Технология усиления кирпичных стен, столбов, простенков. Усиление конструкций кирпичного здания: к какому специалисту обратиться и какие меры предпринять Усиление здания стальными тяжами

Элементы декора 25.06.2019
Элементы декора

Своевременное предотвращение деформации несущих элементов способствует увеличению периода эксплуатации здания. Усиление кирпичных стен монтируют с целью повышения прочности сооружения. При правильном подходе можно восстановить стену с потерей прочности до 50%. Важно соблюдать нормы и правила на каждом этапе строительства, поскольку опорные элементы конструкций могут сократить несущую способность, и дом начнет рушиться. Существует несколько методов устранения трещин и проседаний конструктивных элементов.

Причины укрепления

Усиление кирпичной кладки проводят для увеличения прочности сооружения. Такие мероприятия гарантируют сохранение целостности конструкции при возможной перепланировке дома, смещении внутренних перегородок, монтаже дополнительных оконных или дверных проемов. Укрепление кирпичной стены позволяет предотвратить деформацию здания в целом. При первых признаках нарушения целостности сооружения рекомендуется монтировать усиление стен.

Деформация кладки происходит под воздействием таких факторов:

  • Неправильно рассчитанный проект. Нарушение нормативной дистанции между постройками, неравномерное распределение несущей способности элементов, чрезмерные нагрузки на фундамент.
  • Нарушение технологии устройства фундамента. Отсутствие дополнительного укрепления рыхлой почвы, неправильная глубина основания, использование добавок в растворах.
  • Некачественная кладка. Неправильно выбран способ устройства оконных и дверных проемов, облицовка смесями с низким уровнем воздухопроницаемости, применение некачественного раствора, отсутствие распределительных плит при укладке перекрытий.
  • Нарушение правил эксплуатации стен. Отсутствие водосточных труб и отмостки, протекание подземных коммуникационных систем, нарушение шарнирных связей несущих элементов с перекрытиями.

Методы усиления кирпичных стен


При нешироких трещинах можно прибегнуть к методу инъектирования.

Схема усиления стен из кирпича разрабатывается с учетом степени деформации. Разрушение кладки проявляется в виде трещин разной ширины. Дефекты до 4 см промывают и заделывают торкретбетоном. Более широкие разъемы через инъекторы заполняют специальной смесью для возобновления уровня прочности. Перед началом работ ремонтируют цоколь, возобновляют кладку, проделывают проемы. Существует несколько способов укрепления стен, выбор зависит от характера разрушения.

Чтобы восстановить треснувшую несущую стену здания, выполняют укрепление обоймами.

Усиление железобетонной обоймой

Сравнительно недорогой метод возобновления несущей способности элементов сооружения. Выполнение занимает немного времени. Главный недостаток - увеличение нагрузки на основание. Этапы работ с железобетонными обоймами:

  1. Креплениями фиксируют на кладке арматурную сетку. Железобетонные оболочки делают из поперечных арматурных прутьев А240/AI класса и продольной арматуры А240-А400/AI, AII, AIII классов.
  2. Определяют толщину и материал для бетонирования. Рекомендуется использовать мелкозернистые бетонные составы 10-го класса и выше.
  3. Обойму толщиной менее 4 см заливают пневмобетоном и дают застыть.
  4. Выполняют облицовку штукатуркой.
  5. Для слоя толще 4 см по периметру устанавливают опалубку, в ней оставляют отверстия для инъекционных трубок.
  6. Заливают площадь монолитными бетонными составами.

Для усиления проемов в стенах можно воспользоваться стальной обоймой.

Применение метода позволяет укрепить несущие элементы конструкции. Стальными обоймами и балками из швеллера можно выполнить усиление проемов в кирпичных стенах. При создании нового оконного отверстия с целью повышения прочности кладки применяют металлоконструкции. Для укрепления проема в кирпичной стене монтируют швеллер. Для усиления стены понадобятся арматурные прутья и профильные уголки.

Этапы проведения работ с металлическими креплениями:

  1. По углам заданной площади раствором крепят уголки.
  2. Фиксируют металлические полосы шириной не более 6 см.
  3. Монтируют остальные продольные элементы. Их размер зависит от высоты заданной площади.
  4. На каркас крепят сетку. Применение металлической основы повышает прочность сооружения.
  5. Заливают цементным раствором толщиной 3 см. Такой слой защитит укрепление стальными тяжами от коррозии.

При наличии в стенах дефектов, причины появления которых были рассмотрены выше, применяют различные способы их устранения; усиление простенков и столбов; ремонт и усиление перемычек; восстановление первоначального положения стен; увеличение жесткости стенового остова здания.

Кроме того, возможны перекладка отдельных участков стены, повышение теплозащитных свойств и улучшение эстетических качеств стены.

При наличии в стене трещин давнего происхождения, но без следов продолжающегося их раскрытия и удлинения, т. е. когда стена в целом не потеряла своей формы и несущей способности, такие трещины заделывают.

При ширине трещин до 40 мм эту операцию выполняют путем нагнетания раствора с напором порядка 2,5 ат. Раствор для заделки щелей может иметь состав (цемент - вода) от 1: 10 до 1:1, что соответствуют плотности 1,065-1,470.

Места расположения отверстий для нагнетания раствора выбирают в зависимости от расположения трещин на стене: на участках с вертикальными или наклонными трещинами их делают через 0,8-1,5 м, а на горизонтальных трещинах - 0,2-0,3 м.
Иногда при заделке трещин в наиболее видных участках стены укладывают несколько кирпичей, что называется замком (рис. 105, а), а в длинных и широких трещинах устраивают замок с якорем из прокатного профиля, укрепляемого в стене анкерами.
Если в стене обнаружены сквозные трещины в виде разрывов кладки в местах сопряжения наружных и внутренних стен или в наружных углах, для укрепления применяют металлические накладки из полосовой стали. Концы накладок загибают в сторону стены для лучшего сцепления с ней и фиксируют болтами, располагаемыми от трещины на расстоянии, равном примерно полутора толщинам стены (рис. 105, б, в, г). В более простых случаях при сравнительно небольшом протяжении и ширине трещины накладки можно крепить к стене ершами с одной стороны стены.

Если стены отклоняются от вертикали, выправить их можно с помощью вертикальных накладок из прокатных профилей (швеллера № 12-16) с креплением их ершами (рис. 106, а).

Рис. 105. Заделка трещин в стенах:
а - простой замок и с якорем; б - двусторонняя металлическая накладка ра прямом участке стены (фасад и план); в -накладки в месте примыкания внутренней стены; г - то же, на углу здания; 1 - накладка из полосовой стали 50X10 мм; 2 - круглая сталь с винтовой нарезкой d=20-24 мм; 3 - то же, с нарезкой на двух концах

Дефекты стен в виде выпучиваний, нарушений первоначальной формы устраняют путем накладки прокатных профилей с двух сторон стены в горизонтальном или вертикальном направлениях, называемых разгрузочными жесткими поясами.
В случае устройства поясов в параллельных стенах здания их можно связать между собой тяжами, устраиваемыми в уровне конструкции пола для увеличения жесткости всего стенового остова (рис. 106, б).

Помимо системы жестких накладок общее восстановление жесткости стенового остова, как пространственной конструктивной системы, производится с помощью предварительно напряженных поясов или тяжей из круглой арматурной стали " конструкции Н. М. Козлова (рис. 106, в, г). Пояса просты по устройству и очень эффективны. Тяжи диаметром 28-40 мм размещают на уровне тех перекрытий, где имеются трещины. На углах здания устанавливают уголки № 12-15 длиной около 1,5 м, к которым приваривают тяжи.

Рис. 106. Выпрямление неисправных стен:

а - жесткие накладки из прокатных профилей; б - крепление жестких накладок; в - восстановление жесткости стенового остова предварительно напряженными поясами; г - детали Устройства поясов; 1 - трещина в стене; 2 - уровень перекрытия; 3 -накладки из швеллеров № 12-16; 4 - болты крепления d=20-24 м; 5 - ерш; 6 - стягивающие тяжи d-28-40 мм; "--угловая накладка 120-150 длиной 1-1,5 м; 8 - натяжное устройство; I , II, I I I - контуры поясов

В плане здания пояса должны образовывать замкнутые контуры, возможно более близкие к квадрату и не более чем с соотношением 1: 1,5. Длина поясов по каждой из стен может достигать 15-18 м. Предварительное напряжение поясов производят натяжными муфтами - с левой и правой резьбами, которые предусматривают обычно в средней части каждого участка периметра пояса. Усилие натяжения контролируют динамометрическим ключом в соответствии с расчетной величиной. Система напряженных поясов образует в стеновом остове сжимающие усилия, которые погашают растяжения и деформации, являющиеся следствием нарушения формы стенового остова.

При укреплении стенового остова напряженными поясами уменьшается расход металла по сравнению с жесткими накладками. Конструкция напряженных поясов состоит из стандартизированных узлов, а работы на стройплощадке являются чисто монтажными. Небольшие сечения металлических поясов позволяют сохранить поверхность фасада, для чего все составные части поясов нужно помещать в заранее подготовленные борозды.

Частичная перекладка стен может заключаться, как упоминалось, в устройстве замков для закрытия крупных трещин. Можно заменять внешний слой стены при его износе или отслоении облицовочных рядов, с креплением новых камней путем перевязки с существующей кладкой или с помощью анкеров (рис. 107, а, б).

Рис. 107. Улучшение и перекладка стен:
а - замена облицовки путем перевязки с существующей кладкой; б - то же, с помощью анкеров; в - перекладка отдельных простенков; г - перекладка участков стены; д, е - утепление углов со стороны помещения; 1 - старая штукатурка; 2 - рулонный гидроизоляционный материал; 3 - эффективный утеплитель; 4 - новая штукатурка

Более сложным мероприятием является замена отдельных участков стены (чаще всего простенков) при их разрушении от перегрузки или для изменения размеров. В первом случае (без смены перекрытий в здании) над заменяемым местом вывешивают на временных стойках и балках участок стены и перекрытия. Потом заменяемую часть стены разбирают и выкладывают заново (рис. 107, в).

Рис. 108. Усиление простенков и участков стен:

а - железобетонная обойма (фасад, план и детали); б - то же, из прокатного металла; в - железобетонный сердечник; г - то же, металлический

Во втором случае, когда все перекрытия решено разобрать, участки стены заменяют поэтажно без временных креплений после окончания монтажа нижележащего перекрытия (рис. 107, г).

Усиление простенков производят с помощью железобетонных и металлических обойм - «рубашек». Железобетонные рубашки более эффективны и, когда возможно, следует применять их. Для небольшого усиления стен можно оштукатуривать их по стальной сетке с ячейками порядка 150x150 мм и сечением 4-6 мм.

При соотношении сторон усиляемого простенка или столба более 1: 2,5 необходимо сквозное соединение усиливающих конструкций в середине таких опор. По данным В. К. Соколова, с помощью обойм несущую способность сечения можно повысить в 1,5- 2,5 раза.

При небольших размерах простенков и необходимости значительно увеличить их нагрузку в нем устраивают сердечник из железобетона или в виде металлического профиля (рис. 108, в).

Усилить колонны и столбы всех видов и из всех материалов можно такими же приемами (рис. 109, а, б), а также с применением распора, т. е. созданием напряжения в обойме (рис. 109, в).

Металлические накладки по углам в этом решении делаются несколько длиннее расстояния между верхним и нижним упорами (около потолка и пола). Затем их сжимают с помощью болтов, чем достигается нужное предварительное напряжение конструкции, работающей на сжатие.

Одновременно с усилением отдельных опор обычно усиливают их фундаменты, получая единое и взаимосвязанное конструктивное решение.

Рис. 109. Усиление колонн:
а - железобетонная обойма; б - то же, со спиральной арматурой: в - металлическая рубашка с распором (исходное и проектное положения); / - рабочая арматура d-12-16 мм; 1 - распределительная арматура d-6-10 мм; 3 - имеющаяся арматура; 4 - угловые накладки 60-80 им; 5 - упоры уголковых накладок 50-80 мм; 6 - стягивающие болты; 7 - полосовая сталь 50x5 мм

Перемычки улучшают и усиливают при наличии в них незначительных трещин путем заделки последних. При больших деформациях (сквозных трещинах по всей высоте перемычки и нарушении ее нижней поверхности) их усиливают путем крепления металлическими уголками (рис. 110,а), введением сборных железобетонных перемычек (рис. 110,6) или прокатных металлических профилей, которые принимают на себя нагрузку перемычки. Если при укреплении перемычки уголками трещины находятся в средней ее части, уголки крепят с помощью тяжей из полосовой или арматурной стали к простенкам на анкерах (рис. 110, в).

Для повышения теплоизолирующей способности стен из кирпича делают снаружи расшивку швов, что повышает теплоустойчивость стен до 20%- Лучшие результаты (до 30%) можно получит облицовкой стен кирпичом, керамическими и бетонными плитами.

Стены можно утеплить и изнутри здания напылением раствора с минеральной ватой или установкой плитных утеплителей (пенопласт, сти- ропор, полистирол, минеральная вата и т. п.) по слою рулонного материала. По данным Академии коммунального хозяйства, синтетические материалы повышают температуру внутренней поверхности стены примерно на 2-3° на каждый сантиметр толщины накладываемого слоя.

Особое внимание нужно уделять наружным углам стенового остова. Нередко повышение теплозащитных свойств стен заключается именно в утеплении их углов (см. рис. 107, д).

Улучшать внешний вид стен необходимо при выветривании раствора и самой кладки в отдельных местах при заметных переделках и перекладках или случайных изменениях. Технические способы улучшения эстетических качеств стен описаны в § 41 и показаны на рис. 107.

Несмотря на то, что кирпич является прочными и надежным строительным материалом, со временем происходит его постепенное разрушение. Деформироваться может как сам кирпич, так и фундамент здания.

Если вовремя принять необходимые меры, то можно остановить процесс разрушения кирпичной стены и полностью восстановить функциональность кладки.

Основные причины, по которым начинают деформироваться кирпичные стены:

  • конструктивные ошибки , допущенные во время строительства здания: недостаточная глубина фундамента, неправильный расчет перекрытий, когда несущая способность стен не соответствует оказываемой на них нагрузке;
  • неправильная эксплуатация здания;
  • использование некачественных материалов и неправильных пропорций раствора;
  • ошибки, допущенные на стадии проектирования.
  • неправильное

Современные строительные технологии позволяют усиливать кирпичные стены, помещая их в такие обоймы:

  1. армированная;
  2. композиционная;
  3. металлическая;
  4. железобетонная.

Чтобы снять усилие, которое разрушает стену, надо учитывать все факторы: марку бетона и раствора, состояние кладки, нагрузку, которая оказывается на стену, процент ее армирования.

Чем больше будет армированных хомутов, тем выше станет прочность . Если в кирпичной кладке есть трещины, то после ее усиления при помощи обойм, полностью восстанавливается несущая способность стены.

Чтобы оценить размер повреждений, необходимо тщательно очистить трещины от грязи и остатков раствора, после чего промыть водой. Если этого не сделать, а сразу их заделать, то через некоторое время кладка снова начнет разрушаться.

Чтобы добиться максимального результата, надо не только усиливать при помощи обойм, но и выполнить инъектирование трещин растворами, которые имеют достаточную вязкость и морозостойкость, а также незначительное водоотделение и усадку, высокую прочность на сжатие и сцепление с поверхностью стены.

Применения армированной обоймы

Для того чтобы усилить стены и не допустить появления новых разрушений, можно выполнить армирование стен. Сделать это можно при помощи арматурных каркасов, металлических стержней или арматурной сетки.


Наиболее простым вариантом является проведение армирования при помощи арматурной сетки, в этом случае, порядок проведения работ будет следующим:

  • фиксировать арматурную сетки на стене можно как с одной ее стороны, так и с обеих;
  • перед этим необходимо просверлить отверстия;
  • для крепления сетки используются сквозные шпильки или сделать это можно при помощи анкерных болтов;
  • после крепления сетки, на нее наносят бетонный раствор, марка которого не должна быть ниже М 100;
  • толщина слоя раствора обычно в пределах 20-40 мм;
  • по высоте углов крепят вспомогательные металлические стержни диаметром 6 мм, от края отступают 25-30 см;
  • если сетка устанавливается только с одной стороны, то используются шпильки или анкера диаметром 8 мм с шагом 60-75 см;
  • если арматурная сетка крепится с обеих сторон стены, то диаметр шпилек не менее 12 мм и их шаг 100-120 см;
  • к анкерам или шпилькам арматурная сетка крепится при помощи сварки или вязальной проволоки.

Создание железобетонного пояса

Этот метод усиления стен отличается небольшими затратами и на его монтаж надо минимум времени. Толщина железобетонной обоймы составляет от 4 до 12 см, для ее создания используется мелкозернистый бетон, арматура, укладываемая в продольном и поперечном направлении.

К стене крепление железобетонной обоймы проводится при помощи фиксаторов, устанавливают ее по периметру здания и таким образом создают арматурную сетку.

Для укрепления стены , созданная железобетонная оболочка должна превышать ее прочность в несколько раз. После установки, железобетонная оболочка берет на себя часть нагрузки, создаваемой на стену, таким образом, она разгружается и прекращается ее повреждение.


Если необходимо сделать обойму толщиной до 40 мм
, то она выполняется методом пневмобетонирования и торкретирования, после чего поверхность .

Если же слой обоймы толщиной до 120 мм , то ее делают при помощи инвентарной опалубки, она устанавливается вокруг ремонтируемой стены на всю ее высоту.

После создания опалубки, в нее вставляют специальные трубки, через которые подают бетонную смесь, имеющую мелкозернистую структуру.

Установка композиционной обоймы

Указанный метод усиления кирпичных стен имеет высокую результативность и эффективность, так как при его проведении применяется высокопрочное стекло или углеволокно.
Данное решение позволяет значительно повысить прочность кирпичной кладки на сжатие и на сдвиг.

Выполняется установка композитной обоймы в следующем порядке:

  1. сначала проводится очистка стен, которые будут усиливаться;
  2. кладка пропитывается специальным составом;
  3. подготовленная поверхность грунтуется;
  4. проводится монтаж металлического каркаса;
  5. разбирают временные крепления, но делать это можно, когда новая кладка приобретет не менее 50% своей расчетной прочности;
  6. простенки штукатурят, а затем окрашивают.

Использование композитных материалов позволяет минимально увеличить нагрузку на фундамент, а единственным их недостатком является высокая стоимость.

Укрепление стальными тяжами (обоймами)

Для усиления несущей способности стен, часто применяют стальную обойму. Чтобы создать такую конструкцию, вам понадобится арматура диаметром 12 мм, металлические полосы толщиной 10-12 мм и шириной 40-60 мм, металлические уголки.

По углам площади, которая будет усиливаться, вертикально монтируются металлические уголки, их фиксация выполняется при помощи раствора.

Между хомутами расстояние должно быть не больше 50 мм, а чтобы они лучше сцепились с раствором, уголки закрывают металлической сеткой. Чтобы защитить стальную обойму от коррозии, толщина цементного слоя должна быть в пределах 2-3 см.

Если площадь стены большая, то раствор наносят не вручную, а при помощи специального насоса.

Инъектирование конструктивных элементов

Современным методом усиления стен является инъектирование. Проводится оно следующим образом: в стене пробуриваются отверстия и в ее тело или это может быть выполнено за кирпичную кладку, вводятся цементные эпоксидные или полиуретановые составы.


Раствор попадает в трещину или пустоту, возникшую вследствие разрушения стены, предотвращает их дальнейшее повреждение, укрепляет и обеспечивает полную гидроизоляцию.

При помощи инъектирования стен, можно укрепить кладку, герметизировать появившиеся трещины, защитить стену от негативного действия влаги, провести герметизацию гильз водоводов, в которых размещены коммуникации и т.д.

Советы по усилению проемов в несущих стенах при недостаточной несущей способности

Достаточно часто возникает надо сделать новый проем в несущей стене или укрепить существующий. При выполнении указанных работ, надо придерживаться разработанных технологий и соблюдать существующие нормы:

  • если вы решили сделать проем в несущей стене, то надо придерживаться существующих нормативов, ширина проема в помещении высотой 2,5-3 метра не должна быть больше 2 метров;
  • монтаж проема надо выполнять ближе к середине стены, тогда нагрузка будет распределяться равномерно;
  • если дом многоэтажный, то на нижних этажах ширина проема не должна быть более 90 см;
  • если вы делаете проем в кирпичной стене, то надо предварительно установить опорные контракции;
  • делать проем в кирпичной стене лучше не отбойным молотком, а при помощи алмазной резки, в этом случае получается меньше пыли и шума, а сам проем будет более аккуратным;
  • при создании проема учитывайте, что он должен быть немного больше ширины самой двери или окна, это необходимо для установки коробки.
  • для сокрытия следов усиления можно использовать декоративные панели для

Если вам необходимо укрепить проем в кирпичной стене, то сделать это можно при помощи металлических уголков, двутавров или швеллеров. Эти элементы позволяют равномерно распределить нагрузку и усилить прочность проема.

При использовании швеллера учтите, что у него округлые края, поэтому он будет неплотно прилегать к краям проема. В этом случае, его края надо обтачивать или заливать зазоры специальным раствором.

Оконного проема

Для усиления оконных проемов используют перемычки , которые устанавливают на этапе строительства. Делают перемычки из железобетона, при этом арматура обеспечивает их прочность, а бетон жесткость и сопротивление силам сжатия.


Если возникла необходимость расширить оконный проем
, то новая конструкция должна быть обязательно укреплена так же, как это выполняется на этапе строительства дома.

Для усиления оконного проема используются прогоны, которые опираются на специальные выступы. Для создания прогонов могут использоваться швеллера, уголки, промышленные перемычки.

Вывод

Если усиление кирпичной стены выполнено с соблюдением разработанных технологий, то это позволяет полностью восстановить ее функциональность.

Указанные работы надо выполнить вовремя , чтобы не допустить серьезного разрушения здания. Современные методы усиления стен позволяют увеличить их прочность, устойчивость к нагрузкам и деформациям, а также повысить противостояние сейсмологическим факторам.

Полезное видео

Стяжка кирпичного дома армированной обоймой, видео:

Вконтакте

При землетрясениях здания и сооружения получают наряду с обычными дополнительные характерные повреждения, степень которых во многом зависит от распределения элементов, воспринимающих сейсмическую нагрузку в плане здания и по его высоте, т.е. от конструктивной схемы сооружения и вида материалов, использованных для изготовления строительных конструкций. Наглядным примером сравнительной сейсмостойкости зданий с конструкциями из различных материалов могут служить данные обследования последствий землетрясения с магнитудой M = 7,5 в мае 1960 г. в г. Консенсьоне (Чили), приведенные в табл. 6.1.

Последствия многих землетрясений в бывш. СССР позволяют дополнить конструктивные схемы, приведенные в табл. 6.1, крупнопанельными зданиями и зданиями со стенами из монолитного легкого и тяжелого бетонов.
Средняя степень повреждений при Кайраккумском 1985 г. землетрясении, по данным, составляла: кирпичных зданий 2,22...2,8; каркасных 1,5; крупнопанельных 1,33, а по данным, - крупнопанельных 1,3...1,7 и кирпичных 1,3...2,7. При Газлийском 1984 г. землетрясении степень повреждений составляла: кирпичных зданий 3...4, крупнопанельных 2...3, со стенами из монолитного керамзитобетона 2...3, степень повреждения монолитных домов, выполненных в скользящей опалубке при Карпатском 1986 г. землетрясении, по данным Госстроя Молдавии, составляла в зависимости от этажности 1,8...2,6.
Способы восстановления и усиления зданий, пострадавших в результате землетрясений, могут быть разделены на три типа. Первый тип - объединяет все приемы восстановления отдельных несущих элементов зданий (простенки, стены, колонны, ригели, плиты перекрытий, блоки, панели). Эти общие приемы восстановления, которые применимы и при ликвидации повреждений, вызванных землетрясениями, частично изложены ранее. Второй тип - способы восстановления связей между частями и элементами здания (углы, пересечения и сопряжения стен, панелей, блоков, узлы железобетонных рам и т.п.). Третий тип - включает в себя способы восстановления и повышения пространственной жесткости здания, увеличения способности здания как системы в делом воспринимать и распределять сейсмическую нагрузку между всеми несущими элементами. Для наглядности показаны все три типа восстановления в виде схемы на рис. 6.1.

Решения по обеспечению пространственной жесткости здания достаточно общие для зданий различных конструктивных схем, потому они выделены в самостоятельную группу. Утрата пространственной жесткости здания характеризуется значительным расстройством связей между вертикальными элементами здания, между вертикальными элементами и горизонтальными, а также повреждениями в местах заделки вертикальных элементов в грунт. Восстановление пространственной жесткости здания позволяет обеспечить перераспределение усилий между элементами, улучшить передачу и поглощение энергии соответствующими конструкциями.
Пространственная жесткость здания может быть обеспечена:
- устройством горизонтальных гибких напрягаемых поясов, которые выполняют из круглой стали или многопрядевых канатов. Напряжение их производится с помощью муфт (по две в каждом пролете) или болтовых соединений (рис. 6.2). По углам здания устанавливают уголки, к которым в уровне каждого тяжа крепится наружный горизонтальный пояс (рис. 6.2, в). Элементы пояса соединяются в местах пересечения стен стальными полосами толщиной 1...2 см. К этим же полосам крепятся с помощью гаек сквозные тяжи, уложенные вдоль внутренних поперечных стен (рис. 6.2, г). Предварительное напряжение производится в двух горизонтальных направлениях, значение напряжения определяется расчетом с учетом потерь при напряжении, как указано ранее;

- устройством наружного металлического каркаса. Каркас выполняется в виде сплошных поясов и стоек прижимов из швеллеров N 12 и угловых стоек из уголков 150х150х10, которые стягиваются со стеной болтами через 1...1,5 м по выпоте и длине, а в местах примыкания к поперечным стенам тяжами диаметром 24 мм с каркасом противоположной стены (рис. 6.3). Для этого в уровне перекрытия во внутренней стене просверливают отверстия, устанавливают, как и на внутренней стороне наружной стены, уголки или пластины для крепления тяжей. Тяжи натягивают с помощью муфт или нагревом и при достижении требуемой степени натяжения закрепляют. Отверстия инъецируют раствором, а выступающие наружные элементы защищают от коррозии;

- устройством дополнительных поперечных стен или рам каркаса из стали, дерева, железобетона от стены до стены, к которым с помощью изложенных в предыдущем случае мер прочно крепят стены. Для крепления допускается устройство тяжей-коротышей на сварке. Одним из вариантов является устройство наружных железобетонных рам, которые обрамляют здание как в плоскости всех поперечных стен, так и в пролете между ними (рис. 6.4). Поперечные П-образные рамы в продольном направлении связаны между собой монолитными или сборно-монолитными железобетонными ригелями в уровне конька, карнизов, перекрытий и фундаментных балок. Все конструкции усиления сваркой и последующим за-моноличиванием надежно соединяются с антисейсмическими обвязками поврежденного здания. Этот способ восстановления позволяет проводить работы, не прерывая эксплуатации здания.

Встречаются и другие решения, направленные на обеспечение пространственной работы здания. Например решения с устройством двухстороннего железобетонного пояса в уровне перекрытия (рис. 6.5) или под перекрытием (рис. 6.6), в том числе выполняемого из отдельных сборных железобетонных элементов (рис. 6.7).

Как следует из табл. 6.1 и других материалов, степень повреждения зданий зависит от их конструктивного решения, что диктует необходимость выработки для зданий каждого типа своих способов восстановления с учетом физического износа элементов и степени сейсмовооружения объекта. В связи с этим способы восстановления и усиления зданий и сооружений рассматриваются далее применительно к соответствующим конструктивным схемам.

Усиление каркасных зданий. Необходимость в усилении элементов каркасных зданий может быть вызвана ухудшением их технического состояния в процессе длительной эксплуатации или выявлении несоответствия несущей способности уточненным значениям расчетных нагрузок на здание в целом или его отдельные конструкции. Особенность повреждения каркасных зданий в результате сильных землетрясений состоит в том, что даже частичная потеря устойчивости сооружения наступает только тогда, когда большинство несущих элементов и узлов их сопряжений почти утратило несущую способность. Поэтому вопрос о восстановлении пространственной жесткости каркасных зданий в целом ставится исключительно редко, так как в большинстве случае это экономически нецелесообразно и равноценно возведению нового здания. В связи с этим основной задачей восстановления каркасных зданий является усиление отдельных деформированных элементов каркаса и связей между ними, что подробно рассмотрено ранее.
Повреждение зданий с каркасом из железобетонных элементов при землетрясениях часто происходит из-за низкой прочности бетона в колоннах и ригелях, недостаточного количества поперечной арматуры. Усиление железобетонных конструкций производится увеличением их сечений в результате устройства обойм из жесткой или гибкой арматуры с последующим обетонированием поверхностей. При этом должны предусматриваться конструктивные решения, обеспечивающие совместную работу старого и нового бетона конструкций. Чаще всего производится сварка старой и новой уставливаемой арматуры или выполняется предварительное напряжение поперечной арматуры. В последние годы при усилении железобетонных конструкций находят применение полимерные композиции для склеивания существующих и дополнительно устанавливаемых элементов из металла, предварительно напрягаемого железобетона или стекловолокна.
Опорные узлы сборных железобетонных каркасов могут усиливаться металлическими накладками, профильным металлом в сочетании со стяжными болтами, арматурными скобами, железобетонными обоймами; недостаточное количество поперечной арматуры на опорных участках ригелей следует компенсировать замкнутыми хомутами со стяжными муфтами, устройством металлических обойм. Усиление плоских железобетонных элементов, например плит перекрытий, может быть выполнено увеличением высоты их сечения, устройством дополнительных балок, соединением старого и нового бетона болтами, анкерами, тяжами или склеиванием полимерными составами.
Несущая способность металлических каркасов увеличивается обетонированием колонн, установкой дополнительных стальных элементов, увеличивающих сечение колонн, ригелей или выполняющих роль связей между колоннами, заменой ослабленных элементов, устройством диафрагм, воспринимающих частей сейсмических нагрузок и снижающих тем самым нагрузки на основные конструкции существующего здания.
Усиление крупнопанельных зданий. Крупнопанельные здания, рассчитанные с учетом сейсмической опасности, по своей надежности могут быть сопоставимы с сейсмостойкими каркасными зданиями. Анализ характера повреждений конструкций крупнопанельных зданий при землетрясениях показывает, что при необходимости повышения их сейсмостойкости для усиления конструкций таких зданий могут приниматься следующие способы: устройство шпонок ПАШ и инъецирование в трещины панелей полимеррастворов; установление дополнительных связей (шпонок, металлических накладок и т.п.) в горизонтальных и вертикальных стыках панелей, в местах сопряжения панелей стен и перекрытий; инъецирование раствора в трещины при ширине их раскрытия до 0,6 см или при недостаточной прочности панелей - торкретирование их поверхностей полностью или на участках панелей с дефектами или повреждениями, а в необходимых случаях замена отдельных панелей.
Анализ состояния усиленных крупнопанельных зданий показал, что в результате землетрясения в г. Газли в 1984 г. только 20% соединений ПАШ получили повреждения и потребовалась их замена. Основная доля поврежденных шпонок приходится на горизонтальный шов между цокольной панелью и стеновыми панелями первого этажа. Одна из причин такого повреждения - отсутствие пространства, в связи с чем нижний горизонтальный стык первого этажа оказался ослабленным.
Характер трещинообразования в стеновых панелях указывает на концентрацию напряжений в зоне ПАШ и на необходимость разработки способов, обеспечивающих более равномерное распределение связей в швах. Такими мероприятиями могут быть увеличение числа шпонок с уменьшением их сечения и армирования, оклейка стыка стеклотканью на эпоксидном клее и др. Повреждения стеновых панелей наблюдались в основном в наружных стенах из керамзитобетона в виде наклонных трещин от шпонок к углам проемов. Полученные повреждения легко устранимы и уже в первые месяцы после землетрясения были повторно восстановлены и сданы в эксплуатацию пять крупнопанельных зданий, а затем остальные.
Таким образом, впервые суммарно проверен способ восстановления крупнопанельных зданий с помощью инъецирования полимеррастворов в трещины панелей и усиление связей устройством ПАШ, причем образцы испытаны не только при статическом нагружении, на натурных фрагментах и на зданиях при динамических воздействиях, но и при землетрясении высокой интенсивности.
Усиление крупноблочных зданий. Сейсмостойкость зданий, построенных из крупных блоков, из природного камня или легких бетонов, зависит в основном от качества связей между отдельными блоками, между стенами взаимоперпендикулярного направления и связей между стенами и перекрытиями, прочности материалов, блоков, прочностных свойств оснований и фундаментов. Наиболее уязвимыми элементами крупнообломочных зданий при землетрясениях являются связи между конструкциями; для их усиления, кроме способов, изложенных выше рекомендуется; устройство предварительно напряженных тяжей не только в горизонтальном, но и вертикальном направлениях. Для этого с наружной стороны здания к арматуре перемычечных блоков через отрезки неравнобоких уголков приваривают вертикальные стальные тяжи d = 20...36 мм. Предварительное напряжение создается стягиванием соседних ветвей тяжа горизонтальными скобами. Расчет обжатия определяется из условия компенсации отклонений от требуемого нормального сцепления.
Если необходимо усилить внутренние стены, то тяжи устанавливают с двух сторон каждого простенка. В случае когда требуется усилить связи в вертикальных швах перемычечных блоков, тяжи крепят к напрягаемому горизонтальному металлическому поясу. Пояс выполняют из швеллера и прикрепляют на болтах к перемычечным блокам. Такой способ увеличения пространственной жесткости здания был применен при восстановлении домов из легких бетонных блоков, пострадавших в результате землетрясения в 1971 г. в Петропавловске-Камчатском (рис. 6.8, а). При установке горизонтального напрягаемого пояса в нему могут быть прикреплены стены перпендикулярного направления с помощью напрягаемых металлических тяжей, присоединенных к специально установленной закладной детали (рис. 6.8, б);

- устройство железобетонных или металлических шпонок для воспринятия сдвигающих усилий между блоками. Железобетонные шпонки размером 30х30 см ставят не более двух на вертикальный стык в пределах этажа. Металлические шпонки размером 40х20х2 см устанавливают на растворе в специально подготовленные углубления с двух сторон блоков (рис. 6.9).
При недостаточной прочности материалов блоков их несущая способность может быть повышена торкретированием поверхности стен по металлической сетке. При необходимости проводятся работы по устройству дополнительных стен или железобетонных рам, разделение сложного в плане здания на отдельные отсеки.

Усиление зданий со стенами из кирпича и камня. Сейсмостойкость зданий с кирпичными и каменными стенами в основном определяется: монолитностью кладки, зависящей от прочности сцепления раствора с кирпичом, камнем или блоками типа кладки, прочности материалов; прочностью связей между стенами взаимоперпендикулярного направления; наличием вертикального и горизонтального армирования кладки и горизонтальных антисейсмических поясов; конструкцией междуэтажных перекрытий и их связей со стенами.
В зависимости от состояния конструкций здания со стенами из мелкоштучных материалов - кирпича, блоков, из искусственных материалов или природного камня применяются следующие основные способы их усиления:
- торкретирование по металлической сетке с одной или с двух сторон стен с проемами или сплошных стен полностью или отдельными участками;
- устройство металлических каркасов, применяемых в случае массового отрыва стен (рис. 6.3). Для этого по наружным стенам здания в углах и местах пересечения с внутренними стенами устанавливают стойки, а в уровне перекрытий - пояса из проката. Все элементы притягивают к стенам через 100...150 см по высоте и длине. Отверстия под тяжами инъецируют, а открытые элементы оштукатуривают;
- использование напрягаемых вертикальных и горизонтальных жестких или гибких стальных поясов и затяжек. Металлические затяжки устраивают при отсутствии или недостаточном армировании пересечений стен, в случае взаимного их отрыва, а также при креплении выпучившейся стены (рис. 6.4, а). Затяжки выполняют в виде тяжей из арматуры и крепежных элементов из уголков, швеллеров и пластин. Тяжи обычно выполняют преднапряженными механическим и электрическим способами, а крепежные элементы устанавливают в специально пробитые штрабы или гнезда и оштукатуривают;
- устройство железобетонных или стальных антисейсмических поясов в уровнях перекрытий (см. рис. 6.5 и 6.6);
- введение в кладку железобетонных или стальных элементов усиления (рис. 6.10);

- устройство дополнительных стен или рам для уменьшения расстояния между несущими стенами и соответствующих вертикальных и горизонтальных нагрузок. При усилении кирпичных зданий введением дополнительных диафрагм, контрфорсов и рам особое внимание уделяется их связи со стенами и перекрытиями во всех уровнях. Диафрагмы и рамы выполняют в железобетоне или стали, а контрфорсы в кирпиче или монолитном бетоне. Крепление диафрагм и рам к стенам осуществляют анкерами, пропускаемыми сквозь стену, или устройством армированных торкрет-бетонных обойм (прокладок), а к перекрытиям - специальными шпонками или скобами;
- устройство специальных связей между продольными и поперечными стенами (анкеров, тяжей, шпонок), которые воспринимают сдвигающие, растягивающие, крутящие усилия;
- усиление отдельных участков стен цементацией или инъецированием полимерцементных растворов;
- замена или усиление конструкций междуэтажных перекрытий, не обеспечивающих равномерную передачу сейсмических нагрузок на стены.
В зданиях старой постройки со сложной конфигурацией плана может производиться разборка отдельных участков стен и разделение здания на отдельные отсеки. При значительных повреждениях и перекладке стен устанавливают каркасы из арматурной стали диаметром не менее 10 мм, как показано, на рис. 6.11. При усилении зданий могут применяться как отдельные из указанных способов, так и их комбинации.

кирпичный стена кладка

На рис. 6.40 приведены характерные конструктивно-технологические решения. Представленные системы направлены на всестороннее обжатие стен с использованием регулируемых натяжных систем. Они выполняются открытого и закрытого типов, при внешнем и внутреннем расположении, обеспечиваются антикоррозионной защитой.

Рис. 1 Конструктивно-технологические варианты усиления кирпичных стен: а -- схема усиления кирпичных стен здания металлическими тяжами; б, в, г -- узлы размещения металлических тяжей; д -- схема размещения монолитного железобетонного пояса; е -- то же, тяжами с центрирующими элементами: 1-- металлический тяж; 2 -- натяжная муфта: 3 -- монолитный железобетонный пояс; 4-- плита перекрытий; 5 -- анкер; 6 -центрирующая рама; 7-- опорная пластинка с шарниром

Для создания требуемой степени натяжения используются стяжные муфты, доступ к которым должен быть всегда открыт. Они позволяют по мере удлинения тяжей в результате температурных и других деформаций производить дополнительное натяжение. Обжатие элементов кирпичных стен производится в местах наибольшей жесткости (углы, сопряжения наружных и внутренних стен) через распределительные пластины.

Для равномерного обжатия кладки стен используется специальная конструкция центрирующей рамы, которая имеет шарнирное опирание на опорно-распределительные пластины. Такое решение обеспечивает длительную эксплуатацию с достаточно высокой эффективностью.

Места расположения тяжей и центрирующих рам закрываются различного рода поясами и не нарушают общий вид фасадных поверхностей.

Когда на фасадах здания имеется множество трещин, для их устранения прибегают к обеспечению пространственной жесткости несущей коробки зданий с помощью устройства обвязочных поясов. Установку металлических поясов производят также при отклонении стен от вертикали в результате неравномерных осадок (рис.42).

В качестве металлических поясов используют сталь круглого или квадратного сечения диаметром 20-40 мм, которую устанавливают под перекрытием каждого этажа. Одни концы металлических поясов приваривают к обрезкам уголков, которые устанавливают по углам здания, а вторые -- закрепляют в стяжных муфтах (талреп).

Для случаев обеспечения пространственной жесткости натяжение металлических поясов начинают одновременно по всем этажам, чтобы избежать неравномерной передачи нагрузки. Когда же требуется восстановить вертикальность стены, то натяжения металлических поясов начинают с нижнего этажа.

Заданная величина натяжного усилия обеспечивается специальными динамометрическими ключами в натяжных муфтах.

Рис. 2

1 - тяжи; 2 - муфта натяжения; 3 - металлическая прокладка; 4 - швеллер № 16-20; 5 - уголок

Рекомендуем почитать

Наверх