Температура плазменной резки металла. Плазменная резка – принцип работы плазмотрона

Ландшафтный дизайн и планировка 16.06.2019
Ландшафтный дизайн и планировка

Плазменную резку очень часто используют в таких отраслях промышленности, как судостроение, машиностроение, а также при изготовлении металлоконструкций, коммунальной сфере и т. п. Кроме этого, плазморез довольно часто используется в частной мастерской. С его помощью быстро и качественно разрезают любой материал, проводящий ток, и некоторые нетокопроводящие материалы – дерево, камень и пластик.

Технология плазменной резки позволяет разрезать листовой металл и трубы, выполнять фигурный рез или изготавливать детали. Работа осуществляется при помощи высокотемпературной плазменной дуги . Чтобы ее создать, потребуется только источник тока, воздух и резак. Чтобы работа выполнялась довольно легко, а рез получался ровным и красивым, следует выяснить, как осуществляется принцип работы плазменной резки.

Как устроен плазморез

Этот аппарат состоит из следующих элементов:

  • источник питания;
  • воздушный компрессор;
  • плазменный резак или плазмотрон;
  • кабель-шланговый пакет.

Источник питания для аппарата плазменной резки осуществляет подачу на плазмотрон определенной силы тока. Представляет собой инвертор или трансформатор.

Инверторы довольно легкие, в плане энергопотребления экономные, по цене недорогие, однако, способны разрезать заготовки небольшой толщины. Из-за этого их применяют только в частных мастерских и на маленьких производствах . У инверторных плазморезов КПД на 30% больше, чем у трансформаторных и у них лучше горит дуга. Часто используют их для работ в труднодоступных местах.

Трансформаторы гораздо увесистее, тратят много энергии, но при этом имеют меньшую чувствительность к перепадам напряжения, и с их помощью разрезают заготовки большой толщины.

Плазменный резак считается главным элементом плазмореза. Его основными элементами являются:

  • сопло;
  • охладитель/изолятор;
  • канал, необходимый для подачи сжатого воздуха;

Компрессор требуется для подачи воздуха. Принцип работы плазменной резки предусматривает применение защитных и плазмообразующих газов. Для аппаратов, которые рассчитаны на силу тока до 200 А , применяется только сжатый воздух как для охлаждения, так и для создания плазмы. Они способны разрезать заготовки толщиной в 50 мм.

Кабель-шланговый пакет используется для соединения компрессора, источника питания и плазмотрона. По электрическому кабелю от инвертора или трансформатора начинает поступать ток для возбуждения электрической дуги, а по шлангу осуществляется подача сжатого воздуха, который требуется для возникновения внутри плазмотрона плазмы.

Принцип работы

При нажатии на кнопку розжига начинается подача тока высокой частоты от источника питания (инвертора или трансформатора). В результате этого внутри плазмотрона образуется дежурная электрическая дуга, температура которой достигает 8 тыс. градусов. Столб этой дуги начинает заполнять весь канал.

После того как возникла дежурная дуга, в камеру начинает поступать сжатый воздух. Вырываясь из патрубка, он проходит через электрическую дугу , нагревается, при этом увеличиваясь в объеме в 50 или 100 раз. Кроме того, воздух начинает ионизироваться и перестает быть диэлектриком, приобретая свойства проводить ток.

Сопло плазмотрона, суженное книзу, обжимает воздух, создавая из него поток, которое начинает вырываться оттуда со скоростью 2 – 3 м/с. В этом момент температура воздуха часто достигает 30 тыс. градусов. Именно такой раскаленный ионизированный воздух и является плазмой.

В то время, когда плазма начинает вырываться из сопла, происходит ее соприкосновение с поверхностью обрабатываемого металла, дежурная дуга в этот момент гаснет, а зажигается режущая. Она начинает разогревать заготовку в месте реза . Металл в результате этого плавится и появляется рез. На поверхности разрезаемого металла образуются небольшие частички расплавленного металла, сдуваемые с нее потоком воздуха. Таким образом осуществляется работа плазмотрона.

Преимущества плазменной резки

Работы по резке металла часто осуществляются на стройплощадке, в мастерской или цеху. Можно использовать для этого автоген, но не всех это устраивает. Если объем работ, связанный с резкой металла, слишком большой, а требования, предъявляемые к качеству реза, очень высоки, то следует подумать о том, чтобы использовать плазменный резак, имеющим следующие достоинства:

Недостатки плазменной резки

Недостатки в работе плазменной резки тоже имеются. Первый из них – максимально допустимая толщина реза довольно небольшая, и у самых мощных агрегатов она редко бывает больше 80 – 100 мм.

Следующий недостаток – достаточно жесткие требования, предъявляемые к отклонению от перпендикулярности реза. Угол отклонения не должен быть больше 10 – 50 градусов и зависит это от толщины детали. Если случается выход за эти пределы, то возникает довольно существенное расширение реза, что в результате влечет за собой быстрый износ расходных материалов.

Кроме того, рабочее оборудование довольно сложное, что делает совершенно невозможным использование двух резаков одновременно, которые подключаются к одному аппарату.

Заключение

Принцип работы плазменной резки довольно прост. Кроме того, аппарат, который используется для этого, имеет большое количество преимуществ, в несколько раз превосходящие имеющиеся недостатки. Если его правильно эксплуатировать, то можно существенно сэкономить время и получить качественный результат.

Плазменная резка – новая великолепная технология, позволяющая разрезать металлы солидной толщины и любой природы, даже самой капризной. В качестве режущего предмета выступает не нож, а плотная струя плазмы, которая позволяет формировать идеально точный рисунок реза в единицу заданного времени.

Этот способ работы с металлом содержит множество достоинств, которые мы разберем ниже. А сейчас начнем с физики – нужно разобраться с сутью процесса.

Технология плазменной резки металла отдает главную женскую роль нашей любимой электрической дуге. Он формируется между электродом и соплом. Иногда вместо электрода выступает металл, который нужно разрезать. Разберемся, что такое плазменная резка.

Начало процесса – включение источника электрического питания и подача тока высокой частоты в плазменный резак. Источник питания включается автоматически после нажатия тумблера розжига в аппарате.

Сначала формируется так называемая промежуточная дуга – она имеет временный характер и соединяет электрод с наконечником сопла резака. Нагревается эта дежурная дуга до уровня температуры около 8000°С.

Это важный момент общего процесса плазменной резки – нужно помнить, что настоящая дуга между электродом и металлом образуется не сразу, а через ее промежуточный вариант.

Следующий этап процесса – поступление воздуха из компрессора, который обычно прилагается к аппарату резки металла. Компрессор подает воздух в сжатом виде. Этот воздух поступает в камеру плазмотрона, в котором находится и уже раскалена временная электрическая дуга.

Дуга нагревает сжатый воздух, объем которого при нагреве увеличивается во много раз. Дополнительно к нагреву и увеличению объема воздух начинает ионизироваться и трансформироваться в настоящий проводник электрического тока. Он превращается в ту самую плазму

Малый диаметр сопла дает возможность разгонять поток этой раскаленной плазмы до огромных скоростей, с которыми струя вылетает из аппарата. Скорость потока может достигать трех метров в секунду.

Схема работы плазменной резки.

Температура воздуха – запредельная, вплоть до 30 000°С. При этих условиях электрическая проводимость воздуха – плазмы практически равна проводимости разрезаемого металла.

Настоящая конечная дуга появляется мгновенно, как только поток плазмы достигает и касается поверхности металла. Временная дуга, в свою очередь, автоматически выключается. Металл начинает плавится точно в месте среза.

Жидкие металлические капли сразу же сдуваются струей сжатого воздуха. Это и есть принцип плазменной резки. Как видите, все просто, логично и понятно.

Классификация видов плазменной резки

Виды плазменной резки будут зависеть от среды, в которой проводятся работы по металлу:

Простой

Главное отличие способа – ограниченность электрической дуги. Для резки используется электрический ток и воздух. Иногда вместо воздуха применяются газ в виде азота. Если металлически лист тонкий – всего несколько миллиметров, процесс можно сравнить с лазерным разрезанием.

При этом способе толщина металлов не должна превышать 10-ти мм. Способ отлично работает для низколегированных сплавов стали и других мягких металлов. Режущим элементом выступает кислород, из которого формируется сжатая струя, превращающаяся в итоге в плазму.

В разрезах получаются очень ровные кромки, не требующие дальнейшей доработки.

С применением защитного газа

При этом способе вместо воздуха используются защитные газы, которые превращаются в плазменный поток после преобразования в плазмотроне. Качество срезов в данном случае значительно повышается благодаря отличной защите процесса от воздействия окружающей среды.

Газ для плазменной резки не представляет из себя ничего необычного: это может быть водород или аргон – «газовая классика».

С водой вместо воздуха

Отличны способ со многими преимуществами, одно из которых – отсутствие необходимости в дорогостоящей и громоздкой системе охлаждения.

Существуют и другие критерии классификации плазменной резки. К примеру, виды резки бывают разделительными и поверхностными. Первый из них используется чаще.

Еще один параметр – способ резки. Один вид – резка дугой, в котором разрезаемый металл выступает в качестве элемента электрической цепи. Другой вид – резка струей, когда электрическая дуга соединяет электроды, а не металлическую заготовку.

Плазменные резаки представлены на рынке в самых разнообразных вариантах, так что их можно классифицировать по маркам, производителям и многим другим техническим и торговым параметрам.

Есть, например, ручная плазменная резка – самый демократичный способ и по цене, и по простоте исполнения. Есть машинные автоматические технологии, устройства для которых намного дороже и сложнее.

Преимущества резки плазмой

Принцип работы плазменной резки.

Самой близкой технологией является лазерная резка металлов, поэтому логично будет перечислить преимущества в сравнении с «соседкой»:

  • Плазменной резке по плечу металлы любой природы, в том числе цветные, тугоплавкие и другие, сложные для обработки.
  • Скорость процесса значительно выше, чем резка газовым резаком.
  • Одна из значительных особенностей – возможность производить резы любой формы, включающие и геометрические узоры, и фигурную резку самой высокой сложности. Иными словами, резка с помощью плазмы – это реализация самых смелых творческих идей по металлу и другим трудно поддающимся материалам.
  • Плазменному резаку нипочем любая толщина металла: скорость и качество никоим образом не теряются.
  • Этому способу поддаются не только металлы, но и другие материалы: он вполне универсальный.
  • Резка плазмой и быстрее, и эффективнее по качеству кромки, чем любые другие механические способы резки.
  • В данном методе возможна работа не только перпендикулярно к поверхности металла, но под углом, что помогает освоить широкие листы металла.
  • С экологической точки зрения это вполне благополучный вид работы с металлом с минимальным выбросом вредных веществ или загрязнений в воздух.
  • Отличная экономия времени из-за отсутствия необходимости предварительно нагревать металл.
  • Поскольку в методе не используются взрывоопасные газовые баллоны, он значительно безопаснее, чем другие способы.

Недостатки плазморезки

Ни один способ обработки металлов не обходится без недостатков, и плазменная резка здесь не исключение.

Недостатки плазменной резки следующие:

  • Дороговизна всего модельного ряда аппаратов для плазменной резки, включая даже самые простые ручные варианты.
  • Пределы толщины металла для резки плазмой: предельная толщина всего 100 миллиметров.
  • Это шумный способ работы, потому что сжатый воздух или газ подаются с огромной скоростью.
  • Оборудование непростое, дорогое и требующее грамотного и постоянного технического обслуживания.

Еще одной отличительной положительно характеристикой метода является то, что во время процесса происходит нагрев лишь небольшого локального участка. Да и остывает этот участок намного быстрее, чем при лазерной или механической резке.

Охлаждение необходимо только для двух составных элементов – катода и сопла, как самых нагруженных. Это без проблем производится с помощью рабочей жидкости.

Плазменная дуга и струя.

Дуга начинает работать стабильно в результате рабочего соотношения катода и сопла с паром из сжатого раскаленного воздуха. На катоде локализуется отрицательный заряд, на наконечнике сопла – соответственно положительный. В результате этого образуется промежуточная дуга.

Лишняя влага впитывается специальным материалом, который находится в резервуаре камеры плазмотрона.

Правила безопасности при данном методе имеют строжайший характер, потому что все аппараты плазменной резки могут быть очень травматичными для мастера. Особенно это касается моделей с ручным управлением.

Все будет в порядке, если вы будете соблюдать рекомендации по защитной амуниции мастера: щиток, затемнённые очки, защитные ботинки и т.д. В этом случае вы сможете уберечься от главных факторов риска данного метода – капель расплавленного металла, высокого напряжения и раскаленного воздуха.

Еще один совет по безопасности – ни в коем случае не стучать резаком по металлу для удаления металлических брызг, как это делают некоторые мастера. Вы рискуете повредить аппарат, но главное – поймать кусочки расплавленного металла, например, лицом или другой незащищенной частью тела. Лучше поберечь себя.

Экономия расходных материалов занимает не последнее место в эффективной резке. Для этого зажигаем электрическую дугу не слишком часто, а точно и в срок, чтобы не обрывать ее без надобности.

Экономия ресурсов также распространяется на силу и мощность тока. Если рассчитать его правильно, вы получите не только экономию, но и отличный срез без заусениц, окалины и деформации металла.

Для этого следует работать по следующей схеме: сначала подать ток высокой мощности, сделать пару – тройку разрезов с его помощью. Если сила и мощность тока великоваты, на металле сразу же будет образовываться окалина из-за значительного перегрева.

После осмотра срезов будет ясно, оставить ток на этом уровне или изменить его. Иными словами, работаем экспериментально – малыми пробами.

Как работать плазморезкой?

Электрическая схема плазменного генератора.

Резка металлов с помощью плазменного потока – слишком серьезное дело, чтобы заниматься им без предварительного изучения и тщательной подготовки. Это поможет вам сделать резку эффективнее со всех точек зрения, и, что весьма немаловажно, минимизировать риски, связанные с производственными опасностями.

Прежде всего нужно знать принцип работы плазменной резки – видеть картинку физических явлений целиком.

Плазменную горелку следует держать очень близко к поверхности и краю металла, в отличие от лазерной резки. Когда тумблер с «пуском» включится, первой загорится временная электрическая дуга, и только затем – настоящая, которая будет главным режущим элементом. Горелку с режущей дугой нужно вести по материалу ровно и медленно.

Скорость резки следует строго контролировать. Это можно делать, наблюдая за искрами с обратной стороны листа разрезаемого металла. Если этих искр нет, то это значит, что разрезка металла произошла неполная.

Такое может произойти по нескольким причинам: из-за слишком большой скорости ведения горелки или прохождения аппарата, либо слишком недостаточной мощности подаваемого тока, либо несоблюдения прямого угла в 90° между горелкой и поверхностью металла.

Дело в том, что полная проплавка металла происходит лишь при наклоне плазморезки к поверхности металла под прямым углом и ни градусом больше или меньше.

После завершения работы резак нужно наклонить. Воздух будет выходить и после выключения аппарата – непродолжительное время.

Перед работой невредно изучить схему вашего аппарата: именно в ней можно прочитать самую достоверную информацию по допускаемой толщине металла, который можно прорезать или сделать в нем отверстие. Устройство плазменного резака может различаться, все зависит от функций его назначения.

Выбор аппарата для плазменной резки

Покупка любого технического оборудования – дело, для которого не нужно жалеть времени и усилий: слишком высок риск неудачного решения и потери денег. А деньги здесь немалые, вы не найдете плазменного резака дешевле 500 USD в принципе.

Сначала разбираемся с параметрами и техническими характеристиками прибора.

Две большие группы плазморезов – это инверторные и трансформаторные. Названия говорят сами за себя.

Открытая и закрытая плазменная струя.

Если вам нужен компактный резак для работы с металлами небольшой толщины, вы можете остановить свой выбор на резаке инверторного типа. Они забирают немного энергии, легкие и с небольшими габаритами.

Вместе с тем работают они с перерывами и легко выходят из строя при перепадах сетевого напряжения. Цена на такие приборы вполне умеренная, из всех плазморезов это самые недорогие.

Другое дело – трансформаторные резаки. Здесь и с габаритами, и с весом «все в порядке»: серьезные аппараты по всем параметрам.

Энергии потребляют много, зато работать они могут практически без перерыва в течение целого дня. И толщина металла может быть побольше, чем при резке инверторной моделью. Стоимость таких устройств высокая – от 3000 до 20000 USD.

Выбор плазменного резака по мощности

Рассуждения начинаем со свойств и технических характеристик деталей, которые вы планируете обрабатывать и резать. Именно это этого рассчитывается мощность режущего прибора, потому что в нем будут различаться и сопло по своему диаметру, и тип используемого газа.

Применение плазменной резки – область чрезвычайно широкая, поэтому говорить нужно только о ваших конкретных нуждах.

К примеру, если толщина металлических заготовок около 30-ти мм, вам будет вполне достаточно резака с мощностью 90А. Он легко справится с вашим материалом.

А вот если ваш металл потолще, ищите подходящую модель в диапазоне мощности от 90 до 170А.

Выбор резака по времени и скорости разрезания материала

Скорость плазменной резки металла измеряют в сантиметрах за одну минуту. Эта скорость у разных аппаратов тоже разная и зависит от их общей мощности и природы разрезаемого металла.

Например, при всех прочих равных медленнее всего режется сталь, чуть быстрее – медь и ее сплавы. И еще быстрее – алюминий со своими алюминиевыми сплавами.

Устройство плазменного резака.

Если для вас важна скорость, не забывайте о таком показателе, как длительность работы без перегрева, то есть без перерыва. Если в технической спецификации к аппарату написано, что длительность работы 70%, это означает, что после семи минут резки аппарат должен быть выключенным в течение трех минут, чтобы остыть.

Среди трансформаторных резаков встречаются чемпионы с продолжительностью работы в 100%. Иными словами, они могут работать целый день без отключения. Стоят они, конечно, немало. Но если у вас впереди длинные разрезы, думайте о покупке «чемпионских» трансформаторных плазменных резаков.

Пара слов о горелке

Снова оцениваем природу металла или другого материала, который планируем разрезать. От этого будет зависеть мощность горелка плазмореза. Она должна быть достаточной для качественного реза.

При расчетах нужно учитывать факт, что вы можете встретиться со сложными условиями работы, которая, как назло, должны быть произведена в самые короткие сроки, то есть резка должна носить выраженных интенсивный характер.

Рукоятку горелку не упускаем из зоны внимания, это важная часть для комфортной, а значит качественной работы. На рукоятке можно зафиксировать дополнительные элементы, которые помогут держать сопло на одинаковом расстоянии от поверхности металла. Данный совет распространяется только на ручные модели аппаратов.

Если вы собираетесь резать тонкий металл, выбирайте модель с горелкой, которая предназначена для поступления воздуха.

Если же ваши планы связаны с массивными толстыми заготовками, покупайте резак с горелкой для приема защитного газа – азота, например.

Резка металла - технологический процесс разделения монолитной детали на отдельные части. Операция выполняется механическим способом (рубка, распиливание), гидроабразивным (суспензия из воды и абразивного материала) или термическим (нагрев).

Последний вид - это газокислородная, лазерная и плазменная резка металла.

Что такое плазменная резка? Это обработка металлических изделий, где резцом служит струя плазмы.

Плазма, представляет собой поток ионизированного газа, разогретого до нескольких тысяч градусов. Содержит частицы с положительным и отрицательным зарядом. Имеет квазинейтральные свойства. То есть, в бесконечно малом объёме, суммарный заряд уравновешивается и равен нулю.

Тем не менее, наличие свободных радикалов, означает, что плазма является проводником электричества. Сочетание высокой температуры, электропроводности и высокой скорости потока (больше скорости звука) позволило в прошлом веке разработать и создать для резки металла плазменное оборудование.

Принцип действия

Как работает плазма, - применяются два способа обработки металлических деталей:

  • рез прямого действия, или плазменно-дуговая резка металлов;
  • рез косвенным воздействием.

Резак прямого действия

Между резаком (катодный узел) и изделием (анод) зажигают электрическую дугу. Катод (электрод) помещён внутрь корпуса, имеющего сопло. Газ, под давлением, проходя мимо электрода, разогревается до высоких температур и ионизируется. Высокая скорость потока создаётся при прохождении сопла. Электродуга плавит металл. Раскалённый газ обеспечивает вывод из зоны нагрева.

Резак косвенного действия

Этот метод позволяет обрабатывать обычные металлы, но, и с малой электрической проводимостью, и диэлектрики. В отличие от предыдущей схемы, источник электроискры помещён в резаке. Поэтому, воздействие на обрабатываемые изделия оказывает только поток плазмы. Стоит такое оборудование значительно дороже, нежели модели прямого действия.

Оба вида резаков имеют общее научно-техническое название, - плазматрон (буквально, - генератор плазмы).

Преимущества плазменной обработки

По сравнению с другими видами обработки металла, этот способ обладает рядом потребительских свойств:

  • возможность обработки заготовок из различных металлов, а также неметаллических изделий;
  • скорость обработки небольших толщин (до 50 мм) в 25 раз выше, нежели посредством ;
  • локальный разогрев детали происходит только в месте воздействия, что способствует отсутствию тепловых напряжений и деформации изделия;
  • качественный и чистый распил метала, - в месте обработки малая шероховатость поверхности;
  • отсутствие взрывоопасных веществ и предметов, - горючих газов, баллонов под давлением и т.п.;
  • способ позволяет производить сложные геометрические резы.

Какое оборудование применяют

Для резки металла плазмой выпускаются агрегаты промышленного и бытового назначения. Первые представляют собой сложный многофункциональный комплекс с автоматизированным процессом (станки с ЧПУ). Вторые - небольшие аппараты, работающие от сети 220V или 380 V.

Источник плазменной резки в бытовых приборах, - инвертор (сварочный генератор) или трансформатор. Первый вид меньше по габаритам, удобнее в обращении. Второй - обладает высокой надёжностью, длительным сроком эксплуатации. Рабочее тело - подготовленный атмосферный воздух.

Мощности ручного агрегата хватает для распила металла толщиной до 15–20 мм. Отдельные модели оснащены функцией бесконтактного зажигания дуги. В комплектацию входит плазмотрон и устройство подготовки воздуха.

Используются в домашних мастерских, условиях профессионального производства и строительства:

  • плазменная река листового металла;
  • обработка цилиндрических изделий, в том числе стальных труб;
  • вырезка сложных геометрических фигур, в том числе отверстий;
  • обработка керамических и каменных изделий и другие виды промысла.

Этот вид оборудования существенно превосходит по своему функционалу и удобству пользования обычную газокислородную резку. Не только по габаритам, но и по технике безопасности.

Модель бытового плазматрона показана на фото.

Свойства технологии

Промышленные и бытовые приборы объединяют общие принципы работы плазменной резки:

  • создание электродуги;
  • образование ионизированного газа;
  • создание высокоскоростного потока плазмы;
  • воздействие этой активной средой на обрабатываемый материал.

Для плазменно-дуговой резки характерны:

  • Температура потока. Величины находятся в диапазоне 5000–30000°C. Определяется видом обрабатываемого материала: нижние значения используют для цветных металлов, верхние - для тугоплавких сталей.
  • Скорость потока. Значения в пределах 500–1500 м/с. Настраивается под определённый вид обработки:
    • толщина заготовки;
    • вид материала;
    • тип распила (прямой или криволинейный);
    • длительность работы плазматрона.
  • Газ, применяемый для плазменной резки. При обработке чёрных металлов (сталей) используют активную группу, - кислород (O2) и воздух. Для цветных металлов и сплавов, - неактивную: азот (N2), аргон (Ar), водород (H2), водяной пар. Объясняется тем, что цветные металлы окисляются кислородом (начинают гореть), поэтому применяется среда защитных газов. Кроме этого, комбинируя состав газовой смеси, можно повысить качество обработки.
  • Ширина разреза. Здесь наблюдается прямая последовательность: с ростом показателей, увеличивается ширина реза. На её величину влияет:
    • толщина метала и его вид;
    • диаметр сопла;
    • сила тока;
    • расход газа;
    • скорость реза.
  • Производительность. Определяется скоростью обработки. Например, для бытовых агрегатов и по ГОСТ, величина не превышает 6,5–7 м/мин (~0,11 м/сек). Зависит от толщины, вида металла, скорости газовой струи. Естественно, что с увеличением размеров, скорость обработки падает.

Качество обработки

Качество реза - важный фактор при обработке металла, особенно, если это плазменная резка труб. Определяется режимом работы, мастерством исполнителя. Плазменно-дуговая резка регламентируется ГОСТ 14792-80. Международный стандарт качества - ISO 9013-2002.

Документами определяются основные критерии:

  1. Допуск на перпендикулярность или угловатость. Показывает отклонения от перпендикуляра и плоскости реза к поверхности обрабатываемого изделия.
  2. Оплавление верхнего края. Трещины в точках обработки не допускаются. Верхний край может быть острым, оплавленным, оплавленно-нависающим.
  3. Шероховатость. По ГОСТ делится на три класса, 1, 2 и 3.

Виды плазменнй резки

Технология плазменной резки металла - это набор нескольких способов. Плазменно-дуговая резка подразделяется:

  1. воздушно-плазменный способ резки металла;
  2. газоплазменная;
  3. лазерно-плазменный способ резки.

Первые два вида схожи по принципу действия, - электродуга плюс ионизированный поток раскалённого газа. Отличие в рабочем теле. В первом случае - воздух, во втором - какой-либо газ или водяной пар.

По способу обработки заготовок толщиной до 200 мм, применяется комбинированное оборудование. Современная промышленная установка сочетает термообработку газовой струёй или использование плазмотрона. Станки для резки оснащены модулем ЧПУ (числовое программное управление). Выполняют раскрой листового металла по прямой или криволинейной траектории.

Ручная плазменная резка - это классическая плазменно-дуговая резка. Переносные агрегаты (бытового уровня) режут чёрный металл с помощью воздушной ионизированной струи. Расширение ассортимента газов, влечёт значительное усложнение оборудования и рост его стоимости.

Лазерно-плазменная

Представляет собой комбинацию на одном станке. Лазерная резка применяется для работ с толщинами до 6 мм. Более размерные листы обрабатываются с помощью плазменно-дуговой резки.

Лазерная и пламенная резка, в сочетании на одном станке с ЧПУ, повышает производительность. Позволяют формировать различные линии раскроя, в том числе, рез отверстий.

Лазерная или плазменная резка, совмещённые на одном устройстве, значительно экономят производственные площади. Плазменно-дуговая резка используется на габаритных заготовках. Лазерная - при обработке мелких деталей с повышенными требованиями к точности раскроя.

Принципиальное отличие лазерного метода от плазменного, - источник нагрева. В лазере - это сфокусированный световой луч. Зона контакта чрезвычайно мала, поэтому удаётся получить локальное воздействие на деталь. Благодаря этому, ширина распила мала, качество раскроя выше, нежели плазматроном.

Из-за этого, плазменная резка труб постепенно сдаёт позиции там, где требуется высокая точность раскроя и предъявляется повышенное качество к краю изделия.

Обработка титана

В космической, авиационной, медицинской и других видах промышленности большую популярность завоёвывает титан и его сплавы. Сочетание прочности, малой плотности - основные плюсы этого вещества. Но, этот металл химически активен и тугоплавок.

Вследствие таких характеристик, его трудно подвергать механической и термической обработке. Режущий применять нельзя, - металл сгорит. Отсюда, резка титана хорошо освоена на плазматроне и лазерным способом.

Кроме обычного прямого раскроя, плазменно-лазерный способ позволяет выполнять пространственную обработку сложных геометрических форм, например, сопряжение нескольких отверстий.

Пример плазменной резки металла, посредством плазматрона, можно увидеть на видео.

Плазменная резка — вид плазменной обработки материалов, при котором в качестве режущего инструмента вместо резца используется струя плазмы.

(Википедия)

Плазменная резка на сегодняшний день считается одним из наиболее эффективных способов прямолинейного и фигурного раскроя металла. Позволяет выполнять резание всех видов сталей, алюминия, меди, чугуна, титана, листового и профильного проката, осуществлять скос кромок под определенным углом.

Характерные преимущества процесса

Плазменная резка металла характеризуется такими особенностями:

  1. Высокая производительность. В 5-10 раз выше скорость раскроя сравнительно с газокислородным способом. Уступает по данному параметру лишь лазерному резанию.
  2. Универсальность. Возможен раскрой практически любого материала, достаточно установить оптимальные параметры процесса - мощность и давление газа.
  3. Качество подготовки не имеет особого значения - лакокрасочное покрытие, грязь или ржавчина на металле для плазменной резки не страшны.
  4. Повышенное качество и точность. Современные агрегаты обеспечивают минимальную ширину реза, относительно чистые без чрезмерного количества окалины на кромках - в большинстве случаев не нуждаются в дополнительной механической обработке и даже зачистке.
  5. Небольшая зона термического влияния способствует минимизации деформации вырезаемых заготовок в результате воздействия повышенной температуры.
  6. Возможность фигурной вырезки сложных геометрических форм.
  7. Безопасность процесса в отличие от газо-кислородной резки, где присутствуют баллоны со сжатым кислородом и горючим газом.
  8. Агрегаты для плазменной резки металла просты в обслуживании и эксплуатации.


Что представляет собой процесс плазменной резки металла?

Плазма - токопроводящий ионизированный газ высокой температуры. Образуется струя в специальном устройстве - плазмотроне . Он состоит из таких основных элементов:

  1. Электрод (катод) - оснащен вставкой из материала с высокой термоэлектронной эмиссией (гафний, цирконий), которая выгорает в процессе эксплуатации и при выработке более 2 мм требует замены.
  2. Механизм закрутки газового потока.
  3. Сопло - как правило, изолированное от катода специальной втулкой.
  4. Кожух - защищает внутренние компоненты от брызг расплавленного металла и металлической пыли.

Имеет 2 провода - анод (с положительным зарядом) и катод (с отрицательным зарядом). «Плюсовой» провод подсоединяется к разрезаемому металлопрокату, «минусовой» - к электроду.

В начале процесса плазменной резки металла поджигается дежурная дуга между катодом и наконечником, которая выдувается из сопла, а при касании к обрабатываемому изделию образует уже режущую дугу.

При заполнении формирующего канала в плазмотроне столбом дуги в дуговую камеру под давлением в несколько атмосфер начинает подаваться плазмообразующий газ, который подвергается нагреву и ионизации, что способствует его увеличению в объеме. Это ведет к его истеканию из сопла с большой скоростью (до 3 км/сек.), а температура дуги в этот момент может достигать от 5000 до 30000 °C.

Небольшое отверстие в сопле сужает дугу, что способствует ее направленному воздействию в определенную точку на металле, который практически мгновенно нагревается до температуры плавления и выдувается из зоны реза.

После прохождения плазмотроном по заданному контуру получается заготовка необходимых размеров и формы с ровными кромками и минимальным количеством окалины на них.


Плазмообразующие газы для раскроя различных металлов

Для плазменной резки металлов могут использоваться как активные, так и неактивные газы. Их выбор осуществляется в зависимости от разновидности металла и его толщины:

  • Азотоводородная смесь предназначена для меди, алюминия и сплавов на их основе. Максимально возможная толщина - 100 мм. Неприменима для титана и всех марок сталей.
  • Азот с аргоном используется в основном для плазменной резки высоколегированных марок сталей, толщина которых не превышает 50 мм, но не рекомендована смесь для черных металлов, титана, меди и алюминия.
  • Азот. С его помощью выполняется раскрой сталей с низким содержанием углерода и легирующих элементов толщиной до 30 мм, высоколегированных - до 75 мм, меди и алюминия - до 20 мм, латуни - до 90 мм, титана неограниченной толщины.
  • Сжатый воздух. Оптимально подходит для воздушно-плазменной резки черных металлов и меди толщиной до 60 мм, а также алюминия - до 70 мм. Не предназначен для титана.
  • Смесь аргона с водородом - раскрой сплавов на основе алюминия и меди, сталей с большим содержанием легирующих элементов толщиной свыше 100 мм. Не рекомендуется использовать для низкоуглеродистых, углеродистых, низколегированных марок сталей и титана.

Но недостаточно просто подключить баллон с необходимым плазмообразующим газом, так как от его состава зависят многие технические характеристики оборудования:

  • мощность и внешние (статистические и динамические) характеристики источника питания;
  • циклограмма аппарата;
  • способ крепления катода в плазмотроне, а также материал, из которого он изготовлен;
  • тип конструкции механизма охлаждения для сопла плазмотрона.

Советы по плазменной резке цветных и легированных металлов:

  • При ручном раскрое высоколегированных марок сталей в качестве плазмообразующего газа рекомендуется использовать азот.
  • Для обеспечения стабильного горения дуги при ручном резании алюминия аргоноводородной смесью в ней должно содержаться не более 20 % водорода.
  • Латунь лучше всего режется азотом и азотоводородной смесью, а также характеризуется более высокой скоростью раскроя.
  • Медь после разделительного резания в обязательном порядке подвергается зачистке по плоскости реза на глубину 1-1,5 мм. К латуни данное требование не относится.

Области применения плазменной резки

Благодаря высокой производительности, универсальности и доступной стоимости плазменная резка металлов пользуется огромным спросом во многих отраслях промышленности:

  • металлообрабатывающие предприятия и компании;
  • авиа-, судо- и автомобилестроение;
  • строительная промышленность;
  • предприятия тяжелого машиностроения;
  • металлургические заводы;
  • изготовление металлоконструкций.

Все сферы использования перечислить просто невозможно - ручные аппараты и автоматические машины для плазменной резки металлов можно встретить практически повсеместно. Их применяют как крупные заводы по изготовлению металлоконструкций, так и небольшие фирмы, специализирующиеся на художественной ковке и обработке деталей.

Особое место среди данного оборудования занимают машины для плазменной резки металлов с ЧПУ - они сводят к минимуму человеческий фактор, значительно повышают производительность. Но основным их преимуществом является сокращение расхода металлопроката благодаря возможности создания специальных программ. Высококвалифицированные технологи разрабатывают карты раскроя, представляющие собой виртуальный лист металла определенных размеров, на котором они максимально плотно укладывают заготовки с учетом ширины реза и многих других параметров процесса с целью более рационального использования металлопроката.

Тонкости процесса раскроя металла

Для получения качественной заготовки в процессе плазменной резки требуется поддержание постоянного расстояния между соплом и разрезаемым металлом - как правило, в пределах 3-15 мм. В противном случае возможно увеличение ширины реза, зоны термического влияния, несоответствие заготовки заданным размерам.

Ток в процессе работы должен быть минимальным для определенного материала и толщины. Завышенные его значения и, соответственно, повышенный расход плазмообразующего газа являются причиной ускоренного износа катода и сопла плазмотрона.

Самая сложная операция в процессе плазменной резки металла - пробивка отверстий. Это вызвано большой вероятностью образования двойной дуги и поломкой плазмотрона. Пробивка производится на увеличенном расстоянии между катодом и анодом - между соплом и поверхностью материала должно быть 20-25 мм. После сквозной пробивки плазмотрон опускается в рабочее положение.

Одним из популярных видов обработки металла является его резка. Существует множество способов получить требуемую форму из цельного листа, но в этом материале рассмотрим принцип работы плазменной резки.

Плазменная резка. Фактически – золотая середина. Преимущества резки металла плазмой сочетают в себе все перечисленные технологии. Главное достоинство – нет ограничений по типу обрабатываемого материала. Разве что по толщине.

  • алюминиевые сплавы 120 мм
  • медные сплавы 80 мм
  • сталь 50 мм
  • чугун 90 мм

Оборудование бывает разное – от промышленного до бытового, так что технология доступна всем. Рассмотрим ее подробнее.

Плазменная резка металла – принцип работы

В качестве резца выступает двухкомпонентная среда:

  • Электрическая дуга, работающая по классической схеме – разряд между катодом и анодом. Причем в качестве анода может выступать сам материал, если он является проводником.
  • Газовая дуга. Нагреваясь под воздействием электрической дуги (температура достигает 25000º С), газ ионизируется и превращается в проводник электротока.

Принцип работы плазменной резки подробно показан в этом видео.

В результате образуется плазма, которая подается под высоким давлением в зону реза. Эта раскаленная струя газа буквально испаряет металл, причем только в рабочей зоне. Несмотря на то, что температура плазменной резки измеряется десятками тысяч градусов, воздействия на пограничную зону практически нет.

Важно! Правильно выбранная скорость, позволяет получить очень узкий разрез без повреждения края материала.

Источник плазменной резки – плазмотрон.


Его задача зажечь дугу, поддерживать рабочую температуру, и выдуть из зоны реза расплавленный металл. Поскольку плазморезы предназначены для обработки любых твердых материалов, включая диэлектрики – образование электрической дуги производится двумя способами:


На рисунке а) изображены резак прямого действия. Катодный узел (8) вместе с закрепленным катодом (6) являются одним из электродов. В качестве второго электрода (анода) выступает обрабатываемая деталь (4) – металл, обладающий хорошей электропроводимостью.

К нему подводится питающий кабель плазмотрона. Наконечник плазменной резки (5) в данной схеме выполняет роль корпуса. От отделен от катода изолятором (7) . Газ подается внутрь по штуцеру (1) и формирует струю плазмы, состоящую из электрической (2) и газовой (3) дуги .

Рекомендуем почитать

Наверх