для кислорода, как и для фтора, не типична степень окисления, равная номеру группы. Он проявляет степень окисления обычно –2 и в соединениях с фтором +2.

Водородные соединения элементов подгруппы кислорода отвечают формуле H 2 R (R – символ элемента): H 2 O , H 2 S , H 2 Se , H 2 Te . Они называются хальководородами. При растворении их в воде образуются кислоты (формулы те же). Сила этих кислот возрастает с ростом порядкового номера элемента, что объясняется уменьшением энергии связи в ряду соединенийH 2 R . Вода, диссоциирующая на ионыH + иОН - , является амфотерным электролитом.

Сера, селен и теллур образуют одинаковые формы соединений с кислородом типа RO 2 и RO 3 . Им соответствуют кислоты типаH 2 RO 3 иH 2 RO 4 . С ростом порядкового номера элемента сила этих кислот убывает. Все они проявляют окислительные свойства, а кислоты типаH 2 RO 3 также и восстановительные.

Закономерно изменяются свойства простых веществ: с увеличением заряда ядра ослабевают неметаллические и возрастают металлические свойства. Так, кислород и теллур – неметаллы, но последний обладает металлическим блеском и проводит электрический ток.

Нахождение серы в природе

Сера широко распространена в природе. Она составляет 0,05% массы земной коры. В свободном состоянии (самородная сера) в больших количествах встречается в Италии (остров Сицилия) и США. Месторождения самородной серы имеются в Куйбышевской области (Поволжье), в государствах Средней Азии, в Крыму и других районах.

Сера часто встречается в виде соединений с другими элементами. Важнейшими ее природными соединениями являются сульфиды металлов: FeS 2 – железный колчедан, или пирит;HgS – киноварь и др., а также соли серной кислоты (кристаллогидраты):CaSO 4 ּ 2 H 2 O – гипс,Na 2 SO 4 ּ 10 H 2 O – глауберова соль,MgSO 4 ּ 7 H 2 O – горькая соль и др.

Физические свойства серы

Природная сера состоит из смеси четырех устойчивых изотопов: ,
,
,
.

Сера образует несколько аллотропных модификаций. Устойчивая при комнатной температуре ромбическая сера представляет собой желтый порошок, плохо растворимый в воде, но хорошо растворимый в сероуглероде, анилине и некоторых других растворителях. Плохо проводит теплоту и электричество. При кристаллизации из хлороформаCHCl 3 или из сероуглеродаCS 2 она выделяется в виде прозрачных кристаллов октаэдрической формы. Ромбическая сера состоит из циклических молекулS 8 , имеющих форму короны. При 113 0 Cона плавится, превращаясь в желтую легкоподвижную жидкость. При дальнейшем нагревании расплав загустевает, так как в нем образуются длинные полимерные цепочки. А если нагреть серу до 444,6 0 С, она закипает. Выливая кипящую серу тонкой струйкой в холодную воду, можно получитьпластическую серу – резиноподобную модификацию, состоящую из полимерных цепочек. При медленном охлаждении расплава образуются темно-желтые игольчатые кристаллымоноклинной серы. (t пл =119 0 C). Подобно ромбической сере, эта модификация состоит из молекулS 8 . При комнатной температуре пластическая и моноклинная сера неустойчивы и самопроизвольно превращаются в порошок ромбической серы.

Химические свойства серы и ее соединений

Свойства простого вещества.

Атом серы, имея незавершенный внешний энергетический уровень, может присоединять два электрона и проявлять степень окисления –2. Такую степень окисления сера проявляет в соединениях с металлами и водородом (например, Na 2 S иH 2 S ). При отдаче или оттягивании электронов к атому более электроотрицательного элемента степень окисления серы может быть +2, +4 и +6.

Сера легко образует соединения со многими элементами. При сгорании ее на воздухе или в кислороде образуется оксид серы (IV)SO 2 и частично оксид серы (VI)SO 3 :

S + O 2 = SO 3

2S + 3O 2 = 2SO 3

Это наиболее важные оксиды серы.

При нагревании сера непосредственно соединяется с водородом, галогенами (кроме йода), фосфором, углем, а также со всеми металлами, кроме золота, платины и иридия. Например:

S + H 2 = H 2 S

3S + 2P = P 2 S 3

S + Cl 2 = SCl 2

2S + C = CS 2

S + Fe = FeS

Как следует из примеров, в реакциях с металлами и некоторыми неметаллами сера является окислителем, в реакциях же с более активными неметаллами, как например, с кислородом, хлором, - восстановителем.

Свойства оксидов

Оксид серы (IV )

Сернистый газ SO 2 – бесцветный газ с удушливым резким запахом. При растворении его в воде (при 0 0 С 1 объем воды растворяет более 70 объемовSO 2 ) образуется сернистая кислотаH 2 SO 3 , которая известна только в растворах.

В лабораторных условиях для получения SO 2 действуют на твердый сульфит натрия концентрированной серной кислотой:

Na 2 SO 3 + 2H 2 SO 4 = 2NaHSO 4 + SO 2 + H 2 O

В промышленности SO 2 получают при обжиге сульфидных руд, например пирита:

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 ,

или при сжигании серы. Сернистый газ является полупродуктом в производстве серной кислоты. Его используют также (вместе с гидросульфитами натрия NaHSO 3 и кальцияCa(HSO 3) 2) для выделения целлюлозы из древесины. Этим газом окуривают деревья и кустарники, чтобы уничтожать вредителей сельского хозяйства.

Химические реакции, характерные для SO 2 , можно разделить на 3 группы:

    Реакции, протекающие без изменения степени окисления, например:

SO 2 + Ca(OH) 2 = CaSO 3 + H 2 O

2SO 2 + O 2 = 2SO 3

    Реакции, протекающие с понижением степени окисления серы, например:

SO 2 + 2H 2 S = 3S + 2H 2 O

Таким образом, SO 2 может проявлять как окислительные, так и восстановительные свойства.

Оксид серы (VI )

Серный ангидрид SO 3 при комнатной температуре представляет собой бесцветную легко летучую жидкость (t кип =44,8 0 С,t пл =16,8 0 С), которая со временем переходит в асбестовидную модификацию, состоящую из блестящих шелковистых кристаллов. Волокна серного ангидрида устойчивы лишь в запаянном сосуде. Поглощая влагу воздуха, они превращаются в густую бесцветную жидкость – олеум (от лат.oleum– «масло»). Хотя формально олеум можно рассматривать как растворSO 3 вH 2 SO 4 , на самом деле он представляет собой смесь различных пиросерных кислот:H 2 S 2 O 7 ,H 2 S 3 O 10 и т.д. С водойSO 3 взаимодействует очень энергично: при этом выделяется так много теплоты, что образующиеся мельчайшие капельки серной кислоты создают туман. Работать с этим веществом нужно крайне осторожно.

Оксид серы (VI) получают окислениемSO 2 кислородом только в присутствии катализатора:

2SO 2 + O 2 2SO 3 + Q.

Необходимость использования катализатора в этой обратимой реакции обусловлена тем, что хороший выход SO 3 (т.е. смещение равновесия вправо) можно получить только при понижении температуры, однако при низких температурах очень сильно падает скорость протекания реакции.

Оксид серы (VI) энергично соединяется с водой, образуя серную кислоту:

SO 3 + H 2 O = H 2 SO 4

Свойства кислот и их солей

Сернистая кислота и ее соли

Оксид серы (IV) хорошо растворим в воде (в 1 объеме воды при 20 0 С растворяется 40 объемов SО 2). При этом образуется существующая только в водном растворе сернистая кислота:

SO 2 + Н 2 О = Н 2 SO 3

Реакция соединения SO 2 с водой обратимая. В водном растворе оксид серы (IV) и сернистая кислота находятся в химическом равновесии, которое можно смещать. При связыванииН 2 SO 3 щелочью (нейтрализация кислоты) реакция протекает в сторону образования сернистой кислоты; при удаленииSO 2 (продувание через раствор азотаили нагревание) реакция протекает в сторону исходных веществ. В растворе сернистой кислоты всегда имеется оксид серы (IV), который придает ему резкий запах.

Сернистая кислота обладает всеми свойствами кислот. В растворе Н 2 S O 3 диссоциирует ступенчато:

Н 2 S О 3 H + + HSO 4

HSO 3 - H + + SO 3 2-

Как двухосновная кислота она образует два ряда солей - сульфиты и гидросульфиты. Сульфиты образуются при полной нейтрализации кислоты щелочью:

Н 2 SO 3 + 2 N аОН = N а HS О 4 + 2Н 2 О

Гидросульфиты получаются при недостатке щелочи (по сравнению с количеством, необходимым для полной нейтрализации кислоты):

Н 2 SO 3 + N аОН = NаНS O 3 + Н 2 О

Как и оксид серы (IV), сернистая кислота и ее соли являются сильны­ми восстановителями. При этом степень окисления серы возрастает. Так, Н 2 S О 3 легко окисляется в серную кислоту даже кислородом воздуха:

2 SO 3 + O 2 = 2Н 2 SO 4

Поэтому долго хранившиеся растворы сернистой кислоты всегда со­держат серную кислоту.

Еще легче протекает окисление сернистой кислоты бромом и перманганатом калия:

Н 2 S О 3 + В r 2 + Н 2 О = Н 2 SO 4 + 2НВr

2 S 0 3 + 2Км n О 4 = 2Н 2 SO 4 + 2М nSO 4 + К 2 S О 4 + 2Н 2 О

Оксид серы (IV) и сернистая кислота обесцвечивают многие краси­тели, образуя сними бесцветные соединения. Последние могут снова разлагаться при нагреванииили на свету, в результате чего окраска восстанавливается. Следовательно, белящее действиеSO 2 иН 2 SO 4 отличается от белящего действия хлора. Обычно оксидом серы (IV) белят шерсть, шелк и солому (хлорной водой эти материалы разруша­ются).

Важное применение находит раствор гидросульфита кальция Ca (HSO 3 ) 2 (сульфитный щелок), которым обрабатывают волокна древесины и бумажную массу.

Сероводород и сульфиды

Сероводород Н 2 S - бесцветный газ с запахом тухлых яиц. Он хоро­шо растворим в воде (при 20 °C в 1 объеме воды растворяется 2,5 объема сероводорода).Раствор сероводорода в воде называется сероводородной водой или сероводородной кислотой (она обнаруживает свойства слабой кислоты).

Сероводород - очень ядовитый газ, поражаю­щий нервную систему. Поэтому работать с ним надо в вытяжных шка­фах или с герметически закрывающимися приборами. Допустимое содержание Н 2 Sв производственных помещениях составляет 0,01 мг в 1 л воздуха.

Сероводород встречается в природе в вул­канических газах и в водах некоторых минеральных источников, на­пример Пятигорска; Мацесты. Он образуется при гниении серосодержащих органических веществ различных растительных и животных остатков. Этим объясняется характерный неприятный запах сточных вод, выгребных ям и свалок мусора.

Сероводород может быть получен непосредственным соединением серы с водородом при нагревании:

S + Н 2 = H 2 S

Но обычно его получают действием разбавленной соляной или серной кислоты на сульфид железа (II):

2НСl + FеS = F еС l 2 + Н 2 S

Эту реакцию часто проводят в аппарате Киппа.

Н 2 S- менее прочное соединение, чем вода. Это обусловлено большим размером атома серы по сравнению с атомом кислорода. Поэтому связь Н-0 короче и прочнее связи Н-S. При сильном нагревании сероводород почти полностью разлагается на серу и водород:

Н 2 S = S + Н 2

Газообразный Н 2 Sгорит на воздухе голубым пламенем с образованием оксида серы (IV) и воды:

2 S + 3 O 2 = 2 SO 2 + 2Н 2 О

При недостатке кислорода образуются сера и вода:

2 S + O 2 = 2 S + 2Н 2 О

Этой реакцией пользуются для получения серы из сероводорода в промышленном масштабе.

Сероводород - довольно сильный восстановитель. Это его важное химическое свойство можно объяснить так. В растворе Н 2 S сравнитель­но легко отдает электроны молекулам кислорода воздуха:

Н 2 S - 2 е - = S + 2H + 2

O 2 + 4 е - = 2O 2- 1

В этом случае Н 2 Sокисляется кислородом воздуха до серы, которая делает сероводородную воду мутной. Суммарное уравнение реакции:

2 Н 2 S + O 2 = 2S + 2 Н 2 O

Этим объясняется и тот факт, что сероводород не накапливается в очень больших количествах в природе при гниении органических веществ - кислород воздуха окисляет его в свободную серу.

Энергично реагирует сероводород с растворами галогенов. Напри­мер:

Н 2 S + I 2 = 2HI + S

Происходит выделение серы и обесцвечивание раствора йода.

Сероводородная кислота как двухосновная образует два ряда солей - средние (сульфиды) и кислые (гидросульфиды). Например, 2 S - сульфид натрия,NаН S - гидросульфид натрия. Гидросульфиды почти все хорошо растворимы в воде. Сульфиды щелочных и щелочно-земельных металлов также растворимы в воде, а остальных металлов практически нерастворимы или мало растворимы; некоторые из них не растворяются и в разбавленных кислотах. Поэтому такие сульфиды можно легко получить, пропуская сероводород через соли соответствующего металла, например:

С uSO 4 + Н 2 S = CuS + H 2 SO 4

Некоторые сульфиды имеют характерную окраску: CuS иР bS - черную,С dS - желтую,ZnS - белую,MnS - розовую,SnS - коричне­вую,Sb 2 S 3 - оранжевую и т. д. На различной растворимости сульфи­дов и различной окраске многих из них основан качественный анализ катионов.

Серная кислота и ее соли

Серная кислота - тяжелая бесцветная масля­нистая жидкость. Крайне гигроскопична. Поглощает влагу с выделе­нием большого количества теплоты, поэтому нельзя воду приливать к концентрированной кислоте - произойдет разбрызгивание кислоты. Для разбавления надо серную кислоту приливать небольшими количествами к воде.

Безводная серная кислота растворяет до 70% оксида серы (VI). При обычной температуре она не летуча и не имеет запаха. При нагре­вании отщепляет SO 3 до тех пор, пока не образуется раствор, содержа­щий 98,3%Н 2 SO 4 . БезводнаяH 2 SO 4 почти не проводит электрический ток.

Концентрированная серная кислота обугливает органические вещества - сахар, бумагу, дерево, волокна и т. д. отнимая от них элементы воды. При этом образуются гидраты серной кислоты. Обугливание сахара можно выразить уравнением

С 12 Н 22 О 11 + n Н 2 SO 4 = 12С + Н 2 SO 4 ּ n Н 2 О

Образовавшийся уголь частично вступает во взаимодействие с кисло­той:

С + 2Н 2 SO 4 = СО 2 + 2 SO 2 + 2Н 2 О

Поэтому кислота, которая идет в продажу, имеет бурый цвет от слу­чайно попавших и обуглившихся в ней пыли и органических веществ.

На поглощении (отнятии) воды серной кислотой основана осушка газов.

Как сильная нелетучая кислота Н 2 SO 4 вытесняет другие кислоты из сухих солей. Например:

NаNОз + Н 2 SO 4 = NаН SO 4 + Н NO 3

Однако если Н 2 S О 4 добавляется к растворам солей, то вытеснения кислот не происходит.

Очень важное химическое свойство серной кислоты - отношение ее к металлам. Разбавленная и концентрированная серная кислота реаги­рует с ними различно. Разбавленная серная кислота окисляет только металлы, стоящие в ряду напряжений левее водорода, за счет ионовH + , например:

Zn + H 2 SO 4 ( разб ) = ZnSO 4 + H 2

Концентрированная серная кислота при обычной температуре со многими металлами не реагирует. Поэтому безводную серную кислоту можно хранить в железной таре и перевозить в сталь­ных цистернах. Однако при нагревании концентрированнаяН 2 SO 4 взаимодействует почти со всеми металлами (кромеР t , А u и некоторых других), а так же с неметаллами. При этом она выступает как окислитель, сама восстанавлива­ется обычно доSO 2 . Водород в этом случае не выделяется, а образует­ся вода. Например:

С u + 2 Н 2 SO 4 = С uSO 4 + SO 2 + 2 Н 2 O

2Ag + 2H 2 SO 4 = Ag 2 SO 4 + SO 2 + 2H 2 O

C + 2H 2 SO 4 + = CO 2 + 2SO 2 + 2H 2 O

2P + 5H 2 SO 4 = 2H 3 PO 4 + 5SO 2

Серная кислота обладает всеми свойствами кислот.

Серная кислота, будучи двухосновной, образует два ряда солей: средние, называемые сульфатами, и кислые, называемые гид­росульфатами. Сульфаты образуются при полной нейтрализа­ции кислоты щелочью (на 1 моль кислоты приходится 2 моля щелочи), а гидросульфаты - при недостатке щелочи (на 1 моль кислоты - 1 моль щелочи):

Н 2 SO 4 + 2 N а OH = Nа 2 SO 4 + 2Н 2 О

Н 2 SO 4 + NaOH = N а HSO 4 + Н 2 О

Многие соли серной кислоты имеют большое практическое значе­ние.

Большинство солей серной кислоты растворимо в воде. Соли Са SO 4 иР bSO 4 мало растворимы в воде, аВа SO 4 практически нерастворима как в воде, так и в кислотах. Это свойство позволяет использовать любую растворимую соль бария, напримерВаС l 2 , как реагент на серную кислоту и ее соли (точнее, на ионSO 4 2- ):

H 2 SO 4 + BaCl 2 = BaSO 4 + 2HCl

NaSO 4 + BaCl 2 = BaSO 4 + 2NaCl

При этом выпадает белый нерастворимый в воде и кислотах осадок сульфата бария.

Серная кислота является важнейшим продуктом основной химической промышленности, занимающейся производством неорганических кислот, щелочей, солей, минеральных удобрений и хлора.

По разнообразию применения серная кислота занимает первое место среди кислот. Наибольшее количество ее расходуется для полу­чения фосфорных и азотных удобрений. Будучи нелетучей кислотой, серная кислота используется для получения других кислот - соляной, плавиковой, фосфорной, уксусной и т. д. Много ее идет для очистки нефтепродуктов - бензина, керосина и смазочных масел - от вредных примесей. В машиностроении серной кислотой очищают поверхность металла от оксидов перед покрытием (никелированием, хромированием и др.). Серная кислота применяется в производстве взрывчатых ве­ществ, искусственного волокна, красителей, пластмасс и многих дру­гих. Ее употребляют для заливки аккумуляторов. В сельском хозяйст­ве она используется для борьбы с сорняками (гербицид).

Этим определяется значение серной кислоты в нашем народном хозяйстве.

Использование серы в медицине

Сера очищенная (Sulfurdepuratum) – мелкий порошок лимонно-желтого цвета – используется при энтеробиозе в качестве противоглистного средства. Она является также легким слабительным средством, входит в состав сложного порошка солодкового корня. Стерильный 1-2% раствор серы очищенной в персиковом масле (сульфозин) иногда применяют для пирогенной терапии при сифилисе.

Кроме того, соединения серы, как органические, так и неорганические, находят широкое применение в медицине. Атомы серы входят в состав множества препаратов самого различного действия. Поскольку охватить вниманием их все не представляется возможным, ограничимся несколькими примерами.

Оксид серы (IV) хорошо растворим в воде (в 1 объеме воды при 200С растворяется 40 объемов SО2). При этом образуется существующая только в водном растворе сернистая кислота:

SO2+ Н2О = Н2SO3

Реакция соединения SO2с водой обратимая. В водном растворе оксид серы (IV) и сернистая кислота находятся в химическом равновесии, которое можно смещать. При связыванииН2SO3щелочью (нейтрализация кислоты) реакция протекает в сторону образования сернистой кислоты; при удаленииSO2(продувание через раствор азота или нагревание) реакция протекает в сторону исходных веществ. В растворе сернистой кислоты всегда имеется оксид серы (IV), который придает ему резкий запах.

Сернистая кислота обладает всеми свойствами кислот. В растворе Н2SO3диссоциирует ступенчато:

Н2SО3 H+ + HSO4 –

HSO3 -H++ SO3 2-

Как двухосновная кислота она образует два ряда солей - сульфиты и гидросульфиты. Сульфиты образуются при полной нейтрализации кислоты щелочью:

Н2SO3 + 2NаОН =NаHSО4+ 2Н2О

Гидросульфиты получаются при недостатке щелочи (по сравнению с количеством, необходимым для полной нейтрализации кислоты):

Н2SO3+NаОН = NаНSO3+ Н2О

Как и оксид серы (IV), сернистая кислота и ее соли являются сильны­ми восстановителями. При этом степень окисления серы возрастает. Так, Н2SО3легко окисляется в серную кислоту даже кислородом воздуха:

2Н2SO3+O2= 2Н2SO4

Поэтому долго хранившиеся растворы сернистой кислоты всегда со­держат серную кислоту.

Еще легче протекает окисление сернистой кислоты бромом и перманганатом калия:

Н2SО3+ Вr2+ Н2О = Н2SO4 + 2НВr

5Н2S03+ 2КмnО4= 2Н2SO4+ 2МnSO4+ К2SО4+ 2Н2О

Оксид серы (IV) и сернистая кислота обесцвечивают многие краси­тели, образуя с ними бесцветные соединения. Последние могут снова разлагаться при нагревании или на свету, в результате чего окраска восстанавливается. Следовательно, белящее действиеSO2 иН2SO4отличается от белящего действия хлора. Обычно оксидом серы (IV) белят шерсть, шелк и солому (хлорной водой эти материалы разруша­ются).

Важное применение находит раствор гидросульфита кальция Ca(HSO3)2(сульфитный щелок), которым обрабатывают волокна древесины и бумажную массу.

Сероводород и сульфиды

Сероводород Н2S - бесцветный газ с запахом тухлых яиц. Он хоро­шо растворим в воде (при 20 °C в 1 объеме воды растворяется 2,5 объема сероводорода). Раствор сероводорода в воде называется сероводородной водой или сероводородной кислотой (она обнаруживает свойства слабой кислоты).

Сероводород - очень ядовитый газ, поражаю­щий нервную систему. Поэтому работать с ним надо в вытяжных шка­фах или с герметически закрывающимися приборами. Допустимое содержание Н2Sв производственных помещениях составляет 0,01 мг в 1 л воздуха.


Сероводород встречается в природе в вул­канических газах и в водах некоторых минеральных источников, на­пример Пятигорска; Мацесты. Он образуется при гниении серосодержащих органических веществ различных растительных и животных остатков. Этим объясняется характерный неприятный запах сточных вод, выгребных ям и свалок мусора.

Сероводород может быть получен непосредственным соединением серы с водородом при нагревании:

Но обычно его получают действием разбавленной соляной или серной кислоты на сульфид железа (II):

2НСl + FеS = FеСl2+ Н2S

Эту реакцию часто проводят в аппарате Киппа.

Н2S- менее прочное соединение, чем вода. Это обусловлено большим размером атома серы по сравнению с атомом кислорода. Поэтому связь Н-0 короче и прочнее связи Н-S. При сильном нагревании сероводород почти полностью разлагается на серу и водород:

Газообразный Н2Sгорит на воздухе голубым пламенем с образованием оксида серы (IV) и воды:

2Н2S+ 3O2= 2SO2+ 2Н2О

При недостатке кислорода образуются сера и вода:

2Н2S+O2= 2S+ 2Н2О

Этой реакцией пользуются для получения серы из сероводорода в промышленном масштабе.

Сероводород - довольно сильный восстановитель. Это его важное химическое свойство можно объяснить так. В растворе Н2Sсравнитель­но легко отдает электроны молекулам кислорода воздуха:

Н2S - 2е- = S + 2H + 2

O2 + 4е- = 2O 2- 1

В этом случае Н2Sокисляется кислородом воздуха до серы, которая делает сероводородную воду мутной. Суммарное уравнение реакции:

2Н2S + O2 = 2S + 2Н2O

Этим объясняется и тот факт, что сероводород не накапливается в очень больших количествах в природе при гниении органических веществ - кислород воздуха окисляет его в свободную серу.

Энергично реагирует сероводород с растворами галогенов. Напри­мер:

Н2S + I2 = 2HI + S

Происходит выделение серы и обесцвечивание раствора йода.

Сероводородная кислота как двухосновная образует два ряда солей - средние (сульфиды) и кислые (гидросульфиды). Например, Nа2S - сульфид натрия,NаНS- гидросульфид натрия. Гидросульфиды почти все хорошо растворимы в воде. Сульфиды щелочных и щелочно-земельных металлов также растворимы в воде, а остальных металлов практически нерастворимы или мало растворимы; некоторые из них не растворяются и в разбавленных кислотах. Поэтому такие сульфиды можно легко получить, пропуская сероводород через соли соответствующего металла, например:

СuSO4 + Н2S = CuS + H2SO4

Некоторые сульфиды имеют характерную окраску: CuSиРbS - черную,СdS- желтую,ZnS- белую,MnS- розовую,SnS- коричне­вую,Sb2S3- оранжевую и т. д. На различной растворимости сульфи­дов и различной окраске многих из них основан качественный анализ катионов.

БИЛЕТ №39

Серная кислота. Получение. Физические и химические свойства. Значение серной кислоты.

Се́рная кислота́ H2SO4 - сильная двухосновная кислота, отвечающая высшей степени окисления серы (+6). При обычных условиях концентрированная серная кислота - тяжёлая маслянистая жидкость без цвета и запаха, с кислым «медным» вкусом. В технике серной кислотой называют её смеси как с водой, так и с серным ангидридом SO3. Если молярное отношение SO3: H2O < 1, то это водный раствор серной кислоты, если > 1 - раствор SO3 в серной кислоте (олеум).

Рекомендуем почитать

Наверх