Классификация химических реакций h2o2 h2o o2. Общая классификация химических реакций

Техника для сада 29.09.2019
Техника для сада

Лекция: Классификация химических реакций в неорганической и органической химии

Виды химических реакций в неорганической химии


А) Классификация по количеству начальных веществ:

Разложение – вследствие данной реакции, из одного имеющегося сложного вещества, образуются два или несколько простых, а так же сложных веществ.

Пример: 2Н 2 O 2 → 2Н 2 O + O 2

Соединение – это такая реакция, при которой из двух и более простых, а также сложных веществ, образуется одно, но более сложное.

Пример: 4Al+3O 2 → 2Al 2 O 3

Замещение – это определенная химическая реакция, которая проходит между некоторыми простыми, а так же сложными веществами. Атомы простого вещества, в данной реакции, замещаются на атомы одного из элементов, находящегося в сложном веществе.

Пример: 2КI + Cl2 → 2КCl + I 2

Обмен – это такая реакция, при которой два сложных по строению вещества обмениваются своими частями.

Пример: HCl + KNO 2 → KCl + HNO 2

Б) Классификация по тепловому эффекту:

Экзотермические реакции – это определенные химические реакции, при которых происходит выделение тепла.
Примеры:

S +O 2 → SO 2 + Q

2C 2 H 6 + 7O 2 → 4CO 2 +6H 2 O + Q


Эндотермические реакции – это определенные химические реакции, при которых происходит поглощение тепла. Как правило, это реакции разложения.

Примеры:

CaCO 3 → CaO + CO 2 – Q
2KClO 3 → 2KCl + 3O 2 – Q

Теплота, которая выделяется или поглощается в результате химической реакции, называется тепловым эффектом.


Химические уравнения, в которых указан тепловой эффект реакции, называют термохимическими .


В) Классификация по обратимости:

Обратимые реакции – это реакции, которые протекают при одинаковых условиях во взаимопротивоположных направлениях.

Пример: 3H 2 + N 2 ⇌ 2NH 3

Необратимые реакции – это реакции, которые протекают только в одном направлении, а так же завершающиеся полным расходом всех исходных веществ. При этих реакциях выделяе тся газ, осадок, вода.
Пример: 2KClO 3 → 2KCl + 3O 2

Г) Классификация по изменению степени окисления:

Окислительно - восстановительные реакции – в процессе данных реакций происходит изменение степени окисления.

Пример: Сu + 4HNO 3 → Cu(NO 3) 2 + 2NO 2 + 2H 2 O.

Не окислительно - восстановительные – реакции без изменения степени окисления.

Пример: HNO 3 + KOH → KNO 3 + H 2 O.

Д) Классификация по фазе:

Гомогенные реакции реакции, протекающие в одной фазе, когда исходные вещества и продукты реакции имеют одно агрегатное состояние.

Пример: Н 2 (газ) + Cl 2 (газ) → 2HCL

Гетерогенные реакции – реакции, протекающие на поверхности раздела фаз, при которых продукты реакции и исходные вещества имеют разное агрегатное состояние.
Пример: CuO+ H 2 → Cu+H 2 O

Классификация по использованию катализатора:

Катализатор – вещество, которое ускоряет реакцию. Каталитическая реакция протекает в присутствии катализатора, некаталитическая – без катализатора.
Пример: 2H 2 0 2 MnO 2 2H 2 O + O 2 катализатор MnO 2

Взаимодействие щелочи с кислотой протекает без катализатора.
Пример: КOH + HCl КCl + H 2 O

Ингибиторы – вещества, замедляющие реакцию.
Катализаторы и ингибиторы сами в ходе реакции не расходуются.

Виды химических реакций в органической химии


Замещение – это реакция, в процессе которой происходит замена одного атома/группы атомов, в исходной молекуле, на иные атомы/группы атомов.
Пример: СН 4 + Сl 2 → СН 3 Сl + НСl

Присоединение – это реакции, при которых несколько молекул вещества соединяются в одну. К реакциям присоединения относятся:

  • Гидрирование – реакция, в процессе которой происходит присоединение водорода по кратной связи.

Пример: СН 3 -СН = СН 2 (пропен) + Н 2 → СН 3 -СН 2 -СН 3 (пропан)

    Гидрогалогенирование – реакция, присоединяющая галогенводород.

Пример: СН 2 = СН 2 (этен) + НСl → СН 3 -СН 2 -Сl (хлорэтан)

Алкины реагируют с галогеноводородами (хлороводородом, бромоводородом) так же, как и алкены. Присоединение в химической реакции проходит в 2 стадии, и определяется правилом Марковникова:


При присоединении протонных кислот и воды к несимметричным алкенам и алкинам атом водорода присоединяется к наиболее гидрогенизированному атому углерода.

Механизм данной химической реакции. Образующийся в 1 - ой, быстрой стадии, p- комплекс во 2 - ой медленной стадии постепенно превращается в s-комплекс - карбокатион. В 3 - ей стадии происходит стабилизация карбокатиона – то есть взаимодействие с анионом брома:

И1, И2 - карбокатионы. П1, П2 - бромиды.


Галогенирование – реакция, при которой присоединяется галоген. Галогенированием так же, называют все процессы, в результате которых в органические соединения вводятся атомы галогена. Данное понятие употребляется в "широком смысле". В соответствии с данным понятием, различают следующие химические реакции на основе галогенирования: фторирование, хлорирование, бромирование, йодирование.

Галогенсодержащие органические производные считаются важнейшими соединениями, которые применяются как в органическом синтезе, так и в качестве целевых продуктов. Галогенпроизводные углеводородов, считаются исходными продуктами в большом количестве реакций нуклеофильного замещения. Что касается практического использования соединений, содержащих галоген, то они применяются в виде растворителей, например хлорсодержащие соединения, холодильных агентов - хлорфторпроизводные, фреоны, пестицидов, фармацевтических препаратов, пластификаторов, мономеров для получения пластмасс.


Гидратация – реакции присоединения молекулы воды по кратной связи.

Полимеризация – это особый вид реакции, при которой молекулы вещества, имеющие относительную невеликую молекулярную массу, присоединяются друг к другу, впоследствии образовывая молекулы вещества с высокой молекулярной массой.



Лекция 2.

Химические реакции. Классификация химических реакций.

Окислительно-восстановительные реакции

Вещества, взаимодействуя друг с другом подвергаются различным изменениям и превращениям. Например, уголь, сгорая образует углекислый газ. Бериллий, взаимодействуя с кислородом воздуха превращается в оксид бериллия.

Явления, при которых одни вещества превращаются в другие, отличающихся от исходных составом и свойствами и при этом не происходит изменения состава ядер атомов называются химическими . Окисление железа, горение, получение металлов из руд ­ – все это химические явления.

Следует различать химические и физические явления.

При физических явлениях изменяется форма или физическое состояние вещества или образуются новые вещества за счет изменения состава ядер атомов . Например, при взаимодействии газообразного аммиакам с жидким азотом, аммиак переходит вначале в жидкое, а затем в твердое состояние. Это не химическое, а физическое явление, т.к. состав вещества не меняется. Некоторые явления, приводящие к образованию. Новых веществ относятся к физическим. Таковы например, ядерные реакции в результате которых из ядер одних элементов образуются атомы других.

Физические явления, т.к. и химические широко распространены: протекание электрического тока по металлическому проводнику, ковка и плаваление металла, выделение теплоты, превращение воды в лед или пар. И т.д.

Химические явления всегда сопровождаются физическими. Например, при сгорании магния выделяется теплота и свет, в гальваническом элементе в результате химической реакции возникает электрический ток.

В соответствии с атомно-молекулярным учением и законом сохранения массы вещества из атомов вступивших в реакцию веществ, образуются новые вещества как простые так и сложные, причем общее число атомов каждого элемента всегда остается постоянным.

Химические явления возникают благодаря протеканию химических реакций.

Химические реакции классифицируют по различным признакам.

1.По признаку выделения или поглощения теплоты. Реакции, протекающие с выделением теплоты называются экзотермическими. Например, реакция образования хлористого водорода из водорода и хлора:

Н 2 +СI 2 =2HCI+184,6 кДж

Реакции, протекающие с поглощением теплоты из окружающей среды, называются эндотермическими. Например, реакция образования оксида азота (II) из азота и кислорода, которая протекает при высокой температуре:

N 2 +O 2 =2NO – 180,8кДж

Количество, выделенной или поглощенной в результате реакции теплоты называют тепловым эффектом реакции. Раздел химии, изучающий тепловые эффекты химических реакций называется термохимией. Об этом мы подробно поговорим при изучении раздела «Энергетика химических реакций».

2. По признаку изменения числа исходных и конечных веществ реакции подразделяют на следующие типы: соединения, разложения и обмена .

Реакции в результате которых из двух или нескольких веществ образуется одно новое вещество называются реакциями соединения :

Например, взаимодействие хлористого водорода с аммиаком:

HCI + NH 3 = NH 4 CI

Или горение магния:

2Mg + O2 = 2MgO

Реакции в результате которых из одного вещества образуется несколько новых веществ называются реакциями разложения .

Например реакция разложения иодида водорода

2HI = H 2 + I 2

Или разложение перманганата калия:

2KmnO 4 = K2mnO 4 + mnO 2 + O 2

Реакции между простыми и сложными веществами, в результате которых атомы простого вещества замещают атомы одного из элементов сложного вещества называются реакциями замещения.

Например, замещение свинца цинком в нитрате свинца (II):

Pb(NO 3) 2 + Zn =Zn(NO 3) 2 + Pb

Или вытеснение брома хлором:

2NaBr + CI 2 = 2NaCI + Br 2

Реакции в результате которых два вещества обмениваются своими составными частями, образуя два новых вещества называются реакциями обмена . Например, взаимодействие оксида алюминия с серной кислотой:

AI2O3 + 3H3SO4 = AI2(SO4)3 + 3H3O

Или взаимодействие хлорида кальция с нитратом серебра:

CaCI 2 + AgNO 3 = Ca(NO 3) 2 + AgCI

3. По признаку обратимости реакции делятся на обратимые и необратимые.

4.По признаку изменения степени окисления атомов, входящих в состав реагирующих веществ, различают реакции протекающие без изменения степени окисления атомов и окислительно-восстановительные (с изменением степени окисления атомов).

Окислительно-восстновительные реакции. Важнейшие окислители и восстановители. Методы подбора коэффициентов в реакциях

окисления-восстановления

Все химические реакции можно разделить на два типа. К первому типу относятся реакции протекающие без изменения степеней окисления атомов, входящих в состав реагирующих веществ.

Например

HNO 3 + NaOH = NaNO 3 + H3O

BaCI 2 + K 2 SO4 = BaSO 4 + 2KCI

Ко второму типу относятся химические реакции, протекающие с изменением степеней окисления всех или некоторых элементов:

2KCIO 3 = 2KICI+3O2

2KBr+CI2=Br 2 +2KCI

Здесь в первой реакции атомы хлора и кислорода меняют степень окисления, а во второй атомы брома и хлора.

Реакции, протекающие с изменением степени окисления атомов входящих в состав реагирующих веществ называются окислительно-восстановительными.

Изменение степени окисления связано с оттягиванием или перемещением электронов.

Основные положения теории окислительно-восстановительных

реакций:

1.Окислением называется процесс отдачи электронов атомом, молекулой или ионом.

AI - 3e – = AI 3+ H 2 - 2e – = 2H +

2.Восстановлением называется процесс присоединения электронов атомом, молекулой или ионом.

S + 2e – = S 2- CI 2 +2e – = 2CI -

3.Атомы, молекулы или ионы отдающие электроны называются восстановителями. Во время реакции они окисляются

4.Атомы, молекулы или ионы присоединяющие электроны называются окислителями. Во время реакции они восстанавливаются.

Окисление всегда сопровождается восстановлением и наоборот восстановление всегда связано с окислением, что можно выразить уравнением:

Восстановитель – e – = Окислитель

Окислитель + e – = Восстановитель

Поэтому окислительно-восстановительные реакции представляют собой единство двух противоположных процессов окисления и восстановления.

Число электронов отдаваемых восстановителем всегда равно числу электронов, присоединяемых окислителем.

Восстановители и окислители могут быть как простыми веществами, т.е. состоящими из одного элемента или сложными. Типичными восстановителями являются атомы на внешнем энергетическом уровне которых имеются от одного до трех электронов. К этой группе относятся металлы. Восстановительные свойства могут проявлять и неметаллы, например водород, углерод, бор и др.

В химических реакциях они отдают электроны по схеме:

Э – ne – = Э n+

В периодах с повышением порядкового номера элемента восстановительные свойства простых веществ понижаются а окислительные возрастают и становятся максимальными у галогенов. Например, в третьем периоде натрий самый активный восстановитель, а хлор – окислитель.

У элементов главных подгрупп усиливаются восстановительные свойства с повышением порядкового номера и ослабевают окислительные. Элементы главных подгрупп 4 - 7 групп (неметаллы) могут как отдавать, так и принимать электроны, т.е. проявлять восстановительные и окислительные свойства. Исключение – фтор, который проявляет только окислительные свойства, т.к. обладает наибольшей электроотрицательностью. Элементы побочных подгрупп имеют металлический характер, т.к. на внешнем уровне их атомов содержится 1-2 электрона. Поэтому их простые вещества являются восстановителями.

Окислительные или восстановительные свойства сложных веществ зависят от степени окисления атома данного элемента.

Например, KMnO 4 , MnO 2 , MnSO 4 ,

В первом соединении марганец имеет максимальную степень окисления и не может больше ее повышать, следовательно он может быть только окислителем.

В третьем соединении у марганца минимальная степень окисления, он может быть только восстановителем.

Важнейшие восстановители : металлы, водород, уголь, монооксид углерода, сероводород, хлорид двухвалентного олова, азотистая кислота, альдегиды, спирты, глюкоза, муравьиная и щавелевая кислоты, соляная кислота, катод при элетролизе.

Важнейшие окислители : галогены, перманганат калия, бихромат каля, кислород, озон, пероксид водорода, азотная, серная, селеновая кислоты, гипохлориты, перхлораты, хлораты, црская водка, смесь концентрированных азотной и плавиковой кислот, анод при электролизе.

Составление уравнений окислительно-восстановительных реакций

1.Метод электронного баланса. В этом методе сравнивают степени окисления атомов в исходных и конечных веществах, руководствуясь правилом число электронов отданных восстановителем равно числу электронов присоединенных окислителем. Для составления уравнения необходимо знать формулы реагирующих веществ и продуктов реакции. Последние определяются либо на основе известных свойств элементов либо опытным путем.

Медь, образуя ион меди отдает два электрона., ее степень окисления возрастает от 0 до +2. Ион палладия присоединяя два электрона изменяет степень окисления от +2 до 0. Следовательно нитрат палладия – окислитель.

Если установлены как исходные вещества, так и продукты их взаимодействия, то написание уравнения реакции сводится, как правило, к нахождению и расстановке коэффициентов. Коэффициенты определяют методом электронного баланса с помощью электронных уравнений. Вычисляем, как изменяют свою степень окисления восстановитель и окислитель, и отражаем это в электронных уравнениях:

Сu 0 -2e - = Сu 2+ 1

Pd +2 +2e - =Pd 0 1

Из приведенных электронных уравнений видно, что при восстановителе и окислителе коэффициенты равны 1.

Окончательное уравнение реакции:

Cu + Pd(NO 3) 2 = Cu(NO 3) 2 + Pd

Для проверки правильности составленного уравнения подсчитываем число атомов в правой и левой части уравнения. Последним проверяем по кислороду.

восстановительной реакции, идущей по схеме:

KМnO 4 + H 3 PO 3 + H 2 SO 4 → MnSO 4 + H 3 PO 4 + K 2 SO 4 + H 2 O

Решение Если в условии задачи даны как исходные вещества, так и продукты их взаимодействия, то написание уравнения реакции сводится, как правило, к нахождению и расстановке коэффициентов. Коэффициенты определяют методом электронного баланса с помощью электронных уравнений. Вычисляем, как изменяют свою степень окисления восстановитель и окислитель, и отражаем это в электронных уравнениях:

восстановитель 5 │ Р 3+ - 2ē ═ Р 5+ процесс окисления

окислитель 2 │Mn +7 + 5 ē ═ Mn 2+ процесс восстановления

Общее число электронов, отданных восстановлением, должно быть равно числу электронов, которое присоединяет окислитель. Общее наименьшее кратное для отданных и принятых электронов 10. Разделив это число на 5, получаем коэффициент 2 для окислителя и продукта его восстановления. Коэффициенты перед веществами, атомы которых не меняют свою степень окисления, находят подбором. Уравнение реакции будет иметь вид

2KМnO 4 + 5H 3 PO 3 + 3H 2 SO 4 ═ 2MnSO 4 + 5H 3 PO 4 + K 2 SO 4 + 3H 2 O.

Метод полуреакций или ионно-электронный метод . Как показывает само название этот метод основан на составлении ионных уравнений для процесса окисления и процесса восстановления.

При пропускании сероводорода через подкисленный раствор перманганата калия малиновая окраска исчезает и раствор мутнеет.

Опыт показывает, что помутнение раствора происходит в результате образования серы:

Н 2 S  S + 2H +

Эта схема уравнена по числу атомов. Для уравнивания по числу зарядов надо от левой части отнять два электрона после чего можно стрелку заменить на знак равенства

Н 2 S – 2е – = S + 2H +

Это первая полуреакция – процесс окисления восстановителя сероводорода.

Обесцвечивание раствора связано с переходом MnO 4 - (малиновая окраска) в Mn 2+ (слабо розовая окраска). Это можно выразить схемой

MnO 4 – Mn 2+

В кислом растворе кислород, входящий в состав MnO 4 - вместе с ионами водорода в конечном итоге образует воду. Поэтому процесс перехода записываем так

MnO 4 – +8Н + Mn 2+ + 4Н 2 О

Чтобы стрелку заменить на знак равенства надо уравнять и заряды. Поскольку исходные вещества имеют семь положительных зарядов, то а конечные два положительных заряда, то для выполнения условий равенства надо к левой части схемы прибавить пять электронов

MnO 4 – +8Н + +5е – Mn 2+ + 4Н 2 О

Это полуреакция – процесс восстановления окислителя, т.е. перманганат-иона.

Для составления общего уравнения реакции надо уравнения полуреакций почленно сложить, предварительно, уравняв числа отданных и полученных электронов. В этом случае по правилу нахождения наименьшего кратного определяют соответствующие множители на которые умножают уравнения пол

Н 2 S – 2е – = S + 2H + 5

MnO 4 – +8Н + +5е – Mn 2+ + 4Н 2 О 2

5Н 2 S +2MnO 4 – +16Н + = 5S+10H + + 2Mn 2+ + 8Н 2 О

После сокращения на 10H + получаем

5Н 2 S +2MnO 4 – +6Н + = 5S + 2Mn 2+ + 8Н 2 О или в молекулярной форме

2к + + 3SO 4 2- = 2к + + 3SO 4 2-

5Н 2 S +2KMnO 4 +3Н 2 SO 4 = 5S + 2MnSO 4 + K 2 SO 4 +8Н 2 О

Сопоставим оба метода. Достоинство метод полуреакций по сравнению с методом электронного баланса заключается в том, что в нем применяются не гипотетические ионы, а реально существующие. В самом деле в растворе нет ионов Mn +7 , Cr +6 , S +6 , S +4 ; MnO 4– , Cr 2 O 7 2– , CrO 4 2– , SO 4 2– . При методе полуреакций не нужно знать все образующиеся вещества; они появляются в уравнении реакции при выводе его.

Классификация окислительно-восстановительных реакций

Обычно различают три типа окислительно-восстановительных реакций: межмолекулярные, внутримолекулярные и реакции диспропорционирования .

К межмолекулярным относятся реакции в которых окислитель и восстановитель находятся в разных веществах. Сюда же относят и и реакции между разными веществами в которых атомы одного и того же элемента имеют разные степени окисления:

2H 2 S + H 2 SO 3 = 3S + 3H 2 O

5HCI + HCIO 3 = 5CI 2 + 3H 2 O

К внутримолекулярным относятся такие реакции, в которых окислитель и восстановитель находятся в одном и том же веществе. В этом случае атом с более положительной степенью окисления окисляет атом с меньшей степенью окисления. Такими реакциями являются реакции химического разложения. Например:

2NaNO 3 = 2NaNO 2 + O 2

2KCIO 3 = 2KCI + 3O 2

Сюда же относят и разложение веществ в которых атомы одного и того же элемента имеют разные степени окисления:

NH 4 NO 3 = N 2 O + 2H 2 O

Протекание реакций диспропорционирования сопровождается одновременным увеличением и уменьшением степени окисления атомов одного и того же элемента. При этом исходное вещество образует соединения, одно из которых содержит атомы с более высокой, а другое с более низкой степенью окисления. Эти реакции возможны для веществ с промежуточной степенью окисления. Примером может служить превращение манганата калия в котором марганец имеет промежуточную степень окисления +6 (от +7 до +4). Раствор этой соли имеет красивый темно-зеленый цвет (цвет иона МnO 4 химических Химический эксперимент по неорганической химии в системе проблемного обученияДипломная работа >> Химия

Задач» 27. Классификация химических реакций . Реакции , которые идут без изменения состава. 28. Классификация химических реакций , которые идут...

Химические свойства веществ выявляются в разнообразных химических реакциях.

Превращения веществ, сопровождающиеся изменением их состава и (или) строения, называются химическими реакциями . Часто встречается и такое определение: химической реакцией называется процесс превращения исходных веществ (реагентов) в конечные вещества (продукты).

Химические реакции записываются посредством химических уравнений и схем, содержащих формулы исходных веществ и продуктов реакции. В химических уравнениях, в отличие от схем, число атомов каждого элемента одинаково в левой и правой частях, что отражает закон сохранения массы.

В левой части уравнения пишутся формулы исходных веществ (реагентов), в правой части — веществ, получаемых в результате протекания химической реакции (продуктов реакции, конечных веществ). Знак равенства, связывающий левую и правую часть, указывает, что общее количество атомов веществ, участвующих в реакции, остается постоянным. Это достигается расстановкой перед формулами целочисленных стехиометрических коэффициентов, показывающих количественные соотношения между реагентами и продуктами реакции.

Химические уравнения могут содержать дополнительные сведения об особенностях протекания реакции. Если химическая реакция протекает под влиянием внешних воздействий (температура, давление, излучение и т.д.), это указывается соответствующим символом, как правило, над (или «под») знаком равенства.

Огромное число химических реакций может быть сгруппировано в несколько типов реакций, которым присущи вполне определенные признаки.

В качестве классификационных признаков могут быть выбраны следующие:

1. Число и состав исходных веществ и продуктов реакции.

2. Агрегатное состояние реагентов и продуктов реакции.

3. Число фаз, в которых находятся участники реакции.

4. Природа переносимых частиц.

5. Возможность протекания реакции в прямом и обратном направлении.

6. Знак теплового эффекта разделяет все реакции на: экзотермические реакции, протекающие с экзо -эффектом — выделение энергии в форме теплоты (Q>0, ∆H <0):

С +О 2 = СО 2 + Q

и эндотермические реакции, протекающие с эндо -эффектом — поглощением энергии в форме теплоты (Q<0, ∆H >0):

N 2 +О 2 = 2NО — Q.

Такие реакции относят к термохимическим .

Рассмотрим более подробно каждый из типов реакций.

Классификация по числу и составу реагентов и конечных веществ

1. Реакции соединения

При реакциях соединения из нескольких реагирующих веществ относительно простого состава получается одно вещество более сложного состава:

Как правило, эти реакции сопровождаются выделением тепла, т.е. приводят к образованию более устойчивых и менее богатых энергией соединений.

Реакции соединения простых веществ всегда носят окислительно-восстановительный характер. Реакции соединения, протекающие между сложными веществами, могут происходить как без изменения валентности:

СаСО 3 + СО 2 + Н 2 О = Са(НСО 3) 2 ,

так и относиться к числу окислительно-восстановительных:

2FеСl 2 + Сl 2 = 2FеСl 3 .

2. Реакции разложения

Реакции разложения приводят к образованию нескольких соединений из одного сложного вещества:

А = В + С + D.

Продуктами разложения сложного вещества могут быть как простые, так и сложные вещества.

Из реакций разложения, протекающих без изменения валентных состояний, следует отметить разложение кристаллогидратов, оснований, кислот и солей кислородсодержащих кислот:

t o
4HNO 3 = 2H 2 O + 4NO 2 O + O 2 O.

2AgNO 3 = 2Ag + 2NO 2 + O 2 ,
(NH 4)2Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 O.

Особенно характерны окислительно-восстановительные реакции разложения для солей азотной кислоты.

Реакции разложения в органической химии носят название крекинга :

С 18 H 38 = С 9 H 18 + С 9 H 20 ,

или дегидрирования

C 4 H 10 = C 4 H 6 + 2H 2 .

3. Реакции замещения

При реакциях замещения обычно простое вещество взаимодействует со сложным, образуя другое простое вещество и другое сложное:

А + ВС = АВ + С.

Эти реакции в подавляющем большинстве принадлежат к окислительно-восстановительным:

2Аl + Fe 2 O 3 = 2Fе + Аl 2 О 3 ,

Zn + 2НСl = ZnСl 2 + Н 2 ,

2КВr + Сl 2 = 2КСl + Вr 2 ,

2КСlO 3 + l 2 = 2KlO 3 + Сl 2 .

Примеры реакций замещения, не сопровождающихся изменением валентных состояний атомов, крайне немногочисленны. Следует отметить реакцию двуокиси кремния с солями кислородсодержащих кислот, которым отвечают газообразные или летучие ангидриды:

СаСО 3 + SiO 2 = СаSiO 3 + СО 2 ,

Са 3 (РО 4) 2 + ЗSiO 2 = ЗСаSiO 3 + Р 2 О 5 ,

Иногда эти реакции рассматривают как реакции обмена :

СН 4 + Сl 2 = СН 3 Сl + НСl.

4. Реакции обмена

Реакциями обмена называют реакции между двумя соединениями, которые обмениваются между собой своими составными частями:

АВ + СD = АD + СВ.

Если при реакциях замещения протекают окислительно-восстановительные процессы, то реакции обмена всегда происходят без изменения валентного состояния атомов. Это наиболее распространенная группа реакций между сложными веществами — оксидами, основаниями, кислотами и солями:

ZnO + Н 2 SО 4 = ZnSО 4 + Н 2 О,

AgNО 3 + КВr = АgВr + КNО 3 ,

СrСl 3 + ЗNаОН = Сr(ОН) 3 + ЗNаСl.

Частный случай этих реакций обмена — реакции нейтрализации :

НСl + КОН = КСl + Н 2 О.

Обычно эти реакции подчиняются законам химического равновесия и протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного, летучего вещества, осадка или малодиссоциирующего (для растворов) соединения:

NаНСО 3 + НСl = NаСl + Н 2 О + СО 2 ,

Са(НСО 3) 2 + Са(ОН) 2 = 2СаСО 3 ↓ + 2Н 2 О,

СН 3 СООNа + Н 3 РО 4 = СН 3 СООН + NаН 2 РО 4 .

5. Реакции переноса.

При реакциях переноса атом или группа атомов переходит от одной структурной единицы к другой:

АВ + ВС = А + В 2 С,

А 2 В + 2СВ 2 = АСВ 2 +АСВ 3 .

Например:

2AgCl + SnCl 2 = 2Ag + SnCl 4 ,

H 2 O + 2NO 2 = HNO 2 + HNO 3 .

Классификация реакций по фазовым признакам

В зависимости от агрегатного состояния реагирующих веществ различают следующие реакции:

1. Газовые реакции

H 2 + Cl 2 2HCl.

2. Реакции в растворах

NaОН(р-р) + НСl(p-p) = NaСl(p-p) + Н 2 О(ж)

3. Реакции между твердыми веществами

t o
СаО(тв) +SiO 2 (тв) = СаSiO 3 (тв)

Классификация реакций по числу фаз.

Под фазой понимают совокупность однородных частей системы с одинаковыми физическими и химическими свойствами и отделенных друг от друга поверхностью раздела.

Все многообразие реакций с этой точки зрения можно разделить на два класса:

1.Гомогенные (однофазные) реакции. К ним относят реакции, протекающие в газовой фазе, и целый ряд реакций, протекающих в растворах.

2.Гетерогенные (многофазные) реакции. К ним относят реакции, в которых реагенты и продукты реакции находятся в разных фазах. Например:

газожидкофазные реакции

CO 2 (г) + NaOH(p-p) = NaHCO 3 (p-p).

газотвердофазные реакции

СO 2 (г) + СаО(тв) = СаСO 3 (тв).

жидкотвердофазные реакции

Na 2 SO 4 (р-р) + ВаСl 3 (р-р) = ВаSО 4 (тв)↓ + 2NaСl(p-p).

жидкогазотвердофазные реакции

Са(НСО 3) 2 (р-р) + Н 2 SО 4 (р-р) = СО 2 (r) +Н 2 О(ж) + СаSО 4 (тв)↓.

Классификация реакций по типу переносимых частиц

1. Протолитические реакции.

К протолитическим реакциям относят химические процессы, суть которых заключается в переносе протона от одних реагирующих веществ к другим.

В основе этой классификации лежит протолитическая теория кислот и оснований, в соответствии с которой кислотой считают любое вещество, отдающее протон, а основанием — вещество, способное присоединять протон, например:

К протолитическим реакциям относят реакции нейтрализации и гидролиза.

2. Окислительно-восстановительные реакции.

К таковым относят реакции, в которых реагирующие вещества обмениваются электронами, изменяя при этом степени окисления атомов элементов, входящих в состав реагирующих веществ. Например:

Zn + 2H + → Zn 2 + + H 2 ,

FeS 2 + 8HNO 3 (конц) = Fe(NO 3) 3 + 5NO + 2H 2 SO 4 + 2H 2 O,

Подавляющее большинство химических реакций относятся к окислительно-восстановительным, они играют исключительно важную роль.

3. Лиганднообменные реакции.

К таковым относят реакции, в ходе которых происходит перенос электронной пары с образованием ковалентной связи по донорно-акцепторному механизму. Например:

Cu(NO 3) 2 + 4NH 3 = (NO 3) 2 ,

Fe + 5CO = ,

Al(OH) 3 + NaOH = .

Характерной особенностью лиганднообменных реакций является то, что образование новых соединений, называемых комплексными, происходит без изменения степени окисления.

4. Реакции атомно-молекулярного обмена.

К данному типу реакций относятся многие из изучаемых в органической химии реакций замещения, протекающие по радикальному, электрофильному или нуклеофильному механизму.

Обратимые и необратимые химические реакции

Обратимыми называют такие химические процессы, продукты которых способны реагировать друг с другом в тех же условиях, в которых они получены, с образованием исходных веществ.

Для обратимых реакций уравнение принято записывать следующим образом:

Две противоположно направленные стрелки указывают на то, что при одних и тех же условиях одновременно протекает как прямая, так и обратная реакция, например:

СН 3 СООН + С 2 Н 5 ОН СН 3 СООС 2 Н 5 + Н 2 О.

Необратимыми называют такие химические процессы, продукты которых не способны реагировать друг с другом с образованием исходных веществ. Примерами необратимых реакций может служить разложение бертолетовой соли при нагревании:

2КСlО 3 → 2КСl + ЗО 2 ,

или окисление глюкозы кислородом воздуха:

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О.

Химические реакции следует отличать от ядерных реакций. В результате химических реакций общее число атомов каждого химического элемента и его изотопный состав не меняются. Иное дело ядерные реакции - процессы превращения атомных ядер в результате их взаимодействия с другими ядрами или элементарными частицами, например превращение алюминия в магний:


27 13 Аl + 1 1 Н = 24 12 Мg + 4 2 Не


Классификация химических реакций многопланова, то есть в ее основу могут быть положены различные признаки. Но под любой из таких признаков могут быть отнесены реакции как между неорганическими, так и между органическими веществами.


Рассмотрим классификацию химических реакций по различным признакам.

I. По числу и составу реагирующих веществ

Реакции, идущие без изменения состава веществ.


В неорганической химии к таким реакциям можно отнести процессы получения аллотропных модификаций одного химического элемента, например:


С (графит) ↔ С (алмаз)
S (ромбическая) ↔ S (моноклинная)
Р (белый) ↔ Р (красный)
Sn (белое олово) ↔ Sn (серое олово)
3O 2 (кислород) ↔ 2O 3 (озон)


В органической химии к этому типу реакций могут быть отнесены реакции изомеризации, которые идут без изменения не только качественного, но и количественного состава молекул веществ, например:


1. Изомеризация алканов.


Реакция изомеризации алканов имеет большое практическое значение, так как углеводороды изостроения обладают меньшей способностью к детонации.


2. Изомеризация алкенов.


3. Изомеризация алкинов (реакция А. Е. Фаворского).


CH 3 - CH 2 - С= - СН ↔ СН 3 - С= - С- СН 3

этилацетилен диметнлацетилен


4. Изомеризация галогеналканов (А. Е. Фаворский, 1907 г.).

5. Изомеризация цианита аммония при нагревании.



Впервые мочевина была синтезирована Ф. Велером в 1828 г. изомеризацией цианата аммония при нагревании.

Реакции, идущие с изменением состава вещества

Можно выделить четыре типа таких реакций: соединения, разложения, замещения и обмена.


1. Реакции соединения - это такие реакции, при которых из двух и более веществ образуется одно сложное вещество


В неорганической химии все многообразие реакций соединения можно рассмотреть, например, на примере реакций получения серной кислоты из серы:


1. Получение оксида серы (IV):


S + O 2 = SO - из двух простых веществ образуется одно сложное.


2. Получение оксида серы (VI):


SO 2 + 0 2 → 2SO 3 - из простого и сложного веществ образуется одно сложное.


3. Получение серной кислоты:


SO 3 + Н 2 O = Н 2 SO 4 - из двух сложных веществ образуется одно сложное.


Примером реакции соединения, при которой одно сложное вещество образуется из более чем двух исходных, может служить заключительная стадия получения азотной кислоты:


4NО 2 + O 2 + 2Н 2 O = 4НNO 3


В органической химии реакции соединения принято называть «реакциями присоединения». Все многообразие таких реакций можно рассмотреть на примере блока реакций, характеризующих свойства непредельных веществ, например этилена:


1. Реакция гидрирования - присоединения водорода:


CH 2 =CH 2 + Н 2 → Н 3 -СН 3

этен → этан


2. Реакция гидратации - присоединения воды.


3. Реакция полимеризации.


2. Реакции разложения - это такие реакции, при которых из одного сложного вещества образуется несколько новых веществ.


В неорганической химии все многообразие таких реакций можно рассмотреть на блоке реакций получения кислорода лабораторными способами:


1. Разложение оксида ртути(II) - из одного сложного вещества образуются два простых.


2. Разложение нитрата калия - из одного сложного вещества образуются одно простое и одно сложное.


3. Разложение перманганата калия - из одного сложного вещества образуются два сложных и одно простое, то есть три новых вещества.


В органической химии реакции разложения можно рассмотреть на блоке реакций получения этилена в лаборатории и в промышленности:


1. Реакция дегидратации (отщепления воды) этанола:


С 2 H 5 OH → CH 2 =CH 2 + H 2 O


2. Реакция дегидрирования (отщепление водорода) этана:


CH 3 -CH 3 → CH 2 =CH 2 + H 2


или СН 3 -СН 3 → 2С + ЗН 2


3. Реакция крекинга (расщепления) пропана:


CH 3 -СН 2 -СН 3 → СН 2 =СН 2 + СН 4


3. Реакции замещения - это такие реакции, в результате которых атомы простого вещества замещают атомы какого-нибудь элемента в сложном веществе.


В неорганической химии примером таких процессов может служить блок реакций, характеризующих свойства, например, металлов:


1. Взаимодействие щелочных или щелочноземельных металлов с водой:


2Na + 2Н 2 O = 2NаОН + Н 2


2. Взаимодействие металлов с кислотами в растворе:


Zn + 2НСl = ZnСl 2 + Н 2


3. Взаимодействие металлов с солями в растворе:


Fе + СuSO 4 = FеSO 4 + Сu


4. Металлотермия:


2Аl + Сr 2 O 3 → Аl 2 O 3 + 2Сr


Предметом изучения органической химии являются не простые вещества, а только соединения. Поэтому как пример реакции замещения приведем наиболее характерное свойство предельных соединений, в частности метана, - способность его атомов водорода замещаться на атомы галогена. Другой пример - бромирование ароматического соединения (бензола, толуола, анилина).



С 6 Н 6 + Вr 2 → С 6 Н 5 Вr + НВr

бензол → бромбензол


Обратим внимание на особенность реакции замещения у органических веществ: в результате таких реакций образуются не простое и сложное вещество, как в неорганической химии, а два сложных вещества.


В органической химии к реакциям замещения относят и некоторые реакции между двумя сложными веществами, например нитрование бензола. Она формально является реакцией обмена. То, что это реакция замещения, становится понятным только при рассмотрении ее механизма.


4. Реакции обмена - это такие реакции, при которых два сложных вещества обмениваются своими составными частями


Эти реакции характеризуют свойства электролитов и в растворах протекают по правилу Бертолле, то есть только в том случае, если в результате образуется осадок, газ или малодиссоциирующее вещество (например, Н 2 O).


В неорганической химии это может быть блок реакций, характеризующих, например, свойства щелочей:


1. Реакция нейтрализации, идущая с образованием соли и воды.


2. Реакция между щелочью и солью, идущая с образованием газа.


3. Реакция между щелочью и солью, идущая с образованием осадка:


СuSO 4 + 2КОН = Сu(ОН) 2 + К 2 SO 4


или в ионном виде:


Сu 2+ + 2OН - = Сu(ОН) 2


В органической химии можно рассмотреть блок реакций, характеризующих, например, свойства уксусной кислоты:


1. Реакция, идущая с образованием слабого электролита - Н 2 O:


СН 3 СООН + NаОН → Nа(СН3СОО) + Н 2 O


2. Реакция, идущая с образованием газа:


2СН 3 СООН + СаСO 3 → 2СН 3 СОО + Са 2+ + СO 2 + Н 2 O


3. Реакция, идущая с образованием осадка:


2СН 3 СООН + К 2 SO 3 → 2К(СН 3 СОО) + Н 2 SO 3



2СН 3 СООН +SiO → 2СН 3 СОО + Н 2 SiO 3

II. По изменению степеней окисления химических элементов, образующих вещества

По этому признаку различают следующие реакции:


1. Реакции, идущие с изменением степеней окисления элементов, или окислительно-восстановительные реакции.


К ним относится множество реакций, в том числе все реакции замещения, а также те реакции соединения и разложения, в которых участвует хотя бы одно простое вещество, например:

1. Mg 0 + H + 2 SO 4 = Mg +2 SO 4 + H 2



2. 2Mg 0 + O 0 2 = Mg +2 O -2



Сложные окислительно-восстановительные реакции составляются с помощью метода электронного баланса.


2KMn +7 O 4 + 16HCl - = 2KCl - + 2Mn +2 Cl - 2 + 5Cl 0 2 + 8H 2 O



В органической химии ярким примером окислительно-восстановительных реакций могут служить свойства альдегидов.


1. Они восстанавливаются в соответствующие спирты:




Альдекиды окисляются в соответствующие кислоты:




2. Реакции, идущие без изменения степеней окисления химических элементов.


К ним, например, относятся все реакции ионного обмена, а также многие реакции соединения, многие реакции разложения, реакции этерификации:


НСООН + CHgOH = НСООСН 3 + H 2 O

III. По тепловому эффекту

По тепловому эффекту реакции делят на экзотермические и эндотермические.


1. Экзотермические реакции протекают с выделением энергии.


К ним относятся почти все реакции соединения. Редкое исключение составляют эндотермические реакции синтеза оксида азота(II) из азота и кислорода и реакция газообразного водорода с твердым иодом.


Экзотермические реакции, которые протекают с выделением света, относят к реакциям горения. Гидрирование этилена - пример экзотермической реакции. Она идет при комнатной температуре.


2. Эндотермические реакции протекают с поглощением энергии.


Очевидно, что к ним будут относиться почти все реакции разложения, например:


1. Обжиг известняка


2. Крекинг бутана


Количество выделенной или поглощенной в результате реакции энергии называют тепловым эффектом реакции, а уравнение химической реакции с указанием этого эффекта называют термохимическим уравнением:


Н 2(г) + С 12(г) = 2НС 1(г) + 92,3 кДж


N 2(г) + O 2(г) = 2NO(г) - 90,4 кДж

IV. По агрегатному состоянию реагирующих веществ (фазовому составу)

По агрегатному состоянию реагирующих веществ различают:


1. Гетерогенные реакции - реакции, в которых реагирующие вещества и продукты реакции находятся в разных агрегатных состояниях (в разных фазах).


2. Гомогенные реакции - реакции, в которых реагирующие вещества и продукты реакции находятся в одном агрегатном состоянии (в одной фазе).

V. По участию катализатора

По участию катализатора различают:


1. Некаталитические реакции, идущие без участия катализатора.


2. Каталитические реакции, идущие с участием катализатора. Так как все биохимические реакции, протекающие в клетках живых организмов, идут с участием особых биологических катализаторов белковой природы - ферментов, все они относятся к каталитическим или, точнее, ферментативным. Следует отметить, что более 70% химических производств используют катализаторы.

VI. По направлению

По направлению различают:


1. Необратимые реакции протекают в данных условиях только в одном направлении. К ним можно отнести все реакции обмена, сопровождающиеся образованием осадка, газа или малодиссоциирующего вещества (воды) и все реакции горения.


2. Обратимые реакции в данных условиях протекают одновременно в двух противоположных направлениях. Таких реакций подавляющее большинство.


В органической химии признак обратимости отражают названия - антонимы процессов:


Гидрирование - дегидрирование,


Гидратация - дегидратация,


Полимеризация - деполимеризация.


Обратимы все реакции этерификации (противоположный процесс, как вы знаете, носит название гидролиза) и гидролиза белков, сложных эфиров, углеводов, полинуклеотидов. Обратимость этих процессов лежит в основе важнейшего свойства живого организма - обмена веществ.

VII. По механизму протекания различают:

1. Радикальные реакции идут между образующимися в ходе реакции радикалами и молекулами.


Как вы уже знаете, при всех реакциях происходит разрыв старых и образование новых химических связей. Способ разрыва связи в молекулах исходного вещества определяет механизм (путь) реакции. Если вещество образовано за счет ковалентной связи, то могут быть два способа разрыва этой связи: гемолитический и гетеролитический. Например, для молекул Сl 2 , СН 4 и т. д. реализуется гемолитический разрыв связей, он приведет к образованию частиц с неспаренными электронами, то есть свободных радикалов.


Радикалы чаще всего образуются, когда разрываются связи, при которых общие электронные пары распределены между атомами примерно одинаково (неполярная ковалентная связь), однако многие полярные связи также могут разрываться подобным же образом, в частности тогда, когда реакция проходит в газовой фазе и под действием света, как, например, в случае рассмотренных выше процессов - взаимодействия С 12 и СН 4 - . Радикалы очень реакционноспособны, так как стремятся завершить свой электронный слой, забрав электрон у другого атома или молекулы. Например, когда радикал хлора сталкивается с молекулой водорода, то он вызывает разрыв общей электронной пары, связывающей атомы водорода, и образует ковалентную связь с одним из атомов водорода. Второй атом водорода, став радикалом, образует общую электронную пару с неспаренным электроном атома хлора из разрушающейся молекулы Сl 2 , в результате чего возникает радикал хлора, который атакует новую молекулу водорода и т. д


Реакции, представляющие собой цепь последовательных превращений, называют цепными реакциями. За разработку теории цепных реакций два выдающихся химика - наш соотечественник Н. Н. Семенов и англичанин С. А. Хиншелвуд были удостоены Нобелевской премии.
Аналогично протекает и реакция замещения между хлором и метаном:



По радикальному механизму протекают большинство реакций горения органических и неорганических веществ, синтез воды, аммиака, полимеризация этилена, винилхлорида и др.

2. Ионные реакции идут между уже имеющимися или образующимися в ходе реакции ионами.

Типичные ионные реакции - это взаимодействие между электролитами в растворе. Ионы образуются не только при диссоциации электролитов в растворах, но и под действием электрических разрядов, нагревания или излучений. γ-Лучи, например, превращают молекулы воды и метана в молекулярные ионы.


По другому ионному механизму происходят реакции присоединения к алкенам галогеноводородов, водорода, галогенов, окисление и дегидратация спиртов, замещение спиртового гидроксила на галоген; реакции, характеризующие свойства альдегидов и кислот. Ионы в этом случае образуются при гетеролитическом разрыве ковалентных полярных связей.

VIII. По виду энергии,

инициирующей реакцию, различают:


1. Фотохимические реакции. Их инициирует световая энергия. Кроме рассмотренных выше фотохимических процессов синтеза НСl или реакции метана с хлором, к ним можно отнести получение озона в тропосфере как вторичного загрязнителя атмосферы. В роли первичного в этом случае выступает оксид азота(IV), который под действием света образует радикалы кислорода. Эти радикалы взаимодействуют с молекулами кислорода, в результате чего получается озон.


Образование озона идет все время, пока достаточно света, так как NO может взаимодействовать с молекулами кислорода с образованием того же NO 2 . Накопление озона и других вторичных загрязнителей атмосферы может привести к появлению фотохимического смога.


К этому виду реакций принадлежит и важнейший процесс, протекающий в растительных клетках, - фотосинтез, название которого говорит само за себя.


2. Радиационные реакции. Они инициируются излучениями большой энергии - рентгеновскими лучами, ядерными излучениями (γ-лучами, а-частицами - Не 2+ и др.). С помощью радиационных реакций проводят очень быструю радиополимеризацию, радиолиз (радиационное разложение) и т. д.


Например, вместо двухстадийного получения фенола из бензола его можно получать взаимодействием бензола с водой под действием радиационных излучений. При этом из молекул воды образуются радикалы [ OН] и [ H ], с которыми и реагирует бензол с образованием фенола:


С 6 Н 6 + 2[ОН] → С 6 Н 5 ОН + Н 2 O


Вулканизация каучука может быть проведена без серы с использованием радиовулканизации, и полученная резина будет ничуть не хуже традиционной.


3. Электрохимические реакции. Их инициирует электрический ток. Помимо хорошо известных вам реакций электролиза укажем также реакции электросинтеза, например, реакции промышленного получения неорганических окислителей


4. Термохимические реакции. Их инициирует тепловая энергия. К ним относятся все эндотермические реакции и множество экзотермических реакций, для начала которых необходима первоначальная подача теплоты, то есть инициирование процесса.


Рассмотренная выше классификация химических реакций отражена на схеме.


Классификация химических реакций, как и все другие классификации, условна. Ученые договорились разделить реакции на определенные типы по выделенным ими признакам. Но большинство химических превращений можно отнести к разным типам. Например, составим характеристику процесса синтеза аммиака.


Это реакция соединения, окислительно-восстановительная, экзотермическая, обратимая, каталитическая, гетерогенная (точнее, гетерогенно-каталитическая), протекающая с уменьшением давления в системе. Для успешного управления процессом необходимо учитывать все приведенные сведения. Конкретная химическая реакция всегда многокачественна, ее характеризуют разные признаки.


Классификацию химических реакций в неорганической и органической химии осуществляют на основании различных классифицирующих признаков, сведения о которых приведены в таблице ниже.

По изменению степени окисления элементов

Первый признак классификации — по изменению степени окисления элементов, образующих реагенты и продукты.
а) окислительно-восстановительные
б) без изменения степени окисления
Окислительно-восстановительными называют реакции, сопровождающиеся изменением степеней окисления химических элементов, входящих в состав реагентов. К окислительно-восстановительным в неорганической химии относятся все реакции замещения и те реакции разло­жения и соединения, в которых участвует хотя бы одно прос­тое вещество. К реакциям, идущим без изменения степе­ней окисления элементов, образующих реагенты и продукты реакции, относятся все реакции обмена.

По числу и составу реагентов и продуктов

Химические реакции классифицируются по характеру процесса, т.е по числу и составу реагентов и продуктов.

Реакциями соединения называют химические реакции, в результате которых сложные молекулы получаются из нескольких более простых, например:
4Li + O 2 = 2Li 2 O

Реакциями разложения называют химические реакции, в результате которых простые молекулы получаются из более сложных, например:
CaCO 3 = CaO + CO 2

Реакции разложения можно рассматривать как процессы, обратные соединению.

Реакциями замещения называют химические реакции, в результате которых атом или группа атомов в молекуле вещества замещается на другой атом или группу атомов, например:
Fe + 2HCl = FeCl 2 + H 2 

Их отличительный признак - взаимодействие простого вещества со сложным. Такие реакции есть и в органической химии.
Однако понятие «замещение» в органике шире, чем в неорганической химии. Если в молекуле исходного вещества какой-либо атом или функциональная группа заменяются на другой атом или группу, это тоже реакции замещения, хотя с точки зрения неорганической химии процесс выглядит как реакция обмена.
— обмена (в том числе и нейтрализации).
Реакциями обмена называют химические реакции, протекающие без изменения степеней окисления элементов и приводящие к обмену составных частей реагентов, например:
AgNO 3 + KBr = AgBr + KNO 3

По возможности протекать в обратном направлении

По возможности протекать в обратном направлении – обратимые и необратимые.

Обратимыми называют химические реакции, протекающие при данной температуре одновременно в двух противоположных направлениях с соизмеримыми скоростями. При записи уравнений таких реакций знак равенства заменяют противоположно направленными стрелками. Простейшим примером обратимой реакции является синтез аммиака взаимодействием азота и водорода:

N 2 +3H 2 ↔2NH 3

Необратимыми называют реакции, протекающие только в прямом направлении, в результате которых образуются продукты, не взаимодействующие между собой. К необратимым относят химические реакции, в результате которых образуются малодиссоциированные соединения, происходит выделение большого количества энергии, а также те, в которых конечные продукты уходят из сферы реакции в газообразном виде или в виде осадка, например:

HCl + NaOH = NaCl + H2O

2Ca + O 2 = 2CaO

BaBr 2 + Na 2 SO 4 = BaSO 4 ↓ + 2NaBr

По тепловому эффекту

Экзотермическими называют химические реакции, идущие с выделением теплоты. Условное обозначение изменения энтальпии (теплосодержания) ΔH, а теплового эффекта реакции Q. Для экзотермических реакций Q > 0, а ΔH < 0.

Эндотермическими называют химические реакции, идущие с поглощением теплоты. Для эндотермических реакций Q < 0, а ΔH > 0.

Реакции соединения как правило будут реак­циями экзотермическими, а реакции разложения - эндотер­мическими. Редкое исключение - реакция азота с кислородом - эндотермиче­ская:
N2 + О2 → 2NO – Q

По фазе

Гомогенными называют реакции, протекающие в однородной среде (однородные вещества, в одной фазе, например г-г, реакции в растворах).

Гетерогенными называют реакции, протекающие в неоднородной среде, на поверхности соприкосновения реагирующих веществ, находящихся в разных фазах, например, твердой и газообразной, жидкой и газообразной, в двух несмешивающихся жидкостях.

По использованию катализатора

Катализатор – вещество ускоряющее химическую реакцию.

Каталитические реакции протекают только в присутствии катализатора (в том числе и ферментативные).

Некаталитические реакции идут в отсутствие катализатора.

По типу разрыва связей

По типу разрыва химической связи в исходной молекуле различают гомолитические и гетеролитические реакции.

Гомолитическими называются реакции, при которых в результате разрыва связей образуются частицы, имеющие неспаренный электрон - свободные радикалы.

Гетеролитическими называют реакции, протекающие через образование ионных частиц - катионов и анионов.

  • гомолитические (равный разрыв, каждый атом по 1 электрону получает)
  • гетеролитический (неравный разрыв – одному достается пара электронов)

Радикальными (цепными) называют химические реакции с участием радикалов, например:

CH 4 + Cl 2 hv →CH 3 Cl + HCl

Ионными называют химические реакции, протекающие с участием ионов, например:

KCl + AgNO 3 = KNO 3 + AgCl↓

Электрофильными называют гетеролитические реакции органических соединений с электрофилами - частицами, несущими целый или дробный положительный заряд. Они подразделяются на реакции электрофильного замещения и электрофильного присоединения, например:

C 6 H 6 + Cl 2 FeCl3 → C 6 H 5 Cl + HCl

H 2 C =CH 2 + Br 2 → BrCH 2 –CH 2 Br

Нуклеофильными называют гетеролитические реакции органических соединений с нуклеофилами - частицами, несущими целый или дробный отрицательный заряд. Они подразделяются на реакции нуклеофильного замещения и нуклеофильного присоединения, например:

CH 3 Br + NaOH → CH 3 OH + NaBr

CH 3 C(O)H + C 2 H 5 OH → CH 3 CH(OC 2 H 5) 2 + H 2 O

Классификация органических реакций

Классификация органических реакций приведена в таблице:

Рекомендуем почитать

Наверх