Физика продольные и поперечные волны. Продольные механические волны могут распространяться в любых средах – твердых, жидких и газообразных

Энциклопедия растений 20.09.2019
Энциклопедия растений

Возмущения, распространяющиеся в пространстве, удаляясь от места их возникновения, называют волнами .

Упругие волны — это возмущения, распространяющиеся в твердой, жидкой и газообразной средах благодаря действию в них сил упругости .

Сами эти среды называют упругими . Возмущение упругой среды — это любое отклонение частиц этой среды от своего положения равновесия.

Возьмем, например, длинную веревку (или резиновую трубку) и прикрепим один из ее концов к стене. Туго натянув веревку, резким боковым движением руки создадим на ее незакрепленном конце кратковременное возмущение. Мы увидим, что это возмущение побежит вдоль веревки и, дойдя до стены, отразится назад.

Начальное возмущение среды, приводящее к появлению в ней волны, вызывается действием в ней какого-нибудь инородного тела, которое называют источником волны . Это может быть рука человека, ударившего по веревке, камешек, упавший в воду, и т. д. Если действие источника носит кратковременный характер, то в среде возникает так называемая одиночная волна . Если же источник волны совершает длительное колебательное движение , то волны в среде начинают идти одна за другой. Подобную картину можно увидеть, поместив над ванной с водой вибрирующую пластину, имеющую наконечник, опущенный в воду .

Необходимым условием возникновения упругой волны является появление в момент возникновения возмущения сил упругости, препятствующих этому возмущению. Эти силы стремятся сблизить соседние частицы среды, если они расходятся, и отдалить их, когда они сближаются. Действуя на все более удаленные от источника частицы среды, силы упругости начинают выводить их из положения равновесия. Постепенно все частицы среды одна за другой вовлекаются в колебательное движение. Распространение этих колебаний и проявляется в виде волны.

В любой упругой среде одновременно существуют два вида движения: колебания частиц среды и распространение возмущения. Волна, в которой частицы среды колеблются вдоль направления ее распространения, называется продольной , а волна, в которой частицы среды колеблются поперек направления ее распространения, называется поперечной .

Продольная волна.

Волна, в которой колебания происходят вдоль направления распространения волны, называется продольной .

В упругой продольной волне возмущения представляют собой сжатия и разрежения среды. Деформация сжатия сопровождается возникновением сил упругости в любой среде. Поэтому продольные волны могут распространяться во всех средах (и в жидких, и в твердых, и в газообразных).

Пример распространения продольной упругой волны изображен на рисунке а и б выше. По левому концу длинной пружины, подвешенной на нитях, ударяют рукой. От удара несколько витков сближа-ются, возникает сила упругости, под действием которой эти витки начинают расходиться. Про-должая движение по инерции, они будут продолжать расходиться, минуя положение равновесия и образуя в этом месте разрежение (рисунок б ). При ритмичном воздействии витки на конце пружины будут то сближаться, то отходить друг от друга, т. е. колебаться возле своего положе-ния равновесия. Эти колебания постепенно передадутся от витка к витку вдоль всей пружины. По пружине распространятся сгущения и разрежения витков, или упругая волна.

Поперечная волна.

Волны, в которых колебания происходят перпендикулярно направлению их распространения, называются поперечными . В поперечной упругой волне возмущения представляют собой смещения (сдвиги) одних слоев среды относительно других.

Деформация сдвига приводит к появлению сил упругости только в твердых телах: сдвиг слоев в газах и жидкостях возникновением сил упругости не сопровождается. Поэтому поперечные волны могут распространяться только в твердых телах.

Плоская волна.

Плоская волна — это волна, у которой направление распространения одинаково во всех точках пространства.

Амплитуда колебаний частиц в сферической волне обязательно убывает по мере удаления от источника. Энергия, излучаемая источником, равномерно распределяется по поверхности сферы, радиус которой непрерывно увеличивается по мере распространения волны. Уравнение сферической волны имеет вид:

.

В отличии от плоской волны, где s m = А - амплитуда волны постоянная величина, в сферической волне она убывает с расстоянием от центра волны.

1. Волна - распространение колебаний от точки к точке от частицы к частице. Для возникновения волны в среде необходима деформация, так как без нее не будет силы упругости.

2. Что такое скорость волны?

2. Скорость волны - скорость распространения колебаний в пространстве.

3. Как связаны между собой скорость, длина волны и частота колебаний частиц в волне?

3. Скорость волны равна произведению длины волны на частоту колебаний частиц в волне.

4. Как связаны между собой скорость, длина волны и период колебаний частиц в волне?

4. Скорость волны равна длине волны поделенной на период колебаний в волне.

5. Какая волна называется продольной? Поперечной?

5. Поперечная волна - волна, распространяющаяся в направлении, перпендикулярном направлению колебаний частиц в волне; продольная волна - волна, распространяющаяся в направлении совпадающем с направлением колебаний частиц в волне.

6. В каких средах могут возникать и распространяться поперечные волны? Продольные волны?

6. Поперечные волны могут возникать и распространяться только в твердых средах, так как для возникновения поперечной волны требуется деформация сдвига, а она возможна только в твердых телах. Продольные волны могут возникать и распространяться в любой среде (твердой, жидкой, газообразной), так как для возникновения продольной волны необходима деформация сжатия или растяжения.

Различают продольные и поперечные волны. Волна называется поперечной , если частицы среды совершают колебания в направлении, перпендикулярном к направлению распространения волны (рис. 15.3). Поперечная волна распространяется, например, вдоль натянутого горизонтального резинового шнура, один из концов которого закреплен, а другой приведен в вертикальное колебательное движение.

Рассмотрим подробнее процесс образования поперечных волн. Возьмем в качестве модели реального шнура цепочку шариков (материальных точек), связанных друг с другом упругими силами (рис. 15.4, а). На рисунке 15.4 изображен процесс распространения поперечной волны и показаны положения шариков через последовательные промежутки времени, равные четверти периода.

В начальный момент времени (t 0 = 0) все точки находятся в состоянии равновесия (рис. 15.4, а). Затем вызываем возмущение, отклонив точку 1 от положения равновесия на величину А и 1-я точка начинает колебаться, 2-я точка, упруго связанная с 1-й, приходит в колебательное движение несколько позже, 3-я - еще позже и т.д. Через четверть периода колебания \(\Bigr(t_2 = \frac{T}{4} \Bigl)\) распространятся до 4-й точки, 1-я точка успеет отклониться от своего положения равновесия на максимальное расстояние, равное амплитуде колебаний А (рис. 15.4, б). Через полпериода 1-я точка, двигаясь вниз, возвратится в положение равновесия, 4-я отклонилась от положения равновесия на расстояние, равное амплитуде колебаний А (рис. 15.4, в), волна распространилась до 7-й точки и т.д.

К моменту времени t 5 = T 1-я точка, совершив полное колебание, проходит через положение равновесия, а колебательное движение распространится до 13-й точки (рис. 15.4, д). Все точки от 1-й до 13-й расположены так, что образуют полную волну, состоящую из впадины и горба.

Волна называется продольной, если частицы среды совершают колебания в направлении распространения волны (рис. 15.5).

Продольную волну можно наблюдать на длинной мягкой пружине большого диаметра. Ударив по одному из концов пружины, можно заметить, как по пружине будут распространяться последовательные сгущения и разрежения ее витков, бегущие друг за другом. На рисунке 15.6 точками показано положение витков пружины в состоянии покоя, а затем положения витков пружины через последовательные промежутки времени, равные четверти периода.

Таким образом, продольная волна в рассматриваемом случае представляет собой чередующиеся сгущения (Сг) и разрежения (Раз) витков пружины.

Вид волны зависит от вида деформации среды. Продольные волны обусловлены деформацией сжатия - растяжения, поперечные волны - деформацией сдвига. Поэтому в газах и жидкостях, в которых упругие силы возникают толь-ко при сжатии, распространение поперечных волн невозможно. В твердых телах упругие силы возникают и при стажии (растяжении) и при сдвиге, поэтому в них возможно распространение как продольных, так и поперечных волн.

Как показывают рисунки 15.4 и 15.6, и в поперечной и в продольной волнах каждая точка среды колеблется около своего положения равновесия и смещается от него не более чем на амплитуду, а состояние дефомации среды передается от одной точки среды к другой. Важное отличие упругих волн в среде от любого другого упорядоченного движения ее частиц заключается в том, что распространение волн не связано с переносом вещества среды.

Следовательно, при распространении волн происходит перенос энергии упругой деформации и импульса без переноса вещества. Энергия волны в упругой среде состоит из кинетической энергии совершающих колебания частиц и из потенциальной энергии упругой деформации среды.

Рассмотрим, например, продольную волну в упругой пружине. В фиксированный момент времени кинетическая энергия распределена по пружине неравномерно, так как одни витки пружины в этот момент покоятся, а другие, напротив, движутся с максимальной скоростью. То же самое справедливо и для потенциальной энергии, так как в этот момент какие-то элементы пружины не деформированы, другие же деформированы максимально. Поэтому при рассмотрении энергии волны вводят такую характеристику, как плотность \(\omega\) кинетической и потенциальной энергий (\(\omega=\frac{W}{V} \)- энергия, приходящаяся на единицу объема). Плотность энергии волны в каждой точке среды не остается постоянной, а периодически изменяется при прохождении волны: энергия распространяется вместе с волной.

Любой источник волн обладает энергией W , которую волна при своем распространении передает частицам среды.

Интенсивность волны I показывает, какую энергию в среднем переносит волна за единицу времени через единицу площади поверхности, перпендикулярной к направлению распространения волны\

В СИ единицей интенсивности волны является ватт на квадратный метр Дж/(м 2 \(\cdot\) c) = Вт/м 2

Энергия и интенсивность волны прямо пропорциональны квадрату ее амплитуды \(~I \sim A^2\).

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 425-428.

Если колебательное движение возбуждают в какой - либо точке среды, то оно распространяется от одной точки к другой в результате взаимодействия частиц вещества. Процесс распространения колебаний называют волной.

Рассматривая механические волны, мы не будем обращать внимание на внутреннее строение среды. Вещество при этом считаем сплошной средой, которая изменяется от одной точки к другой.

Частицей (материальной точкой), будем называть маленький элемент объема среды, размеры которого, много больше, чем расстояния между молекулами.

Механические волны распространяются только в средах, которые обладают свойствами упругости. Силы упругости в таких веществах при небольших деформациях пропорциональны величине деформации.

Основным свойством волнового процесса является то, что волна, перенося энергию и колебательное движение, не переносит массу.

Волны бывают продольные и поперечные.

Продольные волны

Волну называю продольной, в том случае, если частицы среды совершают колебания в направлении распространения волны.

Продольные волны распространяются в веществе, в котором возникают силы упругости, при деформации растяжения и сжатия в веществе в любом агрегатном состоянии.

При распространении продольной волны в среде возникают чередования сгущений и разрежений частиц, перемещающихся в направлении распространения волны со скоростью ${\rm v}$. Сдвиг частиц в этой волне происходит по линии, которая соединяет их центры, то есть вызывает изменение объема. Все время существования волны, элементы среды выполняют колебания у своих положений равновесия, при этом разные частицы совершают колебания со сдвигом по фазе. В твердых телах скорость распространения продольных волн больше, чем скорость поперечных волн.

Волны в жидкостях и газах всегда продольные. В твердом теле тип волны зависит от способа ее возбуждения. Волны на свободной поверхности жидкости являются смешанными, они одновременно и продольные и поперечные. Траекторией движения частицы воды на поверхности при волновом процессе является эллипс или еще более сложная фигура.

Акустические волны (пример продольных волн)

Звуковые (или акустические) волны, являются продольными волнам. Звуковые волны в жидкостях и газах представляют собой колебания давления, распространяющиеся в среде. Продольные волны, имеющие частоты от 17 до 20~000 Гц называют звуковыми.

Акустические колебания с частотой ниже границы слышимости называют инфразвуком. Акустические колебания с частотой выше 20~000 Гц называют ультразвуком.

Акустические волны в вакууме распространяться не могут, так как упругие волны способны распространяться только в той среде, где имеется связь между отдельными частицами вещества. Скорость звука в воздухе равна в среднем 330 м/с.

Распространение в упругой среде продольных звуковых волн связано с объемной деформацией. В этом процессе давление в каждой точке среды непрерывно изменяется. Это давление равно суме равновесного давления среды и добавочного давления (звуковое давление), которое появляется в результате деформации среды.

Сжатие и растяжение пружины (пример продольных волн)

Допустим, что упругая пружина подвешена горизонтально на нитях. По одному концу пружины ударяют так, что сила деформации направлена вдоль оси пружины. От удара происходит сближение нескольких витков пружины, возникает сила упругости. Под воздействием силы упругости витки расходятся. Двигаясь по инерции, витки пружины проходят положение равновесия, образуется разрежение. Некоторое время витки пружины на конце в месте удара будут колебаться около своего положения равновесия. Данные колебания с течением времени передаются от витка к витку по всей пружине. В результате происходит распространение сгущения и разрежения витков, распространяется продольная упругая волна.

Аналогично продольная волна распространяется по металлическому стержню, если ударить по его концу с силой, направленное вдоль его оси.

Поперечные волны

Волну называют поперечной волной, если колебания частиц среды происходят в направлениях перпендикулярных к направлению распространения волны.

Механические волны могут быть поперечными только в среде, в которой возможны деформации сдвига (среда обладает упругостью формы). Поперечные механические волны возникают в твердых телах.

Волна, распространяющаяся по струне (пример поперечной волны)

Пусть одномерная поперечная волна распространяется по оси X , от источника волны, находящегося в начале координат - точке О. Примером такой волны является, волна, которая распространяется в упругой бесконечной струне, один из концов которой заставляют совершать колебательные движения. Уравнение такой одномерной волны:

\\ }\left(1\right),\]

$k$ -волновое число$;;\ \lambda $ - длина волны; $v$ - фазовая скорость волны; $A$ - амплитуда; $\omega $- циклическая частота колебаний; $\varphi $ - начальная фаза; величина $\left[\omega t-kx+\varphi \right]$ называется фазой волны в произвольной точке.

Примеры задач с решением

Пример 1

Задание. Какова длина поперечной волны, если она распространяется по упругой струне со скоростью $v=10\ \frac{м}{с}$, при этом период колебаний струны составляет $T=1\ c$?

Решение. Сделаем рисунок.

Длина волны - это расстояние, которое волна проходит за один период (рис.1), следовательно, ее можно найти по формуле:

\[\lambda =Tv\ \left(1.1\right).\]

Вычислим длину волны:

\[\lambda =10\cdot 1=10\ (м)\]

Ответ. $\lambda =10$ м

Пример 2

Задание. Звуковые колебания с частотой $\nu $ и амплитудой $A$ распространяются в упругой среде. Какова максимальная скорость движения частиц среды?

Решение. Запишем уравнение одномерной волны:

\\ }\left(2.1\right),\]

Скорость движения частиц среды равна:

\[\frac{ds}{dt}=-A\omega {\sin \left[\omega t-kx+\varphi \right]\ }\ \left(2.2\right).\]

Максимальное значение выражения (2.2), учитывая область значений функции синус:

\[{\left(\frac{ds}{dt}\right)}_{max}=\left|A\omega \right|\left(2.3\right).\]

Циклическую частоту найдем как:

\[\omega =2\pi \nu \ \left(2.4\right).\]

Окончательно максимальная величина скорости движения частиц среды в нашей продольной (звуковой) волне равна:

\[{\left(\frac{ds}{dt}\right)}_{max}=2\pi A\nu .\]

Ответ. ${\left(\frac{ds}{dt}\right)}_{max}=2\pi A\nu$

Пусть колеблющееся тело находится в среде, все частицы которой связаны между собой. Соприкасающиеся с ним частицы среды придут в колебательное движение, в результате чего в прилегающих к этому телу участках среды возникают периодические деформации (например, сжатие и растяжение). При деформациях в среде появляются упругие силы, которые стремятся вернуть частицы среды в первоначальное состояние равновесия.

Таким образом, периодические деформации, которые появились в каком-нибудь месте упругой среды, будут распространяться с некоторой скоростью, зависящей от свойств среды. При этом частицы среды не вовлекаются волной в поступательное движение, а совершают колебательные движения около своих положений равновесия, от одних участков среды к другим передается только упругая деформация.

Процесс распространения колебательного движения в среде называется волновым процессом или просто волной . Иногда эту волну называют упругой, потому что она обусловлена упругими свойствами среды.

В зависимости от направления колебаний частиц по отношению к направлению распространения волны, различают продольные и поперечные волны. Интерактивная демонстрация поперечной и продольной волны









Продольная волна это волна, в которой частицы среды колеблются вдоль направления распространения волны.



Продольную волну можно наблюдать на длинной мягкой пружине большого диаметра. Ударив по одному из концов пружины, можно заметить, как по пружине будут распространяться последовательные сгущения и разрежения ее витков, бегущие друг за другом. На рисунке точками показано положение витков пружины в состоянии покоя, а затем положения витков пружины через последовательные промежутки времени, равные четверти периода.


Таким образом, про дольная волна в рассматриваемом случае представляет собой чередующиеся сгущения (Сг) и разрежения (Раз) витков пружины .
Демонстрация распространения продольной волны


Поперечная волна - это волна, в которой частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны.


Рассмотрим подробнее процесс образования поперечных волн. Возьмем в качестве модели реального шнура цепочку шариков (материальных точек), связанных друг с другом упругими силами. На рисунке изображен процесс распространения поперечной волны и показаны положения шариков через последовательные промежутки времени, равные четверти периода.

В начальный момент времени (t 0 = 0) все точки находятся в состоянии равновесия. Затем вызываем возмущение, отклонив точку 1 от положения равновесия на величину А и 1-я точка начинает колебаться, 2-я точка, упруго связанная с 1-й, приходит в колебательное движение несколько позже, 3-я - еще позже и т.д. Через четверть периода колебания ( t 2 = T 4 ) распространятся до 4-й точки, 1-я точка успеет отклониться от своего положения равновесия на максимальное расстояние, равное амплитуде колебаний А. Через половину периода 1-я точка, двигаясь вниз, возвратится в положение равновесия, 4-я отклонилась от положения равновесия на расстояние, равное амплитуде колебаний А, волна распространилась до 7-й точки и т.д.

К моменту времени t 5 = T 1-я точка, совершив полное колебание, проходит через положение равновесия, а колебательное движение распространится до 13-й точки. Все точки от 1-й до 13-й расположены так, что образуют полную волну, состоящую из впадины и гребня.

Демонстрация распространения поперечной волны

Вид волны зависит от вида деформации среды. Продольные волны обусловлены деформацией сжатия - растяжения, поперечные волны - деформацией сдвига. Поэтому в газах и жидкостях, в которых упругие силы возникают только при сжатии, распространение поперечных волн невозможно. В твердых телах упругие силы возникают и при сжатии (растяжении) и при сдвиге, поэтому в них возможно распространение как продольных, так и поперечных волн.

Как показывают рисунки, и в поперечной и в продольной волнах каждая точка среды колеблется около своего положения равновесия и смещается от него не более чем на амплитуду, а состояние деформации среды передается от одной точки среды к другой. Важное отличие упругих волн в среде от любого другого упорядоченного движения ее частиц заключается в том, что распространение волн не связано с переносом вещества среды.

Следовательно, при распространении волн происходит перенос энергии упругой деформации и импульса без переноса вещества. Энергия волны в упругой среде состоит из кинетической энергии совершающих колебания частиц и из потенциальной энергии упругой деформации среды.


Рекомендуем почитать

Наверх