Рефлекторный характер деятельности нервной системы обеспечивает. Рефлекс - основная форма нервной деятельности

Водоёмы 10.04.2024

Сущность работы нервной системы заключается в организации реакций в ответ на внешние и внутренние воздействия. Степень сложности таких реакций весьма различна - от автоматического сужения зрачка при ярком освещении до многопланового поведенческого акта, мобилизующего все системы организма. Тем не менее во всех случаях сохраняется один и тот же принцип деятельности - рефлекторный. Рефлекс - это активная ответная реакция, связывающая особенности организма и условия среды. Следовательно, рефлекс - не механический, не пассивный ответ, как, например, образование вмятины от удара, а целесообразная для данного организма реакция, необходимая для нормальной жизнедеятельности.

Возникновение и развитие нервной системы в процессе эволюции означало прежде всего появление и усовершенствование рефлекторных механизмов. Эти механизмы, независимо от степениих сложности, имеют ряд принципиально общих черт. Для осуществления рефлекса необходимы, как минимум, два элемента: воспринимающий (рецепторный) и исполнительный (эффекторный). Рецепторы могут реагировать на очень широкий диапазон раздражителей и занимать большие площади (рефлексогенная зона). К таким относятся, например, рецепторы болевой чувствительности, рецепторы внутренних органов. Другие воспринимающие элементы, напротив, являются чрезвычайно специализированными и имеют ограниченную рефлексогенную зону. В качестве примера можно назвать вкусовые рецепторы, располагающиеся на поверхности языка, или зрительные палочки и колбочки.

Точно так же исполнительный аппарат рефлекса может представлять собой изолированную мышцу и иметь жесткую связь с ограниченной группой рецепторов. Классический пример этого - коленный рефлекс (узкая рефлексогенная зона и элементарная реакция).В других случаях исполнительный аппарат включает в себя ансамбль действующих единиц и имеет связи с различными типами рецепторов. Примером этого может служить так называемый "стартовый" рефлекс. Он выражается в виде общего настораживания, замирания или вздрагивания при резком звуке или ярком свете, неожиданном зрительном образе. Таким образом, в реализации “стартового” рефлекса участвует огромное количество двигательных единиц и вызывается он различными раздражителями
главная особенность которых - неожиданность.

“Стартовый” рефлекс - одна из многих реакций, требующих согласованной работы различных систем организма. Такая заинтересованность невозможна при наличии жестких прямых связей с рецепторами и эффекторами, поскольку это привело бы к появлению независимых друг от друга и не поддающихся координации рефлекторных механизмов.

В процессе эволюции сформировался еще один элемент, обеспечивающий рефлекторные реакции, - вставочные нейроны. Благодаря этим нейронам импульсы от рецепторов достигают эффекторных аппаратов не сразу, а после промежуточной обработки во время которой и устанавливается согласованность в различных реакциях. Широко взаимодействуя между собой и образуя скопления, вставочные нейроны создают возможность для объединения всех рефлекторных механизмов в единое целое. Формируется интегральная нервная деятельность, которая представляет собой нечто большее, чем сумма отдельных реакций.

Каждая отдельная реакция подчиняется центральным влияниям; она может быть усилена, заторможена, полностью блокирована или приведена в состояние повышенной готовности. Более того, на основе врожденных автоматизмов формируются новые способы реагирования, новые действия. Так, ребенок обучается ходьбе, стоянию на одной ноге, сложным ручным манипуляциям.

Интегральная нервная деятельность еще не означает высшей нервной деятельности. Объединение организма в единое целое и организация сложных поведенческих программ могут совершаться на базе эволюционно закрепленных в нервной системе врожденных механизмов. Эти механизмы называются безусловными рефлексами, поскольку они генетически заложены в нервной системе и не требуют обучения. На основе безусловных рефлексов могут формироваться сложнейшие действия. В качестве примера достаточно назвать строительную деятельность бобров или дальние перелеты птиц.

Однако безусловнорефлекторная деятельность неизбежно страдает ограниченностью, потому что она почти не поддается исправлениям и тем самым препятствует накоплению индивидуального опыта. Каждый индивид от рождения почти полностью готов к определенным действиям, однообразно повторяющимся из поколения в поколение. Если условия среды внезапно изменяются. то великолепно отлаженный механизм реагирования оказывается неприспособленным.

Гораздо большая гибкость поведения наблюдается у организмов, которые способны к индивидуальному обучению. Это становится возможным благодаря возникновению в нервной системе временных нервных связей. Наиболее изученным типом такой нервной связи является условный рефлекс. При помощи этого рефлекса раздражитель, бывший ранее безразличным, приобретает значение жизненно важного сигнала и вызывает определенную реакцию. В механизмах условного рефлекса заложены предпосылки индивидуальной памяти, без которой, как известно, невозможно обучение.

По мере эволюционирования коры больших полушарий возникают огромные зоны нервных клеток, которые не имеют никакой врожденной программы, а предназначены лишь для образования связей в процессе индивидуального обучения. Поскольку работа нервной системы основана на рефлекторном принципе, то и обучение распространяется на три основные звена рефлекторного механизма: анализ поступающей от рецепторов информации, интегральная обработка в промежуточных звеньях, создание новых программ деятельности.

Личный опыт оказывает влияние как на восприятие и переработку информации из внешней и внутренней среды, так и на формирование программ деятельности - краткосрочных или долгосрочных. В результате восприятия многих раздражителей происходит опознавание, т.е. сведения о раздражителе сравниваются с заложенной в памяти информацией. Точно так же при организации ответных действий учитываются не только потребности на данный момент, но и прошлый опыт успешных или неуспешных реакций в аналогичной ситуации.

При выполнении намеченного действия могут возникнуть непредвиденные помехи. Следовательно, необходимо сохранять конечную цель реакции до ее полного осуществления, для чего требуются специальные механизмы.

Процессы распознавания поступающих сигналов, выработка учитывающих прошлый опыт программ действия, контроль за их выполнением составляют содержание высшей нервной деятельности. Эта деятельность, оставаясь рефлекторной по своей сущности, отличается от врожденных автоматизмов гораздо большей гибкостью и избирательностью. Один и тот же раздражитель может вызывать разные реакции в зависимости от состояния на данный момент, общей ситуации, индивидуального опыта, потому что многое зависит не от особенностей раздражителя, а от той обработки, которую он проходит в промежуточных звеньях рефлекторного аппарата.

Высшая нервная деятельность создает предпосылки разума. Разум означает прежде всего способность найти решение в новой необычной ситуации. Приведем пример. Обезьяна видит подвешенную к потолку связку бананов и разбросанные по полу ящики. Без предварительного обучения она решает возникшую перед ней практическую и интеллектуальную задачу - ставит один ящик на другой и достает бананы. С возникновением речи возможности интеллекта безгранично расширяются, поскольку в словах отражена сущность окружающих нас вещей.

Высшая нервная деятельность является нейрофизиологической основой психических процессов. Но она их не исчерпывает. Для таких психических явлений, как чувство, воля, воображение, мышление, конечно, необходима соответствующая мозговая активность Однако конкретное содержание психических процессов определяется социальной средой, а не процессами возбуждения или торможения в нейронах. Решает ли ученый сложнейшую интеллектуальную задачу или же первоклассник обдумывает простенькую школьную задачку, их мозговая активность может быть примерно одинаковой. Направленность мозговой деятельности задается не физиологией нервных клеток, а смыслом выполняемой работы.

Однако сказанное не означает, что высшая нервная деятельность представляет собой нечто второстепенное по отношению к “истинно психическим” процессам. Напротив, общие закономерности взаимодействия нейронов и общие принципы организации нервных центров определяют многие характеристики психической деятельности, например, темпы интеллектуальной работы, устойчивость внимания, объем памяти. Эти и другие показатели имеют огромное значение для педагогической работы, особенно при наличии у детей дефектов центральной нервной системы.

Сложнейшие мозговые механизмы, обеспечивающие переработку информации, поступающей сразу от многих рецепторных зон и промежуточных центров, представляют большой интерес как для физиологии, так и для психологии. Наблюдается все большее взаимопроникновение этих двух дисциплин, что отражается и на учении о высшей нервной деятельности.

В учении о высшей нервной деятельности можно выделить два основных раздела. Первый из них стоит ближе к нейрофизиологии и рассматривает общие закономерности взаимодействия нервных центров, динамику процессов возбуждения и торможения. Второй раздел рассматривает конкретные механизмы отдельных мозговых функций, таких как речь, память, восприятие, произвольные движения, эмоции. Этот раздел близко примыкает к психологии и нередко обозначается как психофизиология. Кроме того, произошло выделение самостоятельного направления - нейропсихологии. Нейропсихология в значительной степени - клиническая дисциплина. Она не только изучает механизмы высших корковых функций, но и разрабатывает методы точной диагностики корковых поражений и принципы коррекционных мероприятий. Один из основателей нейропсихологии - выдающийся отечественный ученый А. Р. Лурия.

Названные разделы тесно взаимосвязаны, поскольку мозг работает как единое целое. Однако для наилучшего понимания общих закономерностей высшей нервной деятельности целесообразно рассмотреть по отдельности принципы высшей нейродинамики и нейропсихологические механизмы отдельных корковых функций.

ДИНАМИКА НЕРВНЫХ ПРОЦЕССОВ

Принципы высшей нейродинамики - это закономерности взаимодействия процессов возбуждения и торможения в клетках головного мозга. Основные закономерности таких процессов были раскрыты И.П.Павловым и его учениками.

Возбуждение и торможение способны иррадиировать, т.е. распространяться на новые клеточные зоны, и концентрироваться, т.е. ограничиваться определенным очагом. Процессы иррадиации иконцентрации обусловливают пеструю и постоянно меняющуюся мозаику распределения возбужденных и заторможенных мозговых участков.

Степень иррадиации возбуждения зависит от многих факторов: силы раздражителя, его новизны, значимости для организма. Кроме того, большое значение имеет закон отрицательной индукции - возникновение зоны торможения вокруг очага возбуждения. Отрицательная индукция препятствует безграничной иррадиации возбуждения. В противном случае каждый раздражитель полностью “захватывал” бы огромные массы клеток. Такая картина наблюдается при судорожном припадке: очаг возбуждения безудержно распространяется на все новые и новые зоны; сознание при этом обычно утрачивается.

Иррадиация и концентрация возбуждения лежат в основе механизма внимания. Объем и стойкость внимания зависят от величины очага возбуждения и его фиксированности. Способность произвольно контролировать направленность, объем и устойчивость внимания совершенствуется с возрастом. Внимание детей характеризуется слабой целенаправленностью, но большим объемом. Дети фиксируют множество деталей автоматически; взрослые направляют внимание более прицельно, но и более узко. Кроме того, внимание детей неустойчиво. Это обусловлено недостаточным Развитием внутреннего торможения, обеспечивающего дополнительную концентрацию внимания. Каждый новый раздражитель отвлекает ребенка. Здесь опять-таки проявляется принцип отрицательной индукции: новый очаг возбуждения тормозит сущестовавший до этого. У взрослых процессы возбуждения и торможения более сбалансированны, поэтому возникающие конкурентные очаги возбуждения блокируются. Это достигается прежде всего за счет взаимодействия лобных долей мозга и ретикулярной формации. При поражениях лобных долей наблюдается чрезмерная отвлекаемость больных: их внимание постоянно переключается с одного объекта на другой.

Наряду с отрицательной индукцией существует положительная - возникновение возбуждения вокруг очага торможения. Например, засыпающий человек, многие участки мозга которого заторможены, вдруг начинает отчетливо слышать тиканье часов шум капающей из крана воды и другие звуки, не замечавшие в бодрствующем состоянии. Вероятно, это объясняется возникновением активных очагов на фоне общего снижения бодрствования.

В головном мозге обычно одновременно существует значительное количество возбужденных очагов. При этом может возникнут ситуация, когда какой-то один очаг начинает не только подавлять все остальные, но и использовать их активность для усиления своей собственной. Формируется так называемая доминанта, которую подробно изучил выдающийся отечественный физиолог А. А. Ухтомский. Доминанта - это очаг активности, подчиняющий себе все остальные, даже не имеющие к нему непосредственного отношения. Например, изголодавшемуся человеку все напоминает о еде, даже, казалось бы, совершенно посторонние разговоры и предметы. Точно так же увлеченный какой-либо идеей ученый находит тему для размышлений в событиях и фактах, относящихся к весьма отдаленным областям.

Принцип доминанты имеет важное биологическое значение, позволяя организму достигать необычайной концентрации усилий для выполнения какой-либо жизненно необходимой задачи Благодаря доминанте различные отвлекающие факторы не мешают, а, напротив, усиливают стремление к главной цели. Однако доминанта может принимать и патологические черты, если она направлена на утратившие значение или вообще не имеющие смысла цели. Такая картина, в частности, наблюдается при бредовых идеях. Больной не только уверен в правильности своих нелепых мыслей, но в ответ на возражения еще больше убеждается в своей правоте. Переубедить человека с бредовой идеей практически невозможно.

По мере достижения поставленной цели физиологическая доминанта обычно угасает. У человека длительное постоянство устремлений поддерживается благодаря усилиям воли.

Как уже отмечалось, степень иррадиации процессов возбуждения и торможения зависит не только от интенсивности раздражителей, но и от их значимости. Эта значимость может быть безусловно-рефлекторной, основанной на врожденной способности реагирования, но может обусловливаться и индивидуальным опытом Например, собака поразному реагирует на черствый кусок хлеба и на аппетитную кость. Это врожденная способность оценивать качество пищи. В то же время в процессе обучения любая собака приобретает большой опыт по распознаванию “пищевой ценности" различных раздражителей (хлопанье дверцы холодильника, звяканье посуды и др.). Процесс превращения безразличного ранее раздражителя в значимый для организма сигнал блестяще изучен И.П. Павловым. В многочисленных экспериментах И. П. Павлов и его ученики показали, что если перед безусловнорефлекторным раздражителем предъявлять какой-либо другой, то после ряда повторений этот раздражитель способен самостоятельно вызывать данную безусловную реакцию. Вырабатывается так называемый условный рефлекс, вызывающийся раздражителем, который до эксперимента был безразличен для животного. Открытие условного рефлекса показало, каким образом индивидуальный опыт фиксируется в виде нервных связей, как происходит элементарное обучение. Было установлено, что в процессе образования условных рефлексов большую роль играют процессы торможения. В частности, большое значение имеет так называемое дифференцировочное торможение, благодаря которому характеристики условнорефлекторного раздражителя оцениваются более точно. Например, при выработке условной слюноотделительной реакции на звук звонка первоначально реакция возникает в ответ на любой звонок. В дальнейшем, если подкреплять кормление только звонком определенной тональности и продолжительности, слюноотделительный рефлекс становится более избирательным: уже далеко не всякий звук вызывает слюноотделение. Этот факт свидетельствует о наличии выборочного торможения сходных сигналов в зависимости от прошлого опыта.

Дифференцировочное торможение И. П. Павлов относил к разновидностям внутреннего. Его существование указывает на способность к значительному усовершенствованию реагирования.

Существование внутреннего торможения обнаруживается также при выработке так называемых отставленных условных рефлексов. Суть их заключается в том, что после предъявления условного раздражителя подкрепление дается не сразу, а спустя некоторое время. В результате, например, слюноотделение в ответ на звонок возникает не сразу, а через некоторый промежуток времени. В течение всего периода между предъявлением звонка и появлением слюны реакция тормозится.

Внутреннее торможение играет большую роль в процессе обучения, совершенствования поведения. В известной степени воспитание сводится к тренировке внутреннего торможения, поскольку именно оно обеспечивает гибкость и тонкость реакций.

Внутреннее торможение требует больших усилий от нервной системы. В экспериментах на животных неоднократно наблюдалось, как при выработке слишком тонкой дифференцировки (например, между кругом и почти круглым овалом) или при чрезмерном временном разрыве между сигналом и подкреплением животное сильно возбуждалось, начинало вырываться из станка, проявляло агрессивность. В других случаях, наоборот, наступало оцепенение, возникала непреодолимая сонливость. Кстати, сонливость здесь является результатом так называемого запредельного торможении, которое распространяется по нервной системе при непосильных нагрузках и предохраняет нервные клетки от истощения.

Приведенные примеры говорят о том, что тренировка внутреннего торможения требует строго дозированных нагрузок. В противном случае может произойти срыв, дезорганизация высшей нервной деятельности. Подобные явления иногда наблюдаются в школе при изложении чрезмерно сложного материала. Одни ученики становятся невнимательными, непоседливыми, начинают разговаривать. Других же клонит в сон, они зевают, усиленно моргают. При наличии дефектов центральной нервной системы способность к выработке внутреннего торможения ограниченна, что делает необходимым более тщательное дозирование учебных нагрузок.

В процессе изучения условных рефлексов было установлено что они могут приобретать тормозное значение, блокировать отдельные реакции или вызывать сон. Таким образом было открыто условное торможение, которое И. П. Павлов относил к разновидностям внешнего торможения, поскольку оно вызывается сигналом из внешней среды. Условное торможение имеет важное значение в регуляции ритма сна - бодрствования. Систематически повторяющаяся процедура приготовления ко сну представляет собой, по существу, набор условных рефлексов, облегчающих засыпание. В организации режима дня ребенка важно добиваться строгого повторения такой процедуры, поскольку многие дети укладываются спать очень неохотно.

Другой разновидностью внешнего торможения является запредельное, о котором уже говорилось. Однако запредельное торможение по своей природе безусловнорефлекторное, оно представляет собой врожденное свойство нервной системы. В животном мире широко распространена так называемая реакция “мнимой смерти” - в случае опасности животное замирает, становится словно парализованным. У людей подобные реакции обозначаются как реактивный ступор, который может продолжаться и спустя несколько суток после потрясения. Частным случаем такого ступора является реактивный мутизм - утрата речи при сохранении общей двигательной способности. Реактивный мутизм иногда возникает у робких, застенчивых детей, впервые выступающих перед большим скоплением незнакомых людей.

По данным многочисленных экспериментов, условные рефлексы не обязательно являются изолированной реакцией на отдельные раздражители (звонок - выделение слюны и др.). У многих животных успешно вырабатываются условные рефлексы на сложные комплексы раздражителей, воздействующих одновременно последовательно на многие рецепторные аппараты (например, свет, звук, прикосновение, запах). Кроме того, рефлекторный ответ может представлять собой набор реакций, совершающихся одновременно или разворачивающихся во времени в определенной последовательности. Например, дрессированной собаке достаточно одной команды, чтобы она совершила серию действий, сменяющихся в заданном порядке. Каждый человек в процессе воспитания и обучения усваивает массу двигательных навыков, предназначенных для выполнения обыденных житейских операций: одевание, умывание, причесывание, еда при помощи ложки и вилки, склеивание бумаги, зажигание спичек и т.д. Любое из этих действий представляет собой слитую воедино последовательность движений. Например, чтобы съесть ложку супа, необходимо придать ложке определенное положение в руке, зачерпнуть суп, донести его, не пролив, до рта и, наконец, перелить содержимое в рот. Всему этому человек учится в детстве, “отрабатывая” каждый элемент действия по отдельности: как правильно держать ложку и перемещать ее в пространстве, какое положение придать губам, чтобы ничего не пролилось. В результате формируется цепочка движений, слитых в единый автоматизированный акт, и в дальнейшем человек уже совершенно не будет задумываться о том, как пользоваться ложкой.

Прочно зафиксированная в нервной системе последовательность реакций называется динамическим стереотипом. Способность к формированию динамических стереотипов приводит к огромной экономии в работе нервной системы. Много раз повторяющиеся операции закрепляются как целостные двигательные образы, поэтому отпадает необходимость каждый раз находить способы реализации того или иного действия. Достаточно “начальнику” дать команду, и весь комплекс движений “проигрывается”, как записанная на пластинке мелодия.

Динамические стереотипы могут формироваться не только в сфере движений, но и в сфере восприятия. Например, горожанин, переходя улицу, автоматически обращает внимание на сигнал светофора, поворачивает голову налево, потом направо. На основе динамических стереотипов вырабатываются профессиональные навыки: работа с инструментами, печатание на пишущей машинке, укладка кирпича и т.д. Следует отметить, что в динамическом стереотипе могут содержаться бесполезные и даже мешающие выполнению задачи элементы. Это зависит от особенностей процесса обучения. Например, походка человека представляет собой классический динамическийий стереотип, и здесь немало отрицательных характеристик (шарканье ногами, сгорбленность, раскачивание и др.). Все что является результатом того, что в раннем детстве родители ребенка не обращали должного внимания на его походку. Между тем данные элементы стереотипа фиксируются очень прочно, искоренить их весьма трудно. При выработке нового стереотипа важно с самого начала следить за качеством его отдельных элементов. В частности, из логопедической практики хорошо известно, что дислалия часто является следствием фиксации физиологической дислалии дошкольников. Сложившийся аномальный стереотип звукопроизношения переделывают уже с помощью логопеда.

Сложнейшая динамика взаимодействия процессов возбуждения и торможения создает постоянно меняющуюся картину мозговой активности. Однако в этой переменчивости существуют некоторые стабильные характеристики, определяющие индивиду. альные особенности реагирования.

С древнейших времен известно, что одни люди отвечают на все происходящее бурными реакциями, другие же, наоборот, всегда остаются чрезвычайно спокойными. Важно подчеркнуть, что такой стиль реагирования может оставаться устойчивой характеристикой в течение всей жизни человека и, следовательно, он является врожденной особенностью.

Общий тип реагирования, определяющий стиль поведения, издавна обозначается как темперамент. Существует много классификаций темпераментов, но наибольшую известность имеет типология, описанная еще в античную эпоху.

Античная классификация темпераментов основывалась на наивном представлении о пропорциях различных жидкостей в организме. Отсюда произошли и названия четырех основных типов: холерик (холе - желчь), сангвиник (сангвис - кровь), флегматик (флегма - слизь) и меланхолик (мелан холе - черная желчь). Однако описательные характеристики этих темпераментов точно подмечали реально существующие особенности людских характеров.

Холерик - человек взрывчатый, бурно на все реагирующий, но быстро “остывающий”, легко меняющий интересы и увлечения, сангвиник - энергичный, активный, способный доводить начатое дело до конца, флегматик - спокойный, невозмутимый, медленно “раскачивающийся”, но стойкий в своих переживаниях, меланхолик - робкий, нерешительный, легко ранимый, однако способный к очень тонким переживаниям и наблюдениям.

И.П.Павловым была раскрыта нейрофизиологическая основа темпераментов. В качестве ведущих характеристик высшей нервной деятельности рассматривались сила, подвижность и уравновешенность процессов возбуждения и торможения. В зависимости от сочетания этих особенностей выделены четыре основных типа высшей нервной деятельности.

Сильный, подвижный, неуравновешенный соответствует холерическому темпераменту; сильный, подвижный, уравновешенный - сангвиническому; сильный, инертный - флегматическому слабый, тормозимый тип - меланхолическому.

Кроме того, основываясь на особенностях взаимодействия первойи второй сигнальной систем (чувственно-конкретное и речевое восприятия), И.П.Павлов выделил художественный (первосигнальный), мыслительный (второсигнальный) и средний, промежуточный типы.

Тип высшей нервной деятельности во многом определяется

врожденными свойствами нервной системы, но не является совершенно незыблемым, не поддающимся изменениям. Можно даже сказать, что почти любой ребенок в процессе развития совершает эволюцию от холерического, художественного темперамента к уравновешенному, мыслительному. Тем не менее существуют дети явно возбудимые и явно заторможенные, энергичные и пассивные, самоуверенные и робкие, выносливые и утомляемые. В связи с этим в педагогической работе важно учитывать индивидуальные особенности высшей нервной деятельности, проводя в то же время коррекцию мешающих работе характеристик. Особое значение такой подход приобретает в дефектологии, где многие дети нуждаются в специальной помощи при формировании каркаса высшей нервной деятельности.

ВЫСШИЕ КОРКОВЫЕ ФУНКЦИИ

Кора головного мозга является, по существу, гигантским промежуточным центром на пути от рецепторных аппаратов к эффекторным. Сюда стекается вся информация, поступающая из внешней и внутренней среды, здесь она сопоставляется с текущими потребностями, прошлым опытом и преобразуется в команды, нередко охватывающие все процессы жизнедеятельности. Здесь вырабатываются принципиально новые решения, а также формируются динамические стереотипы, образующие шаблоны поведения, восприятия и, в ряде случаев, даже мышления.

Связь коры с “периферическими” образованиями - рецепторами и эффекторами - обусловливает специализацию отдельных ее участков. Различные области коры связаны со строго определенными типами рецепторов, образуя корковые отделы анализаторов.

Анализатор - специализированная физиологическая система, обеспечивающая прием и переработку определенного типа раздражений. В нем различают периферический отдел - собственно pецепторные образования - и совокупность промежуточных центров. Наиболее важные центры расположены в зрительном бугре, являющемся коллектором всех видов чувствительности, и в коре больших полушарий. Корковые отделы анализаторов представляют собой высшие, но не конечные, центры, поскольку поступающие сюда импульсы не “оседают” здесь, как в хранилище, а постоянно перерабатываются, преобразуясь в командные сигналы. Эти команды могут направляться к рецепторным аппаратам, изменяя порог их чувствительности. В результате каждый анализатор функционирует как кольцевая структура, в которой импульсы циркулируют по маршруту рецепторы - промежуточные центры - рецепторы. Разумеется, что от промежуточных центров имеются выходы и к эффекторным аппаратам. Действие же эффекторов, в свой очередь, порождает новые рецепторные сигналы. В итоге формируются сложные кольцевые системы: рецептор - промежуточный центры - эффектор - рецептор. Такие системы могут иметь не сколько уровней замыкания (продолговатый, межуточный мозг, но высшим является корковый. Низшие уровни регуляции xapaктеризуются жестким автоматизмом, высшие, особенно корковые отличаются большей гибкостью и изменчивостью.

Основные корковые отделы анализаторов имеют следующее расположение (см. рис. 9): зрительный анализатор - в затылочной коре, слуховой - в височной, поверхностная и глубокая чувствительность - в задней центральной извилине, двигательный анализатор - в передней центральной извилине. Обонятельный анализатор располагается в эволюционно более древних отделах коры. включающих аммонов рог и поясную извилину. Вкусовая чувствительность и рецепция от внутренних органов имеют менее определенное корковое представительство, концентрируясь в основном в глубинных отделах сильвиевой борозды.

Каждый анализатор представлен в симметричных отделах правого и левого полушарий мозга. Двигательный и чувствительны!: анализаторы связаны с противоположной половиной тела. Корковые представительства слухового, вкусового и обонятельного анализаторов в каждом полушарии имеют связи с обеими сторонами. В зрительную кору (затылочная область) проецируется информация от половины поля зрения каждого глаза, причем в левое полушарие - от правых половин, в правое - от левых половин полей зрения.

Из анатомических особенностей следует, что расстройства движений, чувствительности и зрения возможны при поражении соответствующего участка одного из полушарий. Данные нарушения возникают на стороне, противоположной локализации патологического очага. Корковые расстройства слуха, вкуса и обоняния наблюдаются только при двустороннем поражении анализаторных зон или их связей.

Наличие симметричных анализаторных отделов в правом и левом полушариях не означает их полной равноценности. Многочисленными экспериментами доказано существование функциональной асимметрии мозга. Ее суть заключается в том, что правое и левое полушария выполняют несколько различные функции. Различают доминантное и субдоминантное полушария. В доминантном располагаются центры речи и письма, в субдоминантном соответствующие центры отсутствуют. Чаще всего доминантным полушарием является левое, и расположение в нем речевых центров обычно совпадает с праворукостью - преобладанием правой руки над левой.

В случаях выраженной леворукости доминантным может быть правое полушарие. Однако вопрос о левшестве далеко не прост.

В процессе воспитания большинство родителей приучают детей пользоваться преимущественно правой рукой. Трудно сказать, какое полушарие доминирует у “переученных левшей”. Кроме того, встречаются случаи амбидекстрии - примерно одинакового владенния обеими руками. Сложно оценивать также степень функциональной асимметрии мозга. Тем не менее эта асимметрия существует, о чем убедительно свидетельствуют результаты исследований по изолированному выключению активности правого или левого полушария, а также клинический анализ право- и левополушарных поражений мозга. Роль каждого из полушарий освещена подробнее при описании отдельных высших корковых функций.

Изучение микроскопической структуры корковых отделов анализаторов показало, что в каждом таком отделе существуют два типа клеточных зон. В центре коркового представительства анализатора располагаются первичные клеточные поля, называемые также проекционными. Их особенность состоит в том, что они имеют непосредственную связь с периферическими отделами анализатора и являются, таким образом, первыми получателями информации (или отправителями - в случае двигательного анализатора). Первичные клеточные поля отличаются высокой специфичностью, т.е. настроены на прием информации от определенных типов рецепторов. Кроме того, в этих полях нередко наблюдается и вполне определенное расположение представительств отдельных рецепторных зон. Так, в задней центральной извилине каждая часть тела имеет свою область проекции: в верхних отделах - нижняя конечность, в средних - рука, в нижних - лицо. Аналогичная картина наблюдается и в передней извилине. В зрительной коре различные квадранты полей зрения (квадрант - четвертая часть) проецируются в строго определенные участки. Таким образом, в первичных, или проекционных, зонах наблюдается высокая избирательность в приеме информации и специальная представленность отдельных рецепторных зон. В периферических отделах корковых представительств анализаторов располагаются вторичные, или проекционно-ассоциационные, клеточные зоны. Для них характерны гораздо меньшая специализированность в приеме информации и отсутствие прямой связи с периферией. В то же время эти зоны способны устанавливать контакты с другими отделами коры, а также образовывать внутри себя сложные комплексы, в которых, как считается, фиксируется прошлый опыт.

Таким образом, вторичные клеточные зоны, надстраиваясь над первичными, обеспечивают более сложную переработку информации и формируют при каждом анализаторе специализированные блоки памяти.

При оценке площади, занимаемой первичными и вторичными клеточными зонами анализаторов, нетрудно увидеть, что значительные пространства поверхности коры остаются как бы “не занятыми”. К таким “свободным” территориям относятся прежде всего обширная теменно-височно-затылочная область и участка лобной доли кпереди от передней центральной извилины. Между тем именно эти отделы коры неуклонно увеличиваются по мере эволюционирования и достигают наибольшего развития у человека. Специальные исследования показывают, что в этих отделах paсполагаются третичные корковые зоны.

Для третичных клеточных зон характерна способность к восприятию многоплановой информации; здесь отсутствует узкая специализированность. В третичных зонах осуществляется межанализаторный анализ и синтез информации, что обеспечивает комплексную память, организацию работы мозга в целом. При этом многомерный, многоплановый анализ окружающей действительности осуществляется преимущественно в височно-теменно-затылочной области, а планирование действий, разработка сложных программ поведения производится главным образом в лобной доле. Именно в третичных зонах формируются центр речи письма, счета, зрительно-пространственной ориентировки. Здесь фиксируются также навыки, приобретенные человеком в процессе его социального обучения. Важно отметить, что функционалная асимметрия мозга особенно наглядно выступает в работе третичных зон. Доминантное и субдоминантное полушария вносят неоднозначный вклад в осуществление “третично организованных" корковых функций.

Учитывая наличие различных клеточных зон, можно считать, что в коре головного мозга происходят две основные группы процессов внутриа

В основе всей деятельности нервной системы лежат рефлекторные акты.

Рефлекс - это ответная реакция организма на раздражения из внешней или внутренней среды, осуществляемая с обязательным участием ЦНС.

В основе любого рефлекса лежит последовательное распространение волны возбуждения по элементам нервной системы, которые образуют так называемую рефлекторную дугу.

Рефлекторная дуга любого рефлекса включает пять последовательных звеньев (рис. 4.1):

1. Рецептор (лат. receptor - принимающий) - специальное чувствительное об­разование, представленное нервным окончанием или специализированной клеткой, воспринимающее раздражения из внешней или внутренней среды и преобразующее их энергию в нервные импульсы.

2. Афферентный (чувствительный) нейрон - нейрон, осуществляющий вос­приятие и передачу возбуждения в виде нервных импульсов от рецепторов к нейронам ЦНС.

3. Вставочный (ассоциативный, контактный) нейрон, wnu интернейрон, - расположенный в пределах ЦНС нейрон, который обрабатывает информа­цию от афферентных нейронов и передает ее эфферентным или другим вста­вочным нейронам.

4. Эфферентный (двигательный) нейрон - нейрон, осуществляющий передачу возбуждения из ЦНС к исполнительной структуре, эффектору.

5. Эффектор - мышца или железа, которые осуществляют определенный вид деятельности в ответ на нервные импульсы эфферентного нейрона.

Согласно теории И. П. Павлова, эти пять элементов составляют три части рефлек­торной дуги: анализаторную, контактную и исполнительную.


Эфферентное, (двигательное) нервное волокно

Рис. 4.1. Схема рефлекторной дуги спинномозгового рефлекса

Анализаторная часть включает в себя рецептор и чувствительную нервную
клетку. Г

Рецепторы специфичны, т. е. они воспринимают определенный раздражи­тель. Раздражитель - это фактор с некоторым количеством энергии, который способен вызвать возбуждение ткани. Так, действие химической энергии воспри­нимают хеморецепторы, тепловой - терморецепторы, механической - механо-рецепторы, электромагнитные колебания с определенной длиной волны (свет) - фоторецепторы и т. д.

По отношению к рецепторам все раздражители можно разделить на адекват­ные и неадекватные. Адекватный раздражитель - раздражитель, действующий на рецептор, специально приспособленный для взаимодействия с ним. Неадекват­ный раздражитель - раздражитель, который действует на рецептор, специально не приспособленный для его восприятия. Пороговая интенсивность адекватного раздражителя намного ниже, чем неадекватного. Например, ощущение света при действии светового раздражителя на рецепторы сетчатки глаз возникает при мощ­ности в 10~ 17 Ю -18 Вт. Неадекватное механическое воздействие на глазное яблоко также вызывает ощущение вспышки света, однако мощность стимула составляет не менее 10~ 4 Вт, т. е. в 13-14 раз больше мощности адекватного раздражителя.

Раздражители классифицируются также по силе (величине) приложенной энер­гии; различают: " допороговые - слабые раздражители, не вызывающие видимой ответной ре­акции; " пороговые - минимальные по силе раздражители, вызывающие минималь­ную ответную реакцию; ■ надпороговые - раздражители разной силы, вызывающие соответствующую их силе реакцию;



" максимальные - максимальные по силе раздражители, вызывающие макси­мально возможную реакцию.

В зависимости от расположения рецепторов их можно разделить на экстеро-, ин-теро- и проприорецепторы. Экстерорецепторы чувствительны к различным фак­торам внешней среды, интерорецепторы - к колебаниям параметров внутренней среды, проприорецепторы (собственные рецепторы) - к изменениям состояния мышц, связок и сухожилий.

Контактная часть рефлекторной дуги представлена вставочными нейрона­ми спинного или головного мозга.

Простейшая рефлекторная дуга состоит из двух нейронов - чувствитель­ного и двигательного, и импульсы передаются сразу с центростремительного на центробежное нервное волокно. Большинство рефлекторных дуг включает мно­жество вставочных нейронов. Чем сложнее рефлекс, тем больше ассоциативных клеток входит в состав контактной части рефлекторной дуги.

Существуют также так называемые рефлекторные дуги с гуморальным зве­ном. Они отличаются тем, что информация из ЦНС, вызывающая изменение со­стояния рабочего органа, передается не по нервным проводникам, а посредством выделения в кровь гормонов, т. е. гуморальным путем.

Исполнительная часть рефлекторной дуги состоит из двигательного нейрона и исполнительного органа, или эффектора. При возбуждении эффекторы выпол­няют специфическую работу, которую можно измерить: мышцы сокращаются, железы выделяют секрет.

Рефлекторный акт не заканчивается деятельностью исполнительного органа. Каждый эффектор имеет свои чувствительные приборы - рецепторы, которые в свою очередь сигнализируют в ЦНС об осуществленной работе. Информация от рецепторов, возбуждение которых вызвало рефлекс, сравнивается с потоком им­пульсов, идущих от рецепторов исполнительного органа. Благодаря такому срав­нению уточняется ответная реакция организма. Связь рецепторов эффектора с ЦНС называется обратной связью. Поэтому правильнее говорить не о рефлектор­ной дуге, а о рефлекторном кольце (рис. 4.2).

Распространение нервного импульса от рецептора к рабочему органу проис­ходит с определенной скоростью, зависящей от многих факторов: состояния нерв­ных клеток, типа нервных волокон (соматические, вегетативные), их толщины, ко­личества вставочных нейронов в рефлекторной дуге. Время, от начала воздействия раздражителя на рецептор до появления ответной реакции организма называют временем рефлекса. Время рефлекса складывается из времени:

■ возбуждения афферентных и эфферентных образований;

■ проведения возбуждения по афферентным и эфферентным волокнам;

■ переключения нервного импульса с одного нейрона на другой в центральных структурах мозга, участвующих в. реализации рефлекса.

Чем сложнее дуга рефлекса, тем время рефлекса больше.


Результат действия "

Рис. 4.2. Схема рефлекторного кольца: А - информация, вызывающая действия организма; Б f- информация об осуществлении дейст­вия (обратные связи); а, 6 - афферентные и эфферентные нервные волокна соответственно

Чтобы понять, как осуществляется рефлекс и что представляет собой рефлек­торная дуга, можно рассмотреть реакцию человека при воздействии на его руку горячего предмета. В момент воздействия на кожу руки в терморецепторах возни­кает возбуждение, которое в виде нервных импульсов по дендриту чувствитель­ной нервной клетки (по афферентному, центростремительному волокну) переда­ется к ее телу. От него по аксону возбуждение передается в ЦНС к вставочным нейронам спинного и головного мозга, в которых происходят сложные процессы переработки поступившей информации. От них возбуждение передается на двига­тельные нервные клетки и по их аксону (эфферентному, центробежному волокну) распространяется к мышце (бицепсу), которая, сокращаясь, вызывает отдергива­ние руки.

И. П. Павлов установил, что любой рефлекторный акт, независимо от его сложности, подчиняется трем универсальным принципам рефлекторной деятель­ности.

1. Принцип детерминизма, или причинной обусловленности. Согласно этому принципу рефлекторный акт может осуществляться только при действии раздра­жителя, т. е. всякий процесс, протекающий в организме, причинно обусловлен. Раздражитель, действующий на рецептор, - причина, а рефлекторный ответ - следствие.

2. Принцип структурности, или целостности, - рефлекторный акт осуще­ствляется только при условии структурной и функциональной целостности мате­риальной основы рефлекса - рефлекторной дуги, или рефлекторного кольца.

5 Возрастная анатомия

Структурная целостность рефлекторной дуги может быть нарушена при ме­ханическом повреждении какой-либо ее части: рецепторов, афферентных или эф­ферентных нервных путей, участков ЦНС, эффекторов. Например, в норме при вдыхании вещества с резким запахом (аммиак) происходит рефлекторная задерж­ка дыхания или изменение его глубины. После ожога слизистой носа, который сопровождается повреждением обонятельных рецепторов, резко пахнущие веще­ства уже не вызывают изменений дыхания. Повреждение в продолговатом мозге дыхательного центра при переломе основания черепа может повлечь остановку дыхания. Если перерезать нервы, иннервирующие дыхательные мышцы (диафраг­му, межреберные), то дыхательные движения также будут невозможны.

Отсутствие рефлекса вследствие нарушения ее функциональной целостности может быть вызвано блокадой проведения нервных импульсов в структуре реф­лекторной дуги. Например, вещества, применяемые для местного обезболивания, блокируют передачу нервного импульса от рецептора по нервному волокну. По­этому после местной анестезии манипуляции стоматолога с больным зубом не вызывают ответной двигательной реакции. Прилрименении же общей анестезии возбуждение блокируется в центральной части рефлекторных дуг, на уровне го­ловного мозга.

Функциональная целостность структуры рефлекса нарушается и при возник 1 новении процессов торможения (безусловного или условного) в центральной час­ти рефлекторной дуги. В этом случае также наблюдается отсутствие или прекраще­ние ответной реакции на раздражитель. К примеру, ребенок прекращает рисовать, увидев новую яркую игрушку.

3. Принцип анализа и синтеза. Любой рефлекторный акт происходит на осно­ве процессов анализа и синтеза. При осуществлении рефлекса раздражитель под­вергается анализу, т. е. «разложению», в ходе которого выделяются отдельные ка­чественные и количественные характеристики. Анализ раздражителя начинается еще на периферии (в рецепторе), но более тонко он происходит в клетках ЦНС, особенно в коре больших полушарий головного мозга. Одновременно с анализом протекают синтетические процессы, т. е. процессы познания раздражителя как целостности на основе обобщения и сопоставления его характеристик, выделен­ных при анализе. В результате аналитико-синтетической деятельности нервной системы возникает адекватный силе и качеству раздражителя ответ. Например, проанализировав свойства зрительного раздражителя (форму, цвет, характер по­верхности, удаленность, направление движения и пр.), в результате синтеза мож­но определить, что это - большое, круглое, желто-красное, ровное яблоко, кото­рое катится по столу, и тут же протянуть к нему руку.

Примером воздействия, нарушающего аналитико-синтетическую деятель­ность мозга, является употребление алкоголя. В состоянии опьянения у человека нарушается координация движений, наблюдается неадекватная оценка окружаю­щей действительности и т. д.

Чем выше уровень организации ЦНС, тем сложнее аналитико-синтетичес-кая деятельность мозга. Процессы анализа и синтеза совершенствуются по мере


индивидуального развития организма. Именно этими процессами определяется точность рефлекторных реакций и, следовательно, способность организма взаи­модействовать с окружающей средой, сохраняя свою целостность и.биологичес­кую надежность.

ВОЗБУЖДЕНИЕ И ТОРМОЖЕНИЕ.


Похожая информация.


Сущность работы нервной системы заключается в организации реакций в ответ на внешние и внутренние воздействия. Степень сложности таких реакций весьма различна - от автоматического сужения зрачка при ярком освещении до многопланового поведенческого акта, мобилизующего все системы организма. Тем не менее во всех случаях сохраняется один и тот же принцип деятельности - рефлекторный. Рефлекс - это активная ответная реакция, связывающая особенности организма и условия среды. Следовательно, рефлекс - не механический, не пассивный ответ, как, например, образование вмятины от удара, а целесообразная для данного организма реакция, необходимая для нормальной жизнедеятельности.

Возникновение и развитие нервной системы в процессе эволюции означало прежде всего появление и усовершенствование рефлекторных механизмов. Эти механизмы, независимо от степени их сложности, имеют ряд принципиально общих черт. Для осуществления рефлекса необходимы, как минимум, два элемента: воспринимающий (рецепторный) и исполнительный (эффекторный). Рецепторы могут реагировать на очень широкий диапазон раздражителей и занимать большие площади (рефлексогенная зона). К таким относятся, например, рецепторы болевой чувствительности, рецепторы внутренних органов. Другие воспринимающие элементы, напротив, являются чрезвычайно специализированными и имеют ограниченную рефлексогенную зону. В качестве примера можно назвать вкусовые рецепторы, располагающиеся на поверхности языка, или зрительные палочки и колбочки.

Точно так же исполнительный аппарат рефлекса может представлять собой изолированную мышцу и иметь жесткую связь с ограниченной группой рецепторов. Классический пример этого - коленный рефлекс (узкая рефлексогенная зона и элементарная реакция).В других случаях исполнительный аппарат включает в себя ансамбль действующих единиц и имеет связи с различными типами рецепторов. Примером этого может служить так называемый "стартовый" рефлекс. Он выражается в виде общего настораживания, замирания или вздрагивания при резком звуке или ярком свете, неожиданном зрительном образе. Таким образом, в реализации “стартового” рефлекса участвует огромное количество двигательных единиц и вызывается он различными раздражителями главная особенность которых - неожиданность.

“Стартовый” рефлекс - одна из многих реакций, требующих согласованной работы различных систем организма. Такая заинтересованность невозможна при наличии жестких прямых связей с рецепторами и эффекторами, поскольку это привело бы к появлению независимых друг от друга и не поддающихся координации рефлекторных механизмов.

В процессе эволюции сформировался еще один элемент, обеспечивающий рефлекторные реакции, - вставочные нейроны. Благодаря этим нейронам импульсы от рецепторов достигают эффекторных аппаратов не сразу, а после промежуточной обработки во время которой и устанавливается согласованность в различных реакциях. Широко взаимодействуя между собой и образуя скопления, вставочные нейроны создают возможность для объединения всех рефлекторных механизмов в единое целое. Формируется интегральная нервная деятельность, которая представляет собой нечто большее, чем сумма отдельных реакций.

Каждая отдельная реакция подчиняется центральным влияниям; она может быть усилена, заторможена, полностью блокирована или приведена в состояние повышенной готовности. Более того, на основе врожденных автоматизмов формируются новые способы реагирования, новые действия. Так, ребенок обучается ходьбе, стоянию на одной ноге, сложным ручным манипуляциям.

Интегральная нервная деятельность еще не означает высшей нервной деятельности. Объединение организма в единое целое и организация сложных поведенческих программ могут совершаться на базе эволюционно закрепленных в нервной системе врожденных механизмов. Эти механизмы называются безусловными рефлексами, поскольку они генетически заложены в нервной системе и не требуют обучения. На основе безусловных рефлексов могут формироваться сложнейшие действия. В качестве примера достаточно назвать строительную деятельность бобров или дальние перелеты птиц.

Однако безусловнорефлекторная деятельность неизбежно страдает ограниченностью, потому что она почти не поддается исправлениям и тем самым препятствует накоплению индивидуального опыта. Каждый индивид от рождения почти полностью готов к определенным действиям, однообразно повторяющимся из поколения в поколение. Если условия среды внезапно изменяются. то великолепно отлаженный механизм реагирования оказывается неприспособленным.

Гораздо большая гибкость поведения наблюдается у организмов, которые способны к индивидуальному обучению. Это становится возможным благодаря возникновению в нервной системе временных нервных связей. Наиболее изученным типом такой нервной связи является условный рефлекс. При помощи этого рефлекса раздражитель, бывший ранее безразличным, приобретает значение жизненно важного сигнала и вызывает определенную реакцию. В механизмах условного рефлекса заложены предпосылки индивидуальной памяти, без которой, как известно, невозможно обучение.

По мере эволюционирования коры больших полушарий возникают огромные зоны нервных клеток, которые не имеют никакой врожденной программы, а предназначены лишь для образования связей в процессе индивидуального обучения. Поскольку работа нервной системы основана на рефлекторном принципе, то и обучение распространяется на три основные звена рефлекторного механизма: анализ поступающей от рецепторов информации, интегральная обработка в промежуточных звеньях, создание новых программ деятельности.

Личный опыт оказывает влияние как на восприятие и переработку информации из внешней и внутренней среды, так и на формирование программ деятельности - краткосрочных или долгосрочных. В результате восприятия многих раздражителей происходит опознавание, т.е. сведения о раздражителе сравниваются с заложенной в памяти информацией. Точно так же при организации ответных действий учитываются не только потребности на данный момент, но и прошлый опыт успешных или неуспешных реакций в аналогичной ситуации.

При выполнении намеченного действия могут возникнуть непредвиденные помехи. Следовательно, необходимо сохранять конечную цель реакции до ее полного осуществления, для чего требуются специальные механизмы.

Процессы распознавания поступающих сигналов, выработка учитывающих прошлый опыт программ действия, контроль за их выполнением составляют содержание высшей нервной деятельности. Эта деятельность, оставаясь рефлекторной по своей сущности, отличается от врожденных автоматизмов гораздо большей гибкостью и избирательностью. Один и тот же раздражитель может вызывать разные реакции в зависимости от состояния на данный момент, общей ситуации, индивидуального опыта, потому что многое зависит не от особенностей раздражителя, а от той обработки, которую он проходит в промежуточных звеньях рефлекторного аппарата.

Высшая нервная деятельность создает предпосылки разума. Разум означает прежде всего способность найти решение в новой необычной ситуации. Приведем пример. Обезьяна видит подвешенную к потолку связку бананов и разбросанные по полу ящики. Без предварительного обучения она решает возникшую перед ней практическую и интеллектуальную задачу - ставит один ящик на другой и достает бананы. С возникновением речи возможности интеллекта безгранично расширяются, поскольку в словах отражена сущность окружающих нас вещей.

Высшая нервная деятельность является нейрофизиологической основой психических процессов. Но она их не исчерпывает. Для таких психических явлений, как чувство, воля, воображение, мышление, конечно, необходима соответствующая мозговая активность Однако конкретное содержание психических процессов определяется социальной средой, а не процессами возбуждения или торможения в нейронах. Решает ли ученый сложнейшую интеллектуальную задачу или же первоклассник обдумывает простенькую школьную задачку, их мозговая активность может быть примерно одинаковой. Направленность мозговой деятельности задается не физиологией нервных клеток, а смыслом выполняемой работы.

Однако сказанное не означает, что высшая нервная деятельность представляет собой нечто второстепенное по отношению к “истинно психическим” процессам. Напротив, общие закономерности взаимодействия нейронов и общие принципы организации нервных центров определяют многие характеристики психической деятельности, например, темпы интеллектуальной работы, устойчивость внимания, объем памяти. Эти и другие показатели имеют огромное значение для педагогической работы, особенно при наличии у детей дефектов центральной нервной системы.

Сложнейшие мозговые механизмы, обеспечивающие переработку информации, поступающей сразу от многих рецепторных зон и промежуточных центров, представляют большой интерес как для физиологии, так и для психологии. Наблюдается все большее взаимопроникновение этих двух дисциплин, что отражается и на учении о высшей нервной деятельности.

В учении о высшей нервной деятельности можно выделить два основных раздела. Первый из них стоит ближе к нейрофизиологии и рассматривает общие закономерности взаимодействия нервных центров, динамику процессов возбуждения и торможения. Второй раздел рассматривает конкретные механизмы отдельных мозговых функций, таких как речь, память, восприятие, произвольные движения, эмоции. Этот раздел близко примыкает к психологии и нередко обозначается как психофизиология. Кроме того, произошло выделение самостоятельного направления - нейропсихологии. Нейропсихология в значительной степени - клиническая дисциплина. Она не только изучает механизмы высших корковых функций, но и разрабатывает методы точной диагностики корковых поражений и принципы коррекционных мероприятий. Один из основателей нейропсихологии - выдающийся отечественный ученый А. Р. Лурия.

Названные разделы тесно взаимосвязаны, поскольку мозг работает как единое целое. Однако для наилучшего понимания общих закономерностей высшей нервной деятельности целесообразно рассмотреть по отдельности принципы высшей нейродинамики и нейропсихологические механизмы отдельных корковых функций.

Вся деятельность нервной системы имеет рефлекторный характер, т.е. складывается из огромного количества разнообразных рефлексов разного уровня сложности. Рефлекс - это ответная реакция организма на любое внешнее или внутреннее воздействие с участием нервной системы. Авторами рефлекторной теории являются И.П. Павлов и И.М. Сеченов.

Каждый рефлекс имеет:

  • время рефлекса - время от нанесения раздражения до ответа на него
  • рецептивное поле - определенный рефлекс возникает только при раздражении определенной рецепторной зоны
  • нервный центр - определенная локализация каждого рефлекса в центральной нервной системе.

Безусловные рефлексы являются видовыми, постоянными, наследственными, сохраняются в течение всей жизни. В процессе эмбрионального развития формируются рефлекторные дуги всех безусловных рефлексов. Совокупность сложных врожденных рефлексов - это инстинкты. Условные рефлексы являются индивидуальными, приобретаются в течение жизни человека, не наследуются. У человека сложное социальное поведение, мышление, сознание, индивидуальный опыт (высшая нервная деятельность) - это совокупность огромного количества разнообразных условных рефлексов. Материальной основой условных рефлексов является кора больших полушарий. Согласование всех рефлекторных реакций осуществляется в центральной нервной системе благодаря процессам возбуждения и торможения деятельности нейронов.

Для осуществления любого рефлекса необходимо особое анатомическое образование - рефлекторная дуга. Рефлекторная дуга - это цепь нейронов, по которым проходит нервный импульс от рецептора (воспринимающей части) до органа, отвечающего на раздражение.

Простейшая рефлекторная дуга у человека образована двумя нейронами - сенсорным и двигательным(мотонейрон). Примером простейшего рефлекса может служить коленный рефлекс. В других случаях в рефлекторную дугу включены три(и более)нейрона - сенсорный, вставочный и двигательный. В упрощенном виде такой рефлекс, возникающий при уколе пальца булавкой. Это спинальный рефлекс, его дуга проходит не через головной, а через спинной мозг. Отростки сенсорных нейронов входят в спинной мозг в составе заднего корешка, а отростки двигательных нейронов выходят из спинного мозга в составе переднего. Тела сенсорных нейронов находятся в спинномозговом узле заднего корешка (в дорсальном ганглии), а вставочных и двигательных - в сером веществе спинного мозга.

Вопрос № 3

Углеводный обмен

В организм человека углеводы поступают в составе пищи в виде моносахаридов (глюкоза, фруктоза, галактоза), дисахаридов (сахароза, мальтоза, лактоза) и полисахаридов (крахмал, гликоген). До 60% энергообмена человека зависит от превращений углеводов. Окисление углеводов происходит гораздо быстрее и легче по сравнению с окислением жиров и белков. В организме человека углеводы выполняют ряд важных функций:

  • энергетическая ( при полном окислении одного грамма глюкозы освобождается 17,6 кДж энергии);
  • рецепторная (образуют углеводные рецепторы
  • защитная (входят в состав слизей);
  • запасающая ( в мышцах и печени откладываются в запас в виде гликогена);

В пищеварительном тракте человека полисахариды и дисахариды расщепляются до глюкозы и других моносахаров. В организме избыток углеводов из крови под действием гормона инсулина откладывается в запас в виде полисахарида гликогена в печени и в мышцах. При недостатке инсулина развивается тяжелое заболевание – сахарный диабет.

Суточная потребность человека в углеводах 400 - 600 граммов. Богата углеводами растительная пища. При недостатке углеводов в пище они могут синтезироваться из жиров и белков. Избыток углеводов в пище превращается в процессе метаболизма в жиры.

Водный и солевой обмен

Организм человека содержит около 65% воды. Особенно большое количество воды содержат клетки нервной ткани (нейроны), клетки селезенки и печени – до 85%. Суточная потеря воды составляет 2,5 литров. Восполнение потерь воды осуществляется за счет пищи потребления жидкости. Около 300г воды ежесуточно образуется внутри организма за счет окисления белков, жиров и углеводов. Вода как химическое вещество обладает рядом уникальных физико-химических свойств, на чем основаны функции, которые она выполняет в организме:

Основной формой деятельности нервной системы является осуществление рефлексов. Рефлексы – это реакции организма, которые возникают в ответ на раздражение рецепторов и осуществляются при обязательном участии нервной системы. Благодаря рефлекторным реакциям происходит постоянное взаимодействие организма с окружающей средой, объединение и регуляция деятельности всех его органов и тканей.

Путь, по которому проходит нервный импульс при осуществлении рефлекса, называют рефлекторной дугой . В самые простые рефлекторные дуги входят только по два нейрона, в более сложные – по три, а в большинстве рефлекторных дуг насчитывается еще больше нейронов. Примером двухнейронной рефлекторной дуги является дуга сухожильного коленного рефлекса, который проявляется в разгибании в коленном суставе при легком постукивании по сухожилию ниже коленной чашечки (рис. 66, А).

В состав трехнейронной рефлекторной дуги (рис. 66, Б) входят: 1) рецептор; 2) афферентный нейрон; 3) вставочный нейрон; 4) эфферентный нейрон; 5) рабочий орган (клетки мышцы или железы). Связь между нейронами в рефлекторной дуге, между эфферентным нейроном и клетками рабочего органа осуществляется с помощью синапсов.

Рецепторами называют окончания дендритов афферентных нейронов, а также специализированные образования (например, палочки и колбочки сетчатки глаза), которые воспринимают раздражение и в ответ на него генерируют нервные импульсы. Нервные импульсы от рецептора поступают по афферентному нервному пути, состоящему из дендрита, тела и аксона афферентного нейрона, в нервный центр.

Нервным центром называют совокупность нейронов, необходимых для осуществления рефлекса или регуляции той или иной функции. Большинство нервных центров находится в ЦНС, но они также есть и в нервных узлах периферической нервной системы. В один нервный центр могут функционально объединяться нейроны, тела которых лежат в разных отделах нервной системы.

В нервном центре расположен вставочный нейрон, на тело или дендриты которого передаётся возбуждение с аксона афферентного нейрона. По аксону вставочного нейрона импульс поступает к эфферентному нейрону, тело которого тоже находится в нервном центре. В большинстве рефлекторных дуг между аксоном афферентного нейрона и телом эфферентного нейрона включается не один, а целая цепь вставочных нейронов. Такие рефлекторные дуги называют полинейронными, или полисинаптическими.

По аксону эфферентного нейрона нервные импульсы поступают к клеткам рабочего органа (мышцы, железы). В результате наблюдается рефлекторная реакция (движение, выделение секрета) на раздражение рецепторов. Время от начала раздражения рецепторов до начала ответной реакции называют временем реакции , или латентным временем рефлекса . Больше всего время рефлекса зависит от скорости проведения возбуждения через нервные центры. Ухудшение функционального состояния нервного центра приводит к увеличению времени рефлекса.


Выполнение ответной реакции еще не является окончанием рефлекторного акта. В осуществляющем ответную реакцию рабочем органе раздражаются рецепторы, импульсы от которых поступают по афферентным нервным волокнам в ЦНС и информируют нервные центры о протекании рефлекторной реакции и состоянии рабочего органа. Такую информацию называют обратной связью . Различают положительные и отрицательные обратные связи. Положительные обратные связи вызывают продолжение и усиление ответной рефлекторной реакции, а отрицательные обратные связи – ее ослабление и прекращение.

Таким образом, возбуждение при рефлекторной реакции не только передается по рефлекторной дуге от первоначально раздражаемого рецептора к рабочему органу, но и затем снова поступает в ЦНС от рецепторов рабочего органа, которые возбудились в результате его ответной рефлекторной реакции. Такая взаимосвязь между нервными центрами и иннервируемыми органами, которая наблюдается при осуществлении рефлекса, называется рефлекторным кольцом . Благодаря обратным связям, осуществляющимся по рефлекторному кольцу, ЦНС получает информацию о результатах рефлекторных реакций, вносит поправки в их осуществление, обеспечивает координированную деятельность организма.

Рекомендуем почитать

Наверх